\((\hat{\Lambda}^* - A) F = [A_T - B_T C_T] D_T^{-1} F' F\)

Editor:

Peter C.B. Phillips

Yale University

\[\beta' y_t = U_{1t} = \underbrace{\beta' \epsilon_t}_{u_{1t}} + \underbrace{(-G(F - I) y_{2t-1})}_{\bar{u}_{1t}} \]

\[\beta' \Delta y_t = \Delta U_{1t} = \underbrace{\beta' \Delta \epsilon_t}_{\Delta u_{1t}} + \underbrace{(-G(F - I)^2 y_{2t-2} - G(F - I) \epsilon_{2t-1})}_{\Delta \bar{u}_{1t}} \]

\[T^{-1} \sum_{t=1}^{T} \epsilon_t y'_{2t-1}(I + G'G) \Rightarrow \left(\Sigma_{11}^{1/2} \int_{0}^{1} dW_1 J'_C \Sigma_{22}^{1/2} \right) (I + G'G) \]

\[\left(\Sigma_{22}^{1/2} \int_{0}^{1} dW_2 J'_C \Sigma_{22}^{1/2} \right) \]