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FINITELY PRESENTED ORDERED GROUPS

by A. M. W. GLASS*

(Received 7th February 1989)

Theorem. There exist non-Abelian finitely presented lattice-ordered groups which are totally ordered. This
disproves a previous conjecture of the author [5].

1980 Mathematics subject classification (1985 Revision): 06F15.

A group G with a partial order on it that satisfies (a^b-*fag^fbg) for all a,b,f,geG
is called a p.o. group. If the partial order is a lattice (for every a,beG, there is a least
upper bound a v b and a greatest lower bound a/\b) the p.o. group is said to be a
lattice-ordered group, or l-group for short. A p.o. group in which the partial order is
total (for all a, b, a ̂  b or b ̂  a) is called an o-group.

The class of /-groups is an equationally defined class of algebras under the operations
•, - 1 , v and A. Hence free /-groups on arbitrary sets X exist [2, Chapter IV].

If G is an /-group and H is a subgroup of G that is closed under the lattice operations
v and A , we call H an /-subgroup of G. A homomorphism (embedding, isomorphism)
between /-groups that preserves the lattice and group operations is said to be an /-
homomorphism {l-embedding, l-isomorphism). The kernels of /-homomorphisms are preci-
sely the convex normal /-subgroups (C is said to be convex in G if xeG, cl,c2eC and
ct^x^c2 imply xeC). If K is a convex normal /-subgroup of G, then G/K is an
/-group under the naturally induced order (Kf^Kg iff hf^g for some heK); see
[l.Section 2.3] where, as usual, iff is shorthand for if and only if. If an /-group G
contains an Abelian convex normal /-subgroup A such that G/A is Abelian, then G is
said to be l-metabelian.

An /-group G is said to be finitely presented (as an /-group) if there is a finite set
xu...,xm and a finite set w1,... ,wn of elements of the free /-group F on {xi,. . . ,xm}
such that G is /-isomorphic to F/N where N is the convex normal /-subgroup of F
generated by w1,...,wn. In this case we simply write <x1,. . . ,xm;w1 =e,...,wn = e) for
F/N, where throughout e denotes the identity element of a group. The set {wl =
e,..., wn = e} is called the set of (defining) relations for F/N.

In any /-group G, let I g ^ g v g " 1 for geG. It is easy to see [1, 1.3.10 and 1.3.11] that
|g |^e, and \g\ = e iff g = e. Hence (w!=e& ...&wn = e) iff \\Vi\ v ••• v |wn| = g; thus any
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finitely presented /-group can be given by a single defining relation and so is an m
generator one relator /-group for some finite m.

In [5] we conjectured that the only finitely presented /-groups that are o-groups are
Z, the additive group of integers under the usual ordering, and {e}; also, that the only
finitely presented /-groups that are subdirect products of o-groups are Abelian. This was
shown to be the case if the defining w1,...,wn were all group words, see [3]. However, in
this note we prove both conjectures are false with an easy example.

Theorem. There is a countably infinite set of pairwise non-l-isomorphic two generator
one relator l-metabelian non-Abelian o-groups.

Clearly there are only countably many finitely presented /-groups. Moreover, one
generator /-groups are Abelian and free /-groups on at least two generators are not
subdirect products of o-groups. Hence the theorem is the best (or worst?) possible.

Throughout we use Q for the additive group of rationals with the usual order; A 5< B
for a semidirect product of A by an o-group B where albi^a2b2 iff bl<b2 in B or both
bl =b2 and at^a2 in A; and a«b for a"^b for all neZ.

For any further background, see [1, 4, 5] if necessary.
We first give a permutation proof in outline and then provide a more formal proof in

detail.

Permutation Proof. Let m > 1 be a positive integer and g be the order-preserving
permutation of the real line given by: ai->a+l. Then there are order-preserving
permutations / of the real line conjugating g0 to g™ but for any such / , there are real
numbers <x and ft such that a / < a and /?/>/? (see [4, Lemma 2.2.1]). Hence if/ and g
are any order-preserving permutations of the real line that move no point down and
f~igf=gm, then g has infinitely many intervals of support and / moves each interval of
support of g to one strictly to the right. Consequently, g«f If L(m) is the /-subgroup
generated by / and g, then the normal subgroup Cm of L(m) generated by g is convex
and Abelian. Moreover, it is an o-group whence L(m) is an /-metabelian o-group. Since
every countable /-group can be /-embedded in the /-group of all order-preserving
permutations of the real line [4, Corollary 2L], L(m) = (x,y; x~iyx = ym, xAy = y,
yAe = e}. Clearly Lim^^Lim^ iff m1=m2. The theorem follows. •

Proof of Theorem. Let m be a positive integer exceeding 1 and

Ln = <x,y; x-xyx = ym, x/\y = y, yAe = e).

So Lm is a finitely presented /-group for each m. We will prove that Lm is actually an
/-metabelian o-group.

By definition, y<*x. If ffLx then ym+n<^xym = yx; hence f+1^ym+n~1^x since m^2
and y^e. Thus y"^x for all integers n by induction; so y«x. Consequently, x'iyx'«x
for all integers j . So if Cm is the normal /-subgroup of Lm generated by y, then Cm is
convex; clearly it is Abelian.
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We now examine Cm. We first note that

5 iff

For if j£s, then x'^x'^xyx'3 iff x"*1"-"/*1"^/ iff /m''J^/ iff / m ' ^ / m ' iff
ims g rmJ; similarly if s ̂  j . Moreover,

yim'-J + r x s i f j ^ s

vi+rmJ"x~i if s^/.

Therefore if <j>: Cm->Q is given by: (xjy'x j)cl> = i/mJ, then </> is an embedding and z g t iff
z<j}^t(j) for all z,teCm. Consequently Cm is an Abelian o-group.

Each element of Lm has the form wxk for some weCm and unique integer k.
Furthermore wlx

j^w2x
k iff j<k or both j = /c and wl^w2 (wl,w2sCm; j,keZ).

Therefore Lm is an /-metabelian o-group. Indeed if Q(m) = {r/ms:r,seZ}, an /-subgroup
of the o-group Q, and \peAut{Q(m), +,0, ^ ) is multiplication by m, then we have
shown that Lm is /-isomorphic to Q(m)5<<^>. It follows that I^mj) and L(m2) are not
/-isomorphic if mt #m 2 and the theorem is proved. Q

I know of no other examples of finitely presented /-groups that are o-groups.
Therefore, the following questions remain:

(I) Is every finitely presented /-group that is an o-group in fact /-soluble?

(II) Is every finitely presented /-group that is an /-soluble o-group actually
/-metabelian?
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