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ON COMPOSITE POLYNOMIALS

WHOSE ZEROS ARE IN A HALF-PLANE

ABDUL AZIZ

Let P(z) and Q(z) be two polynomials of the same degree n . If

P(z) and Q(z) are apolar and if one of them has all its zeros in a

circular region C , then according to a famous result known as

Grace's Apolarity Theorem, the other will have at least one zero

in C . In this paper we relax the condition that PCz) and Q(z)

are of the same degree and present some generalizations of Grace's

Apolarity theorem for the case when the circular region C is a

closed half-plane. As an application of these results, we also

generalize some results of Walsh and Szego.

1. Introduction

Two polynomials

n • n .
P(z) = I C(nJ)A.zJ and Q(z) = I C(n3j)B .z° , A B ? 0

3=0 3 j=0 ° n n

of the same degree n are said to be apolar if their coefficients satisfy

the relation

n
( } = 0 .
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4 5 0 A. Aziz

As to the relative location of the zeros of the polynomials P(z)

and Q(z) , we have the following fundamental result known as Grace's

Apolarity theorem [4, p. 613.

THEOREM A. If P(z) and QCz) are apolar polynomials, then any

circular region C containing all the zeros of P(z) or Q(z) contains

at least one zero of the other polynomial.

By a circular region we mean the closure of not merely the interior

of a circle but also the exterior of a circle or a half-plane.

Recently in [2] and [3], (see also [7]), the author has presented

certain generalizations of Theorem A and their applications in the case

when the circular region C is the closed interior or exterior of a

circle, by studying the relative location of the zeros of the two poly-

nomials

n m
(1) P(z) = Z C(n,j)A.z3 and Q(z) = Z C(mJ)B.z3 , A B / 0 ,

3=0 3 3=0 3 n m

of degree n and m respectively, m •£• n , when the coefficients of these

polynomials satisfy an apolar type relation. In this paper we study the

relative location of the zeros of the two polynomials P(z) and Q(z)

defined by (1) with their coefficients satisfying an apolar type relation

and obtain some generalizations of Theorem A for the case when the

circular region C is a closed half-plane. As an application of these

results, we present certain generalizations of results of Walsh and Szego.

2. Some generalizations of Theorem A for half-planes

THEOREM 1. If

n . m .
P(z) = Z C(nJ)A.z3 , An ji 0 , and Q(z) = Z C(mJ)B.z

3 ,
3=0 ° ° 3=0 3

are two polynomials of degree n and m respectively, m ̂  n 3 such that

(2) C(m,0)AQBm - C(mil)A^m_1 + ... + (-l)mClm3rn)AjB0 = 0 J

then the following holds.
(i) If all the zeros of PCz) or Q(z) lie in the half-plane

Re(z) <. 0 , then at least one zero of the other polynomial lies in
Re(z) < 0 .

https://doi.org/10.1017/S0004972700003749 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700003749


451Composite po lynomia l s

(ii) If all the zeros of P(z) or Q(s) lie in the half-plane

Re(z) ^ 0 , then at least one zero of the other polynomial lies in

Re(z) £ 0 .

(i) and (ii) hold equally well if Re(z) is replaced by Im(z).

For the proof of Theorem 1, we need the following lemmas.

LEMMA 1. If all the zeros of a polynomial P(z) of degree r. lie

in Re(z) £ a(Re(z) 2 a) and Re(a) > a (Re(a) < a) , then all the zeros

of the first polar derivative

P1(z) = nP(z) + (a - z)P'(z) ,

of P(z) lie in Re(z) £ a(Re(z) £ a) . Furthermore, under the given

hypothesis with a = 0 , if P(0) JO, then P^O) J 0 .

The first part of Lemma 1 is a special case of a result due to

Laguerre [4, p. 49] or [6]. A new, simple and purely analytic proof of

Laguerre's theorem is given in [I]. Here we prove the second part of

Lemma 1.

Proof of the 2nd part of Lemma 1. suppose that all the zeros Zj,

zo, ..., z of P(z) lie in Re(z) <. 0 , P(0) / 0 and RefoJ > 0 . Then

Re(z .) < 0 and z . J 0 for all j = 1, 2, ... , n . We have to show that
0 <7

PJO) / 0 . Assume that PJO) = 0 , then nP(0) + aP'(O) = 0 . Since

P(0) J 0 , this implies

which gives

Hence

n Ri

Red

3=1 Z3

• n

I

n
Z

3=1

a) Re

P'(0)
~ " P(0)

Re(j-) =

ReCs J

1 I2 *l-l

_ n
~ a

h <

Re
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This implies that Re(a) :£ 0 , which is a contradiction to the hypothesis

that RefaJ > 0 . Thus P^CO) ? 0 . Now if all the zeros of P(z) lie

in Tte(z) > 0 , PtO) ̂  0 and ReCaJ < 0 , a similar proof shows that

P^O) ^ 0 . This completes the proof.

The following lemma can be proved in the same way as Lemma 1.

LEMMA 2. If all the zeros of a polynomial P(z) of degree n lie

in Re(z) < a(Re(z) > a) and Re (a) £ a(Re(a) s a) , then all the zeros of

the polynomial PAz) = nP(z) + (a - z)P'(z) lie in Re(z) < a(Re(z) > a) .

Remark 1. It can be easily seen that both Lemma 1 and Lemma 2

remain true if Re(z) and Re(a) are throughout replaced by lm(z) and

ImTaJ respectively.

We also need

n J

LEMMA 3 [4, p. 52]. If P(z) = Z C(nJ)A.g/ is a polynomial of
3=0 3

degree n and a13 a0, ...j a are m, m < n , arbitrary real or complex

numbers, then the kth polar derivative

Pk(z) = (n-k+l)Pk_J(z) + (<*£ - z)P
t
k_1(z)i k = 1,2, ..., m ,

of P(z) , with PQ(Z) = P(z) , can be written in the form
n~k (k) i

Pv(z) = Z C(n-k,j)A. z° ,
K 3=0 °

where

A(.k) = n(n-l)...(n-k+l) Z
33 i=0

and S(k,i) is the synmetric function consisting of the sum of all

possible products of a., a,j ..., cu taken i at a time.

Proof of Theorem 1. Let a,j a0, ..., a be the zeros of the
j . o m

polynomial Q(z) , then we have

m •
(3) £ Cto^lB.tf1 = Bm(z - <x2)(z - ag)...(z - c^J ,

Comparing the coefficients of the like powers of z on the two sides of

(3), we obtain
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(4) CCmJJB . = C(m,m-j)B . = C-l}° S(m,j)B

Now suppose first that all the zeros of the polynomial P(z) lie in

Re(z) ̂  0 . We have to show that at least one zero of Q(z) lies in

Re(z) £ 0 . Assume that all the zeros of Q(z) lie in Re(z) > 0 , then

RefaJ > 0 for all i = 1, 2, ..., m . Since P(0) d AQ = 0 and all the

zeros of P(z) lie in Re(z) £ 0 3 it follows by repeated application of

Lemma 1 that all the zeros of each polar derivative

(5) Pk(z) = (n-k+DP^^z) + (a.k - z)P^2(z) , k = 1,2,... ,m ,

also lie in Re(z) £ 0 and P-^(0) ^ 0 . Hence in particular all the

zeros of P (z) lie in Re(z) £ 0 and Pm(0) / 0 . But by Lemma 3,

P (z) can be written as
m

Am)(6) P (z) = Z C(n-mJ)A. z3 ,
m 3=0 3

where

( ) m

A. = n(n-l)... (n-m+1) t S(m,i)A . . ,
3 i=0 v*3

Since by hypothesis

m i
I (-ir C(m,i)B .A. = 0 ,

therefore, if n > m , then from (6) we get

P (0) =A(
n

m) = n(n-l). (n-nH-1) \ (_2)i c( ^
m 0 Bm i=Q m-i v

= 0 ,

which clearly contradicts (5). In the case n = m , from (6) we have

P (z) s A(.m) = 0 .
tn u

Since

Pm('} ' Pm-1(B)

it follows that P (a ) = 0 . But ReCa) > 0 , which contradicts (5)
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again. Hence we conclude that Q(z) must have a zero in ReCz) S 0 ,

We next suppose that all the zeros of the polynomial Q(z) lie in

Re(z) S 0 . We have to show that Viz) has at least one zero in Re(z) £ 0.

Assume the contrary, that is, assume that all the zeros of P(z) lie in

Re(z) > 0 . Since in the present case ReCaJ £ 0 for all 3 = 1, 2, ...3
3

m, it follows by repeated application of Lemma 2 that all the zeros of

each polar derivative

(7) Pk(z) = (n-k+l)Pk_2(z) + (a^-zJP^Cz) , k = 1, 2, ..... mt

lie in Re (z) > 0 . Hence in particular all the zeros of ^L^2-' lie i-n

Re(z) > 0 . Now if n > m , then with the help of (2) it follows from (6)

that P (0) = A™ = 0 . This shows that z = 0 is a zero of ?„(%) ,

which contradicts (7). If n = m , then from

Pm-l(z) + (% ' *K-1(Z) = Pm(z) S 4^ " ° >
we get as before P -(a ) = 0 . Since ReCa ) <, 0 } this contradicts (7)

m-J m m

once again. Thus we conclude that P(z) must have at least one zero in

Re(z) <, 0 . This completes the proof of the first part of Theorem 1.

With the help of repeated applications of Lemma 1 and Lemma 2, part (ii)

of Theorem 1 can be proved in a similar way to part (i) above. Part (ii)

of this theorem also follows by applying part (i) to the polynomials

P(-z) and Q(-z) . Finally applying part (i) and part (ii) to the poly-

nomials P(iz) and Q(iz) a it can be easily seen that these results

hold equally well if RefzJ is replaced by \v\(z) . This completes the

proof of Theorem 1.

Remark 2. If in Theorem 1, the polynomial P(z) has all its zeros

in RG(Z) £ a where a ^ 0 is a real number and n > m , then the

polynomial Q(z) need not have any zero in Re(z) £ a . For example,

consider the polynomials

P(z) =l+z+z+s..+z
n= t °

3=0

and

Q(z) = n + z ,
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then n > 1 = m and the relation (2) is satisfied. But P(z) has all i ts

zeros in Re(z) J - J , whereas the only zero of Q(z) l ies on

Re(z) = -n < -1 . However, in this case we establish the following result.

THEOREM 2. If

n m .
P(z) = I C(n,j)A.z3 and Q(z) = E C(m,j)B.z° ,

3=0 ° 3=0 °

are two polynomials of degree n and m respectively} m < n 3 such that

C(m,0)B0An - CtoiDBjA^ + . . . +(-lf C(m,m)BmAn_m = 0 ,

then the following holds.

(i) If all the zeros of P(z) or QCz) lie in the half-plane

Re(z) <. a j then at least one zero of the other polynomial lies in

Re(z) < a .

(ii) If all the zeros of P(z) or Q(z) lie in the half-plane

Re(z) > b j then at least one zero of the other polynomial lies in

Re(z) > b .

The results (i) and (ii) hold equally well if Re(z) is replaced by

Im(z) .

Proof of Theorem 2. Since P(z) i s a polynomial of degree n and

(k)
t h e r e f o r e , P (z) i s a p o l y n o m i a l o f d e g r e e n-k and h e n c e i n

particular R(z) = (m.'/n.')P (z) is a polynomial of degree m . I t is

an easy matter to see that the polynomial Rtz) can be written as

m i

R(z) = l /

Let a7 j ct0J . . . j a be the zeros of R(z) , then we have

(9) lJ(m,3)An_m+.z3 =An(z- a2) (z - aj... (z - aj .

Equating the coefficients of the like powers of z on the two sides of

(9), we get

)°(10) C(mJ)A . = CCm,m-j)A . = (-1) SbnJjA

Now suppose first that all the zeros of P(z) l ie in Re(z) £ a

then i t follows by the Gauss-Lucas Theorem that a l l the zeros of R(z)
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also lie in Re(z) < a . We have to show that the polynomial Q(z) has

at least one zero in ReCz) S a , Assume that all the zeros of Q(z) lie

in Re(z) > a . Since

(11) Refa J $ a for all j = 1, 2, ...3 m ,
3

it follows by repeated application of Lemma 2 that all the zeros of

(12) Qk(z) = (m-k+DQ^jCz) + fafe - zJQ^Cz) 3 k = l, 2, ..., m - 1 ,

also lie in R&(z) > a . Hence in particular all the zeros of Q Az)

lie in Re(z) > a . But by Lemma 3, (10) and (8) we have

(13) Q (z) E B\.mJ = m(m-l) ...2.1 Z S(m3i)B.
m ° i=0 v

Since Qjz) = Q^z) + (*m - ^ _ / s J , it follows that 0 .

But by (11) Refa J <, a 3 which contradicts (12). Hence Q(z) must have

at least one zero in Re(z) ^ a .

Next suppose that all the zeros of Q(z) lie in Re(z) <. a . We have

to show that P(z) has at least one zero in Re(z) 2 a . Assume that all

the zeros of R(z) lie in Re(z) > a , then by the Gauss-Lucas Theorem

all the zeros of P(z) lie in Re(z) > a , so that we have

(14) Re(a.) > a for all j = 1, 2, ..., m .
3

Since Q(z) has all its zeros in Re(z) <, a , it follows by repeated

application of Lemma 1 that all the zeros of QrJz) defined by (12) lie in

Re(z) £ a . Hence in particular Q Az) has all its zeros in Re(z) S a.

But by (13), i

W - ; + (\ - *K-i(*> = V*> =- Bom) = ° •
and therefore Q -(a ) = 0 . which implies Refa ) S a . This clearly

contradicts (14). Thus we conclude that F(z) must have at least one

zero in R&(z) £ a . This completes the proof of the part (i) of the

theorem. Part (ii) of Theorem 2 can be proved in a similar way to part

(i) above. Finally if we replace Re(z) by Jm(z) throughout in the

above proof, it can be easily seen that part (i) and part (ii) hold
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equally well when Re(z) .is replaced by Im(z) . This establishes
Theorem 2 completely.

3. Some Applications

In the following, we denote by H any one of the half-planes

Re(z) ̂  a , Re(z) s 3 , im(z) £ a or Im(z) £ b , where a, 3, a, b are

xeal numbers. As the first application of Theorem 2, we present the

following result which is a generalization of the Coincidence Theorem of

Walsh [5] for the case when the circular region C is a half-plane H .

Since our method of proof of this result is similar to the proof of Theorem

2 of [3], we shall omit it.

THEOREM 3. Let G(z , z0, ..., z ) be a symmetric n-linear form of

total degree m> m < n , in z,3 zo3 ..., z and let H be a half-plane
-j. a n

containing the n points u . , uCJ . . . , w . Then in H there exists at
-JL n n

least one point w such that

G(w, w, ..., w) = Gtw^ w2, .,., wn) .

As our next application of Theorem 2, we deduce the following

generalization of a result due to Szego 14, p. 65] for half-planes.

THEOREM 4. From the two given polynomials

P(z)
n

= Z C(n
3=0

A,
i
A , 7̂
/ n

0 and Q(z)
m

= z
3=0

of degree n and m respectively t m <. n } we form the third polynomial

R(z) = Z C(m,j)A.B.z3' ,
3=0 3 3

of degree m . If all the zeros of Q(z) lie in a half-plane H , then
every zero w of R(z) has the form w = - oB where a is a zero of
Viz) and B is a suitable chosen point in H .

Proof Of Theorem 4. If w i s a zero of the polynomial R(z) , then
the equation

m i

R(w) = Z C(m,j)A .Bjjf = 0 ,
3=0 ° 3

shows that the polynomials
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znP(-w/z) = C(n,O)(-l)nArw
n+... +C(n3m)(-l)mAtw

mzn~m+..,+ CCn,n)AQzn

and

Q(z) = C(m.O)B. + C(m.l)B^z + , . . + C(m.m)B zm

0 1 m

satisfy the condition of Theorem 2. Since all the zeros of Q(z) lie in

H , it follows from Theorem 2 that z P(-w/z) has at least one zero in H .

If the zeros of P(z) are denoted by a,j a03 •.. j a , then the zeros of
± & n

z P(-w/z) will be -u/a13 -W/OLO, ...} -w/a. . One of these zeros must be
-J. o Tt

6 where 3 e H . Therefore, we must have w =-a.3 for some j = 1} 2^
3

..., n . This completes the proof.

By applying Theorem 2 to the polynomials P(z) and zmQ(^w/z) , we

may deduce the following result in exactly the same way as Theorem 4.

THEOREM 5. From the two given polynomials

n . m .
P(z) = Z CfnsJlA.z3 and Q(z) = 1 C(m,j)B.zJ , B B ? 0 ,

3=0 3 3=0 3 U m

of degree n and m respectivelys m <, n , we form the third polynomial

m
R(z) = Z

3=C

of degree m . If all the zeros of P(z) lie in a half-plane R , then

every zero w of R(z) has the form w = - a3 where 3 is a zero of

Q(z) and a is a suitably chosen point in H .

As an another application of Theorem 2, we obtain the following

generalization of a result due to Walsh [5].

THEOREM 6. From the two given polynomials

and

of degree n and m respectively3 m < n , let us form the third poly-

nomial

R(z) = Z (n-j)i a .Q(3)(z) ,
3=0 n'3

P(z)
n

= z
3=(

az3

1
= a

n
n (z -

\
a.)
3

m . m
Q(z) = Z b .zJ =b n

j=0 3 m j
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of degree m 3 then the following holds:

(i) If all the zeros of P(z) lie in a half-plane H 3 then every

zero w of R(z) has the form w = a. + B where a is a suitably ahosen

point in H and B is a zero of Q(z) .

(ii) If all the zeros of Q(z) lie in a half-plane H , then every

zero w of R(z) has the form w = a + B where B is a suitably ahosen

point in H and a is a zero of P(z) .

Since the proof of Theorem 6 is analogous to the proof of Theorem 5

of [3], we omit it here. The following corollary is an immediate con-

sequence of Theorem 6.

COROLLARY. If all the zeros of a polynomial P(z) = t a.zJ of
3=0 3

degree n lie in Re(z) > a and all the zeros of a polynomial
m

Q(z) = I b .2 of degree m, m s n t lie in Re(z) ̂  b , then all the
3=0 3

zeros of the polynomial

R(z) = Z (n-j)!a .Q<3'} (z) ,
3=0 n~3

of degree m lie in Re(z) z a + b .

This follows from the fact that Re (a) ̂  a and Re (&) ̂  b imply

Re(w) = Re (a) + Re (8) * a + b .

Remark 3. in exactly the same way as Theorem 6, a result similar to

Theorem 6 of [3] can be deduced from Theorem 1. Furthermore, in very much

the same way as above, we can deduce from Theorems 1 - 6 many other

interesting results.
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