
Can. J. Math., Vol XXVII, No. 2,1975, pp. 271-275 

SOME RESULTS ON TOTALLY ISOTROPIC 
SUBSPACES AND FIVE-DIMENSIONAL 

QUADRATIC FORMS OVER GF{q) 

CRAIG M. CORDES 

1. Introduction. In [5] Pall denned a partitioning of a quadratic space 
over a field of characteristic not 2 to be a collection of disjoint (except for {0} ) 
maximal totally isotropic subspaces whose union formed the set of isotropic 
vectors. Clearly isometric quadratic spaces simultaneously do or do not have 
partitionings. Pall exhibited the existence of partitionings for the spaces 
associated with 

n n 

tn — 2-J Xi ~~ 2^i xn+i 

over formally real fields for n = 1, 2, 4, 8 and over Z/(p), p prime, for n = 1, 2. 
Using the latter, he was able to find a new proof for Jacobi's formula for 
the number of representations of a positive integer as the sum of four integral 
squares. It should be noted that Pall's methods also show the existence of 
partitionings for ^4, \ps over fields with level (Stufe) greater than 2, 4 respec
tively. 

In his thesis, Pall's student, L. Couvillon showed ^2 had a partitioning over 
any field (characteristic not 2). He also proved the non-existence for \j/n over 
formally real and finite fields when n > 1 is odd. In this paper we will obtain 
some general results on totally isotropic subspaces and will show that five-
dimensional quadratic spaces over GF(q) do not admit partitionings. This is 
the first case over GF(q) which was not covered by Couvillon. 

2. Totally isotropic subspaces. Given a regular quadratic form <p over 
the finite field GF(q), 2 \ q, we want to find the number of totally isotropic 
subspaces for every dimension. There are essentially three possibilities for <p: 

(1) <pi = (1, — 1, . . . , 1, — 1) with dimension <pi = 2n, 
(2) <p2 = (1, — 1, . . . , 1, — 1, d) with dim <p2 = 2n + 1, and 
(3) <p3 = (1, — 1, . . • , 1, — 1, 1, d) where — d is not a square and dim 

<pz = 2n + 2. 
By Artin [1, p. 146] the number of isotropic vectors for each case is given 
respectively by (qn - l ) ^ " 1 + 1), q2n - 1, and (qn - l)(qn+1 + 1). Denote 
by rk(<p) the number of distinct totally isotropic subspaces of dimension 
n — k + 1 containing a specified one of dimension n — k. Moreover, denote 
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by tk(<p) the number of distinct totally isotropic subspaces of dimension 
n - k + 1. 

PROPOSITION 1. Let <p be a regular quadratic form over GF(q) as above. Then 

t s (g'-DCg*-1 + i) g 2 ' - i (a* - D(g*+1 + i) 

in cases (1), (2), (3) respectively. Also 

where /n+i = 1. 

Proof. All the cases are similar, so we will just give the proof for case (2). 
Let U be a fixed totally isotropic subspace with dim U = n — k. Then there 
is subspace Uf such that U ® U' is an orthogonal sum of n — k hyperbolic 
planes. So if V is the quadratic space associated with p, then 

V = (U ® U') ± Hx 1 . . . ± Hk ± (v) 

where the Ht are hyperbolic planes and <p(v) = d. Any n — k + 1 dimensional 
totally isotropic subspace containing U can be written as U J_ (u) where 
u G Hi ± . . . J_ Hk J_ (v) and is isotropic. Furthermore different isotropic 
lines (u) give different U ± (u). The result for rk now follows by counting the 
isotropic lines of Hi _L . . . J_ Hn ± (v). 

For each of the tk+i subspaces of dimension n — k there are rk extensions to 
an (n — k + 1)-dimensional one. But the larger spaces could have been 
extended from any of its (q71-^1 — l ) / (g — 1) (n — k)-dimensional subspaces. 
Thus the result for tk(<p) follows. 

COROLLARY. The number of maximal totally isotropic subspaces is 

71— \ 7t 71 

h = n iï +1), n (a1 +1), n (gi+1 +1) 
i=0 i = l z = l 

in cases (1), (2), (3) respectively. 
It is immediate from Witt's Theorem [4, p. 98] that the orthogonal group is 

transitive on any set of totally isotropic subspaces of the same dimension. It is 
also true that this can be extended to double transitivity with some restrictions. 
The following lemma is an immediate consequence of a remark by Dieudonné 
[3, p. 21]. 

LEMMA A. Let V be a quadratic space and Vi, V2, Wi, W2 be totally isotropic 
subspaces satisfying the following: 

(1) dim Vt = dim Wjt i,j = 1, 2, 
(2) ViC\ V2 = WiH W2 = {0}, 
(3) Vi © V2 and W\ © W2 are regular. 
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Then there is an isometry a in the orthogonal group of V such that aVi = Wi} 

i = 1,2. 

This lemma will be applied to partitionings, but first we need a result about 
maximal totally isotropic subspaces. 

PROPOSITION 2. Let U, W be disjoint maximal totally isotropic subspaces of a 
regular quadratic space V. Then U © W is regular. 

Proof. If U © W is not regular, then there are u £ U, w Ç W such that 
u + w ?± 0 is orthogonal to U © W. But then U © (w), W © (u) are both 
totally isotropic. The maximality of U, W shows u = w = 0. This contradicts 
u + w 7* 0. So U © W is regular. 

If {Wi}iei is a partitioning of V and if o- £ 0 ( F ) , then clearly {<xlFi}*€j is 
also a partitioning. So it follows from this, Lemma A, and Proposition 2 that 
if a partitioning with at least two elements exists, we can assume any two 
particular disjoint maximal totally isotropic spaces belong to one. 

3. Partitionings for five-dimensional spaces over GF(q). All regular 
quadratic forms of dimension five over GF(q) are equivalent to dip where 
<p = Xlt=i Xi2 and d is the determinant. Since d<p has a partitioning if and only 
if <p does, we need to consider just <p. Note also that <p = (1, 1, 1, 1, 1) = 
(1, — 1 , 1, —1, 1) over GF(q). The quadratic space associated with <p will be 
called V. Notice that maximal totally isotropic subspaces of V have dimension 
2. 

PROPOSITION 3. Let W be the quadratic space over GF(q) associated with 
\p — (1, 1, 1, 1). Consider W embedded in V by 

W = {(xi, x2, x3, x4, 0)\xt € GF(q)}. 

Then any partitioning of V contains exactly two subspaces of W. 

Proof. Let U be a maximal totally isotropic subspace of V which is not 
contained in W. Then U + W = V, and, hence dim U C\ W = dim U + 
dim W — dim(£/ + W) = 1. So U contains exactly one line of W. 

The number of non-zero isotropic vectors in W is (q2 — \){q + 1) and so 
IF contains {q + l ) 2 isotropic lines. These lines must be covered in any parti
tioning for V. This can be accomplished in two ways: (1) the lines lie in spaces 
contained in W, or (2) they lie in spaces not contained in W. Suppose there 
are r subspaces of IF in a particular partitioning of V. By the above comment 
spaces in (2) contain only one line of W while spaces in (1) contain q + 1 lines 
of W. Hence there must be (q + l ) 2 — r(q + 1) spaces not contained in W. 
V has q4 — 1 non-zero isotropic vectors and so there must be q2 + 1 spaces in 
a partitioning. Consequently, q2 + 1 = (q + I)2 — r(q + I) -\- r or r = 2. 
This completes the proof. 
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COROLLARY. Suppose Ui, U2f Uz are spaces in a partitioning of V. Then Uz 
is not contained in U\ © U2. 

Proof. Couvillon [2, p. 11] showed that Whas a partitioning. So in particular 
there exist two maximal totally isotropic subspaces Wi, W2 in W such that 
W\ C\ W2 = {0}. By Lemma A, we can find a a £ 0 ( F ) satisfying aUt = Wu 

i = 1, 2. If Uz Ç [/i © f/2, then (r[/3 Ç Pfi 0 If2 = ^ . But this means 
there is a partitioning of V with three spaces in W, a contradiction. 

As we have seen, if there is a partitioning of V, it must have q2 + 1 elements. 
By the Corollary to Proposition 1, V contains (q + 1)(<Z2 + 1) maximal 
totally isotropic spaces. If U is one of these spaces not in the partitioning, then 
each of its q + 1 lines must lie in a different member of the partitioning. 
Denote them by U\, . . . , Uq+i. Since £/ intersects these U\, it follows that 
U C [/, © ^ for 1 g i 5* j ^ g + 1. By the Corollary, £/, g Z7, © £/*. Our 
goal is to show that such a situation cannot exist and, hence, neither can a 
partitioning. 

LEMMA. Let V he the quadratic space associated with (1, 1, 1, 1, 1). Suppose 
Vi, V2, F3 are maximal totally isotropic subspaces of V with the properties 
Vxr\Vi= {0},i = 2, 3 and Vj £ Vx © 7< for {i,j} = {2, 3}. Then Vi © V2 

and Vi © Vz have in common exactly two maximal totally isotropic subspaces of 
V, one of which is V\. 

Proof. Since Vi © F2 5* Vi © F3, (Vi © V2) + (Vi © F3) = F and dim 
[(Vi © F2) H (Fi © F3)] = 3. Clearly Vi is in the intersection so (Vi © 
F2) H (Fi © F3) = Fi © <»). By Proposition 2, Fi © F2 is regular so the 
orthogonal complement of V\ in V\ © F2 has dimension 2. In fact Fi* = V\. 
So there is a fl0 G Fi with Vo not orthogonal to z/. If v is not isotropic, then 
v + az/o will be for appropriate a. Since Vi © (fl) = Fi © (v + cw0), this 
allows us to assume v is isotropic. It is easy to see v is orthogonal to a unique 
line (v\) C Fi. Let Fi = (vi, v2). Since z>, z>2 are not orthogonal, the isotropic 
vectors in V\ © (v) are of the form av\ + fiv2 and 7^1 + 8v. But these are 
orthogonal if and only if (38 = 0. So the only two-dimensional totally isotropic 
subspaces of V\ © (v) are V\ and (vi, v). 

PROPOSITION 4. Let V be the quadratic space associated with (1, 1, 1, 1, 1). 
Suppose Uij . . . , Un are mutually disjoint (except for {0}) maximal totally 
isotropic subspaces of V with the property Ui Ç= U j © Uk, 1 ^ i, j , k ^ n. 
Furthermore, suppose that a two-dimensional sub space U intersects each Ui in a 
line and that there is a vector u satisfying u (z U — Ui} 1 ^ i ^ n. Then, for 
n odd and 3 ^ n ^ q, there are at most q — n maximal totally isotropic subspaces 
W of V which contain u and such that W <£ Ut © Ujy 1 S i, j , ^ n. 

Proof. U must be totally isotropic, and clearly U QUi © Uh 1 ^ i 7^ j ^ n. 
By Proposition 1, there are q + 1 maximal totally isotropic subspaces of F 
containing u and two such spaces in each Ut © Uj (one of which is always U). 
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Consider the set { U\ ® Uj}%2. By the lemma, then, the subspaces containing 
u which are not U mus t all be different. Thus there are a t most (q + 1) — 
(n — 1) — 1 = q — » + 1 possible W. The same technique can be applied to 
f/2 © Uj, 1 ^ j S n, j 9^ 2. If a different set of subspaces are eliminated by 
this new collection, then the proposition holds. The only problem occurs when 
exactly the same set of n spaces is eliminated from every collection { Ut © 
Uj}j^i, 1 ^ i S n. Consider just the n — 1 non-U spaces. By the lemma, 
these spaces eliminated by Ut © Uj and Ut © Uk are the same if and only if 
j = k. So if {J7i © Uj] and { Ui © Uj} eliminate the same n — 1 non- ^/-spaces, 
there mus t be a correspondence U\ © Uj <-> f/2 © £/*,- where j = 2 <^ ij = 1 
and otherwise j F^ ^- with {^} = {7}, S ^ j ^ n. The same holds for every 
pair of sets {Utl © J7^h, {Ui2 © f/y}^. W h a t this means is t ha t there exists 
an (n — 1) X n a r ray of ordered pairs (i,j) with t ^ j and the feth column 
consisting of all (k,j) with j taking on all values from 1 to n (except k) subject 
to the following conditions: (1) if (k, I) appears in a given row, then so does 
(/, k)j and (2) if (i,j), (k, I) appear in the same row, then either i = /, j = k 
or {ijj} (^ {k, 1} = 0. T h e rows of this a r ray correspond to the n — \ spaces 
eliminated and the columns to the sets {Ut © Uj)j. But condition (1) and 
the fact t h a t (i, i) is not in the array is impossible if n is odd since there would 
have to be an even number of columns. This shows every set { Ut © Uj} j 
cannot eliminate exactly the same set of spaces so a t least one more is remov
able than the n from { U\ © Uj} j . This completes the proof. 

In particular, if n = q, there are no spaces t ha t will work. Thus the si tuation 
mentioned just before the lemma is impossible, and we can record the following 
result. 

T H E O R E M . Let V be any regular five-dimensional quaadratic space over GF(q), 
2 Jf q. Then V does not have a partitioning. 
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