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NECESSARY AND SUFFICIENT CONDITION
FOR OSCILLATIONS

OF NEUTRAL DIFFERENTIAL EQUATIONS

M. R. S. KULENOVIC1-2, G. LADAS1 AND A. MEIMARIDOU13

(Received 13 December, 1985)

Abstract

Consider the neutral delay differential equation

d k

where p e R, r > 0, q, > 0, and o, > 0 for i = 1,2,... , k. We prove the following result.

THEOREM. A necessary and sufficient condition for the oscillation of all solutions of Eq. (1)
is that the characteristic equation

k

has no real roots.

1. Introduction

Neutral delay differential equations (NDDE for short) are differential equations
in which the highest order derivative of the unknown function is evaluated both at
the present time t and at some past time t — r.
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[ 2 ] Oscillations of neutral differential equations 363

In this pape r we prove the following result:

THEOREM. Consider the NDDE

j-[y(t) +py(t - T)] + £ q,y{t " <O = 0, (1)
1 = 1

where / i e R , T > 0 , ? , > 0 , and a, > 0, for i = 1,2,..., k. Then a necessary and
sufficient condition for the oscillation of all solutions of Eq. (1) is that the character-
istic equation

£<7,e~Xa' = 0 (2)
i-i

has no real roots.

The special case of this results when k = 1 was proved by Sficas and
Stavroulakis [7]. Also for k = 1 and T, a, p, and ? e R the above theorem was
proved by Grove, Ladas, and Meimaridou [3]. When p = 0 or T = 0, the above
result is due to Tramov [10]. For a simple proof see Ladas, Sficas and Stavroula-
kis [6].

There are drastic differences in the behavior of solutions of NDDEs compared
to nonneutral equations. For example Snow [9] has shown, see also [8], that even
though the characteristic roots of (2) may lie in the negative half-plane, it is still
possible for (1) to have unbounded solutions. Our theorem establishes the fact
that unlike stability, the oscillatory nature of the solutions of (1) is determined by
the roots of the characteristic equation (2).

Several results concerning the oscillation and asymptotic behavior of the
solutions of (1), when k = 1, were recently obtained by Ladas and Sficas [5] and
Grammatikopoulos, Grove and Ladas [2].

Neutral equations have applications in electric networks containing lossless
transmission lines. Such networks arise in high speed computers where the lossless
transmission lines are used to interconnect switching circuits. See [1] and [4].

Let p = max{r ,a 1 ; o 2 , . . . ,o k ) and t0 e R. By a solution of (1), in the interval
[t0, oo), we mean a function y <E C([t0 - p, oo), R) such that y(t) + py(t - T) is
continuously differentiate for t > t0 and y(t) satisfies (1) for all / > t0. Using
the method of steps, it follows that for every 4> e C([t0 - p, to],K) there exists a
unique solution of (1) in the interval [t0, oo) such that y(t) = <j>(t) for t0 — r < /
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364 M. R. S. Kulenovic et al. [ 3 ]

As usual, a solution of (1) is called oscillatory if it has arbitrarily large zeros
and nonoscillatory if it is eventually positive or eventually negative.

In the sequel, for convenience, when we write a functional inequality, we shall
mean that it holds for all sufficiently large values of the argument t.

2. Proof of the theorem

The proof of the necessity part of the theorem is quite simple. If it is false, the
characteristic equation (2) would have a real root Xo and therefore (1) would have
the nonoscillatory solution

y(t) = ex°'.
But this contradicts the hypothesis that every solution of (1) oscillates.

On the other hand, the proof of the sufficiency part is quite involved and will
be divided into several cases. Here the assumption is that (2) has no real roots. Set

k

Then ^(0) = Ef=i<7, > 0 and so F(X) > 0 for every X e R. Without loss of
generality we will assume that 0 «£ o1 < a2 < • • • < ak. Clearly,

Up > Othenr < ok. (3)

Otherwise, .F(-oo) = -oo which is impossible. Also F(+ oo) = F(-oo) = + oo
and so there exists a positive constant m such that for every X e R,

k

X+p\e-Xr+ Y,q,e~Xai> m. (4)
1 = 1

Assume, for the sake of contradiction, that (1) has an eventually positive
solution y(t). Set

z(t)=y(t)+py(t-r).

Using arguments similar to those in [2] and [5] the following lemma is easily
established.

LEMMA 1.

(a) Let p > - 1 . Then z(t) decreases monotonically to zero and

hmy{t) = 0.
f-»oo

(b) Let p < - 1 . Then z(t) decreases monotonically to -oo and

lim y(t) = oo.
<-»oo
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[4] Oscillations of neutral differential equations 365

(c) z(t) is a differentiable solution of (1), that is,

z(t) + pz(t - r) + £ <?,z(/- a,) = 0. (5)

i = i

(d) Set

w(t) = z(t)+pz(t-T).
Then w(t) is a twice-differentiable solution of (5). Furthermore,

w(t) > 0 andw(t) > 0.

In particular, it follows from Lemma l(d) that

Otherwise,
k

w(t) - w(t - T) + £ q,w{t - a,) = 0,
; = 1

and so

w(t) - w(t - T) < 0

which contradicts the fact that w(t) > 0.
As we remarked in the introduction, when pr = 0 the theorem reduces to a

known result about nonneutral equations (see [6]). Thus we will assume that
pr =£ 0.

In view of the above observations, in the sequel, we will assume that T ¥= 0 and
/>e(-oo,-l)U(-l,0)U(0,oo).

Case 1. p > 0.
Set

k-l

o(0= [y(t)+py(t-r)] + £ qj' "' y{s)ds,

with the convention that for k = 1 the sum in the above notation is zero. Then

<>(0= -[t^\y(t-ok)<o

and so v(t) is a positive and strictly decreasing function. Next, we claim that v(t)
is a differentiable solution of the equation

k

v(t) +pv{t - T ) + Z q,v(t - o,) = 0.
/-I

The proof of this claim is a consequence of Lemma l(c) and the following
interesting result.
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LEMMA 2. Let y(t) be a solution of (1) for t 3* t0 and let a and /? be any

constants. Then

/

* o

y(s)ds
.-a

is a solution of (1) for t > t0 + max{ a, ft}.

PROOF. We have

-Jt[x{t) +px(t-r)]

= y(t - P) -y(t - a) + p[y(t - T - P) -y(t - T - o)]

= [y(t - P) + py(* ~ P ~ *)] -[y(t-a)+py(t-a-r)]

= f -j;[y(s)+py(s- r)]ds= f -\t,q,y(s-a,)\ds
Jt-a as Jt-a \_i = l \

and the proof is complete.
Set

(6)
Then, for n = 1,2,. . . we have

0 , ( 0 > 0 , tn(t)<Q, vn(t)>0, (7)

*.(0--(EI9.)«'.-I('-O. (8)

and
k

vn(t) + pvn{t - T) + E q,vn(t - a,) = 0. (9)
i = i

Set

A B = { X > 0 : »„(/) + M r ) < 0 } .
The proof will be accomplished by showing that An has the following con-

tradictory properties.
(PJ An is a nonempty and bounded interval of nonnegative numbers. In

particular, there exist numbers \ : and X2, independent of n, such that
Aj e An and X2 € An forn = l ,2,
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[61 Oscillations of neutral differential equations 367

(P2) There is a positive number /x, independent of n, such that

X e Anwith \ > Ax => (X + /i) e A n + 1 for « = 1,2, . . . .

We will need the following lemma from [6].

LEMMA 3. Let A and a be positive constants. Assume that u(t) > 0 satisfies the
delay inequality

ii(t) + Au(t - a) < 0.

Then

u(t - a) < Bu(t)

where B = 4/(aA)2.

From (7) and (9) we have,

KU - T)+pvn(t - T) + qkvn{t - ak) < 0

or

KU)+Y^vn(t-(ak-T))<0. (10)

Thus,

<U0 + 1 ^ . ( 0 <0

which proves that

Applying Lemma 3 to (10) we find

un(t -a)< Bvn(t) (11)

where a = ok — T and B = 4(1 + p)2/(a2ql). Integrating (8) from t - a to t we
get

^ <jr. a u _ i ( / — ok) < 0

and so

E?,)^-1('-^)<^('-«)- (12)

Hence, from (8), using (11) and (12), we obtain
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which proves that An is bounded above by

A2 = B/a = 4(1 + pf/[{ok- rfql).

The proof of (Px) is complete. We now turn to proving (P2).
Let A G An and set

Then

and so <j>n(t) is a decreasing function. Now for A e An with A > Ax and with

we have, using (3) and (4),

Y,q,r°' vn{s)ds

(X

S>n{t ~ ak)

(x

E <7,

/ = i

Jl + e E?,

which proves (P2). The proof of the theorem in Case 1 is complete.

= 0

https://doi.org/10.1017/S0334270000005452 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005452


[ 8 ] Oscillations of neutral differential equations 369

Case 2. -1 < p < 0.
Set

i \= lz(t) = y(*)+py(t-T) if« = o,
ZA ' Vn-x(t)+PZn_x{t-T) if /I = 1,2

Then, in view of Lemma l(a), (c), and (d), for each n = 1,2,... we have

z n ( 0 > 0 , i n ( / ) < 0 , z n ( 0 > 0 , (13)
k

*„(')= - L<7,*n-i('-<0, (14)
/ = i

and
k

K(t) +pin(t ~ r) + E q,zn(t ~ <O = 0. (15)
( = i

Set

A n = { X ^ 0 : z n ( r ) + Xz n ( / )<0} .

As in Case 1, it suffices to establish that An has the contradictory properties (Pt)
and (P2).

Clearly, Xl = 0 G An for n = 1,2, Next, we will prove that An is bounded
above. From (13) and (15) we find,

K(t) + qk^(t-ok)<Q

which, in view of Lemma 2, implies that

zn(t-ak)<Bzn(t), (16)

where

B = 4/(okqk)
2.

Note that if ak = 0 then Eq. (1) has k = 1 and this case has been covered in [3].
So, without loss of generality, we will assume that ak > 0. Now, integrating (14)
from / - a to /, a > 0 we get

k

zn{t) ~ zn(t ~ «) + £ q,j' zn-i(s ~o,)ds = 0,

or

(17)

Hence, from (14), using (16), (17) and a = ak we obtain

0 = i n (0 + L q,zn-x{t - a,) < zn(t) + —zn(t),
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which proves that

is an upper bound of An. The proof of (Pt) is complete. Next, we will prove (P2)
with jti = in. Let A e An and set

*„(/) = ex'zn(t).

Then

and so ^,,(0 is a decreasing function. Finally, for X e An and using (4), we find

I=I

= e-K'\ ~ E ?,«X<"*,,(' ~ <r.) +(X + m)+n(t)+p(\ + m ) ^ n ( r - T)

?'H - E 1ieX°' + * + P^eXr + m

= 0,

which proves (P2) and completes the proof of the theorem in Case 2.

Case 3. p < - 1 .
This case will be divided into the following two subcases:

Subcase 3(i). ak < r. Set

- [ « . - i ( 0 + / » « . - i ( » - T ) ] if* = 1,2, . . - .

Then, in view of Lemma l(b), (c), and (d), un satisfies the following properties for
each n = 1 ,2, . . . :

un{t)> 0, « „ ( / ) > 0, « „ ( / ) > 0, (18)
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[io) Oscillations of neutral differential equations 371

and

k

«„(') +/>«„(' - 0 + E ?,"„(' - a,) = 0. (20)
i = i

Set

A. = { X > 0 : - * „ ( / ) + Xu, , (0<0} .

As in Case 1, it suffices to establish that An has the properties (PJ and (P2).
Clearly Xx = 0 e An for n = 1,2,.... We have,

M n_l ( , - T ) . "-(

and so (19) yields

1 k

"„(') = — L ?,[«.(' + T - a,) + «„_!(/ + T - a,)]
" i - i

1 *

Integrating from ; - T to / we obtain

1 k

un(t) ~ un(t - r) > — ^
~P , = i

and so

T,q,«.-iO-°l)<
=*-Un(t). (21)

i=i T

From (21) and (19) we find

which proves that An is bounded above by X2 = -p/r.
Let X e An and set <j>n(t) = e"x'wn(0- Then

*,(/) = e-*'K(0 - X«n(0] = -e-x'[-un(t) + Xun(t)] > 0

and so </>n(f) is an increasing function.
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For X G An and n = m/(-p) we have

(HI

1 - 1

- a,) - ( X

(< - a j -
i - i

< ex'<t>n(t - ak){-m + me"Ar) < 0,

which completes the proof of the theorem in this subcase.
Subcase 3(ii).r < ak. Let j = min{/: T < a,}. That is, j = 1 if T <

j = v ii av_l ^ r < ap for some r = 2,3 , . . . , A:. Set
: and

„(') =
if AI = 1,2

Then, one can prove that for each n = 1,2,... the following are true:

"„( ') > 0, *„(*) > 0, wn(t) > 0,

j-i I k \

«-y

and

(22)

(23)

(24)

with the convention that when y = 1 the first sum in (23) is zero.
Set

As in Case 1, we will prove that An has the contradictory properties (Pt) and
(P2). We have,

k
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P+
'=7

Hence, from (23)

> -*.(0 + - E«, k ( 0 I\P + E ?,(T - a,)]
which proves that

* r k ]

^1 = - E 9 i / P + E 9,(T - <*,-) e A « for « = 1,2, . . . .

Next we will prove that An is bounded above. From (24) we find

and using (23) we obtain
j-i

E?,- w»-i^ ~ T ) + ^ * » ( r -
.-j j

or

1 y"1
1

»s,(0 + - E 9/%-i(* + T

Integrating from f - T to t we get
i=y

1 y

wn(t) - wn(t - r) + - L
" /-I /-y

o.

rwn-i(t - T) > 0

and so
7 - 1

E ?,wn-i(' - " , )
1 - 1

Therefore (23) yields

which proves that X2 s -/>/T is an upper bound of An.
Let X e An and set <f>n(t) = e"x'wn(/). Then

and so 4>n(O is an increasing function.
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Now for X e A „ with X > Xl and with /i = l/(-p + T-Ef_x q,) we have,

* V ( ' ) + ( * + M K ( ' ) '
y-i

E
, = 1

1 = 1

=/ * ' - « ,<=J

- (X A > , , ( ' - T)

i ' = 7

ds\
Ji-J

- (X ^ + (X

Pn(* - T ) \ - m ' r\ y • x ^ - •*<

which completes the proof of the theorem in this subcase. The proof of the
theorem is complete.
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