
J. Austral. Math. Soc. Set: B 40(1998), 146-170

STRONGLY NONLINEAR VORTICES IN MAGNETIZED
FERROFLUIDS
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Abstract

Nonlinear convective roll cells that develop in thin layers of magnetized ferrofluids heated
from above are examined in the limit as the wavenumber of the cells becomes large.
Weakly nonlinear solutions of the governing equations are extended to solutions that are
valid at larger distances above the curves of marginal stability. In this region, a vortex flow
develops where the fundamental vortex terms and the correction to the mean are determined
simultaneously rather than sequentially. The solution is further extended into the nonlinear
region of parameter space where the flow has a core-boundary layer structure characterized
by a simple solution in the core and a boundary layer containing all the harmonics of the
vortex motion. Numerical solutions of the boundary layer equations are presented and it is
shown that the heat transfer across the layer is significantly greater than in the conduction
state.

1. Introduction

Ferrofluids are commercially manufactured colloidal liquids usually formed by sus-
pending small particles of magnetite in a liquid medium such as heptane, kerosene
or water. The magnetic susceptibility of a typical ferrofluid lies between those of
paramagnetic and ferromagnetic materials and hence, when subjected to an exter-
nal magnetic field, a ferrofluid becomes magnetized [16]. Owing to their unique
properties, ferrofluids have emerged as reliable materials capable of solving complex
engineering problems. Nonlinear thermal convection in magnetized ferrofluids is a
topic of current technical importance since magnetic forces can be used to create
circulation of coolant in small passages where natural convection is either absent or
ineffective. Examples of current uses include the cooling of electrical equipment such
as loudspeakers as well as many uses as dynamic process and exclusion seals [15].
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Previous theoretical work has defined conditions required for the onset of convection
in the presence of a magnetic field [2,8,24,26] but the analysis of flow patterns and
heat transfer rates that result in systems operating far from onset conditions has not
been studied in detail.

The Navier-Stokes equations of motion of a magnetized ferrofluid contain a mag-
netic body force term n0M • VJT, where /x0 is the permeability of free space, M the
magnetization of the ferrofluid and VH the gradient of the magnetic field H. Exper-
iments [20] and theoretical investigations [2,8,24,26] have shown that an horizontal
layer of ferrofluid in an externally uniform, vertical magnetostatic field and a vertical
temperature gradient is unstable to periodic roll cells. Vortex motion can be induced
in the ferrofluid layer when the magnetic Rayleigh number, which measures the ratio
of the magnetic body force to the dissipative forces and is an analogue of the more fa-
miliar gravitational Rayleigh number, exceeds its critical value. Of particular interest
in the case of magnetized ferrofluids is that this motion can occur when the ferrofluid
is heated from above, in which case gravity is stabilizing and only the magnetic body
force can cause instability.

Previous analyses of the instability of a ferrofluid layer [2,8,26] have been confined
to linear and weakly nonlinear treatments in which disturbances to the basic state are
small. The aim of this paper is to demonstrate that 'strongly nonlinear' vortices are
possible in magnetized ferrofluids when the wavenumber of the disturbance is large.
Similar vortex structures have been found in other hydrodynamic problems, namely the
stability of boundary layer flow over a curved surface [10], Taylor vortices between
rotating concentric cylinders [5] and Rayleigh-Benard convection in non-magnetic
Newtonian fluids [1]. In the Taylor and Rayleigh-Benard problems, these large
wavenumber strongly nonlinear vortices are a natural generalization of the weakly
nonlinear solutions valid near the linear-theory marginal curve.

We show here that for large wavenumbers, 'strongly nonlinear' vortex structures
can be found as asymptotic solutions of the governing equations in a manner similar to
that used for the Rayleigh-Benard problem [1]. Unlike the Rayleigh-Benard problem
however, a unique curve of marginal stability does not exist. The description 'strongly
nonlinear' vortex motion has never been rigorously defined but has come to be applied
to two types of flow. First, to flows in which, due to the presence of vortices, the
mean flow profile is dramatically altered from its unperturbed state. This is the case in
boundary layer flows over curved surfaces [9]. Second, to flows in which the shape of
the fundamental mode in the Fourier representation is very different to that obtained
from linear theory. This is the case in the Rayleigh-Benard and magnetized ferrofluid
problems in which the basic conduction (mean) state is the leading order term in the
solution for the temperature profile.

To obtain these strongly nonlinear vortex structures we consider the case where
the magnetic field is sufficiently weak to ensure that the magnetization varies linearly
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with the field strength and that the magnetic susceptibility of the ferrofluid is isotropic.
To describe the vortices that develop in the ferrofluid layer we require not only the
Navier-Stokes equations for linear momentum, the temperature equation for energy
conservation and the continuity equation, but also the Maxwell equations V-B = 0 and
V x H = 0 for a non-conducting fluid with no displacement currents (note that B, the
magnetic induction, is equal to (J.o(H + M)). Also, two sets of boundary conditions
are considered. The first, referred to as 'free-free' conditions, are an idealization
and correspond to zero tangential stress at the boundaries and are chosen to allow
simple exact solutions of the governing equations. The second, referred to as 'rigid-
rigid' conditions, are more physically realistic and correspond to no-slip conditions
being imposed at the boundaries between the ferrofluid layer and magnetic pole-
pieces. It is subsequently shown that as the wavenumber of the vortices (convection
cells) increases, the solution of the linear stability problem with rigid-rigid boundary
conditions asymptotically approaches the solution of the linear stability problem with
free-free boundary conditions.

The rest of this paper is organized as follows. Section 2 outlines a mathematical
model of the ferrofluid layer and the equations governing the onset of convection.
Section 3 summarizes the weakly nonlinear results when the instability parameter,
the magnetic Rayleigh number, is close to the linear stability marginal curve. The
large wavenumber limit (for a constant value of the gravitational Rayleigh number)
of these results is obtained and thence used in Section 4 to derive an intermediate
structure between those of the weakly and strongly nonlinear treatments. In Section 5
the solution is extended into the strongly nonlinear region where a numerical solution
of the boundary layer equations is required and some results for both the free-free and
rigid-rigid conditions are presented.

2. The governing equations

Consider an infinite horizontal layer of an incompressible ferrofluid confined be-
tween two isothermal plates a distance d apart. Let the temperatures of the upper and
lower plates be Tu and TL respectively and use a Cartesian coordinate system (x, y, z)
with the _y-axis normal to the bounding surfaces of the fluid and gravity acting in
the negative ^-direction. Distances in the three coordinate directions are measured
by xd, yd and zd and the fluid boundaries are the planes y = 0 and 1. Onto the
layer of ferrofluid impose a spatially uniform magnetostatic field in the vertical di-
rection. For sufficiently small temperature differences between the plates we assume
the ferrofluid satisfies the Oberbeck-Boussinesq approximation, in which variations
in density are considered only in the gravitational body force, and hence that the coef-
ficient of thermal expansion a, the thermal diffusivity K and the shear viscosity r) are
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constants. In doing so we are neglecting dissipative magnetic forces responsible for
magnetoviscosity [21,23] and are ignoring the effects of magnetoviscosity due to the
spin angular velocity of the colloidal particles, an effect that has been investigated by
Stiles and Kagan [24]. Also, we consider only short time scale instabilities, thereby
ignoring the Soret effect which describes solute diffusion up or down a temperature
gradient [4,12] and magnetodiffusion, a process by which the magnetic dipoles of the
colloidal particles are attracted towards the region where the magnetic field strength
is greatest [3]. In each of these cases the temporal dependence of the particle flux
perturbs both steady conduction and convection. However, a simple analysis suggests
that these diffusive processes might lead to concentration changes of no more than-a
few percent over a period of several days. Since measurements of heat transfer can be
performed on a much shorter time-scale it is reasonable to omit this complication. The
influence of particle diffusion over long time scales has been examined by Stiles et
al. [25]. Under these assumptions the fluid density p depends linearly on variations
in temperature T as po[l ~ &(T — 70)]> where p0 is a reference density of the fluid
at temperature To, the average of the temperatures at the top and bottom plates. Note
that we have also assumed that the fluid properties a, K, r\ and p are all independent
of the applied magnetic field.

The local magnetization is considered to be a function of H and T in the form
X(T)H, where x iS the magnetic susceptibility. This expression applies quite gener-
ally when the magnetic field is weak and we assume that x can be written in a form
similar to the density as Xo + (dx/dT)\To(T — To). Note that, since the applied field is
static and the ferrofluid is not electrically conducting, the electric field vector vanishes
in this problem. In addition, the relaxation time of the magnetization of a ferrofluid is
so small that the dynamics of it can be disregarded in the analysis of hydrodynamic
phenomena. This is known as the quasi-stationary assumption of the magnetization
[16,22]. The average temperature To and the temperature gradient ft are given by
(Ju + TL)/2 and (TL - Tu)/d respectively, so that ft < 0 when the fluid is heated
from above.

In the basic conduction state the temperature distribution f(y) is To — /5d(y — j)
and since the magnetic induction outside the fluid layer is vertical, continuity of the
vertical component of B and the horizontal components of H across the fluid-plate
interface ensures that H = H(y)j and M = M(y)j in the fluid layer, where j is a
unit vector in the positive y-direction and

Ho = H({), Mo =

and the pyromagnetic coefficient K is defined by —H0(dx/dT)\T . Here we have used
the magnetic analogue of the Boussinesq approximation, that is, changes in x w ' t n
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temperature have been ignored except where multiplied by the average field strength
Ho. In the absence of a temperature gradient across the fluid layer, the magnetic
induction has the value ixo(Mo + Ho) while Mo + Ho = nrHe, where He is the field
strength in the bounding material and fir is its relative permeability.

When instability occurs, a non-dimensional temperature perturbation 8 results in
the temperature field f + fidO, while the Maxwell equation V x f f = 0 allows H to
be written in terms of a potential function <p as

H = H{y)j +
+ Xo

so that

M = [M(y) -
1+Xo

We consider only two-dimensional velocity fields and introduce the non-dimensional
velocity u and its components (0, v(y, z, t), w(y, z, t)) through Ku/d. With d2t/K as
the time variable, the non-dimensional governing equations for incompressible flow
are

Vu = 0, (2.1a)

V20-<9y = O, (2.1b)

- — + V20 + v = u- V9, (2.1c)
at

N)e ~ N°y}i ~ VP =Pr~l(u )w
 (2 l

where V2 is the two-dimensional Laplacian in the _yz-plane, p is a suitably scaled
effective pressure and Pr, R and N are the Prandtl number, gravitational Rayleigh
number and magnetic Rayleigh number respectively, with definitions

PogaPd . .,
= r)/(poK), R = and N = T)K{\ +

Equations (2.1) are those used by Stiles et al. [26] and are similar to those examined
by Finlayson [8]. It is also worth pointing out that these equations are parametrically
the same as those used by Blennerhassett et al. [2] for the case where the applied
magnetic field is strong (He —> oo) and the ferrofluid is magnetically saturated (their
definition of N, however, does not contain the term 1 + xo)- In this case, the value
of the magnetization is a function of the fluid temperature only and the expression

https://doi.org/10.1017/S0334270000012443 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000012443


[6] Strongly nonlinear vortices in magnetized ferrofluids 151

used for M is [Mo — K(T — T0)](H/H), where K is the strong-field pyromagnetic
coefficient and Mo the saturation magnetization at temperature 7"0. The remainder of
the analysis in this paper therefore applies in both the weak and strong field cases.

To complete the specification of the problem, boundary conditions must be im-
posed at y = 0 and 1. Since the bounding surfaces are maintained at the constant
temperatures TL and Tu, the temperature perturbation 0 must vanish there. For the
free-free case, v and u)v vanish at the boundaries and we impose the condition that <pY

must also vanish at the boundaries. These conditions have previously been used by
Finlayson [8]. For the rigid-rigid case, the velocity boundary conditions are that v and
w must vanish while for the magnetic potential function we assume the ferrofluid layer
is bounded by magnetic pole-pieces in which the ratio of the magnetic permeability
of each pole-piece to that of the ferrofluid is very large. The condition on the field H
is therefore the same as for an electric field at the surface of a perfect conductor and
hence 0 must vanish on the boundaries (for details see Russell [17]). So, the boundary
conditions can be stated as

v = wy=e = 4>y=0 or v = w = 0 = <l>y = O at y = 0,\. (2.1ff,rr)

We should point out that the equations and boundary conditions describing convection
in polarized, dielectric liquids [27] are identical to those presented here and hence the
results obtained are valid for both problems.

3. Weakly nonlinear solutions

It is convenient to introduce a streamfunction \js(y, z,t) such that v — —i/f: and

w = \j/y. The continuity equation is now satisfied identically and equations (2.1)

reduce to

S/24>-ey = 0, (3.1a)

de
+ V20 - rf,z = - iAA + ify9:, (3.1b)

at
- Pr- 'I-(VV) + VV ~ (/? + A0& + N<pvz

dt ' (3.1c)

with boundary conditions

i/r = \j/yy = 9 = (py = 0 or $ = ifrY = 6 = fa. = 0 at ;y = 0, 1.

(3.1ff,rr)

The boundary condition i/r = 0, rather than \jf: = 0, is necessary to prevent a uniform
horizontal flow as a solution to (3.1). The marginal stability of the basic state is
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controlled by the parameters R and N, both of which provide effective measures of the
temperature difference across the fluid layer, and R is proportional to the temperature
gradient while N is proportional to the square of the temperature gradient. Note that
while R can be positive or negative, N can never be negative. The sign of R indicates
which boundary is hotter. When R > 0, the lower boundary is hotter and both the
gravitational buoyancy force and the magnetic body force are destabilizing. When
R < 0, the upper boundary is hotter, the gravitational buoyancy force is stabilizing
and only the magnetic body force can produce instability. For a particular value of R
a curve of marginal stability, Nm, can be found.

For a fixed Rayleigh number and magnetic Rayleigh numbers close to the marginal
curve, a weakly nonlinear analysis starts with the hypotheses

f(y, z, 0 = sA(r)[V(y) + eM2(r)¥3, (>>)] sinaz + e2A2(r)[V20(y)

+ *22O0sin2flz] -) ,

9{y, z, 0 = eA(r)[T(y) + e2A2(r)T3l(y)] cosaz + s2A2(x)[T20(y)

+ T22(y) cos 2az] -\ ,

4>(y, z, t) = eA(x)[<b(y) + s2A2(r)<i>3]OO] cosaz + £2/l2(r)[<J>2OO0

+ <$>22(y) cos 2a z] H ,

where a is the horizontal wavenumber, time has been scaled as r = s2t so that r is a
slow time variable, chosen so that nonlinear effects and linear growth of the amplitude
A occur at the same order, namely e3, and the magnetic Rayleigh number is expanded
as Nm + e2N2 + • • •, for s —> 0+. In terms of e, the constant N2 is assumed to be

0(1) .
The equations governing the terms at O(e) in the expansions for i/r, 0 and <p

determine the linear stability problem. When the free-free boundary conditions are
used the solutions are

Nm(a) = a4 + 4n2a2 + (6n4 - R) + 7T2(4jt4 - R)a~2 + nsa~4,

)i T () i <t>() () s i n 7 r y , T (y) = sin n y , <t>(;y) = - ( — — - J c o s T r y ,
a )

*22 = T22 = CD22 = 0 ,

vj/20 = 0 , T20 = —( \sin2ny, <J>2o = — (cos2717 - 1).

The equations for ¥3 | , T^ and <t>3, are forced versions of those for ¥ , T and 4> and
have a solution only if a certain solvability condition is satisfied. This condition is
derived by the usual method of examining adjoint systems and in the free-free case
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leads to an amplitude A given by

A2 =

The dimensionless convective heat transfer across the fluid layer is determined by the
Nusselt number Nu, defined by

2ir/a

dz,Nu = 1 / —
2n Jo dy v=0

and it is convenient to calculate a scaled Nusselt number Nu* = (Nu — l)/(N/Nm — 1).
The results above give

When the wavenumber is large, the free-free results have the asymptotic forms

N,

a2

8TT

1 + e2N2a

,-a4

T(y)

~4 + -

+An2a2

~ sin7r_y,

5 ( 1 - 5 T T 2

•• , Nu

+

a2

16TT2'

a~2 + • •
* i

1

i ~ — a 2n

(COS27Ty -

cos^y,

•1).

(3.2a)

(3.2b)

(3.2c)

(3.2d)

(3.2e)Nu

In general, when the rigid-rigid boundary conditions are used a numerical solution is
required. However, when the wavenumber is large, an asymptotic solution is possible
and hence a relationship between A and N2 can be obtained. This large-a structure
can then be used to extend the solution to stronger convective motion. For a —> oo, a
perturbation solution gives

Nm(a) = aA + 4n2a2 + • • • ,

and the flow develops boundary layers of thickness 0(a~') adjacent to y = 0 and 1.
Away from these layers the core solutions for the O (e) functions are

), T(y) = sin7ry + O(a~2)

and $>{y) = —a"2it cos Try + O(a~4).

We do not need to know the precise structure of the boundary layer solutions as it can
be shown [17] that these layers do not contribute to the solvability condition at leading

https://doi.org/10.1017/S0334270000012443 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000012443


154 Craig L. Russell, P. J. Blennerhassett, P. J. Stiles [9]

order for large a. All that is needed is the sizes of the solutions in the wall layers,
which are

At O(e2), the terms forcing the generation of the second harmonics in the core
region are now much weaker and

0(l) 0(a-') <s>=

when y = 0(1),

in the wall layers.

The mean temperature and magnetic potential corrections are found to be
-,2

a sin2Try
Sn

0(1)
$20 =

-—y + O(a)

a2

I6n2 (cos2ny-

when y = 0(1),

~iry2 + O(a) in the wall

layers,

so when the large wavenumber approximations are used, the solvability condition
reduces to A2 ~ 4N2a~6 H , and Nu* = -A2NmDT20(0)/N2 ~ 1 in agreement
with the large wavenumber expansions for the free-free case ((3.2d) and (3.2e)).
Figure 1 shows the variation of Nu* with a for the rigid-rigid problem with R = —102

and R = —107. In both cases the Prandtl number is 1. These results were obtained
from a numerical solution and clearly show that, as the wavenumber is increased, the
heat transfer obtained in the rigid-rigid problem tends to the asymptote of the free-free
problem. It should be noted that, for large negative values of R, the convergence is
very slow in both the free-free and the rigid-rigid cases. In both plots, a increases
from the global minimum of the marginal curve and the difference in values of Nu*
at smaller values of a reflects the influence of R on the heat transfer. Depending on
the value of R, Nu* increases or decreases to its asymptote as a increases.

To summarize, the large wavenumber weakly nonlinear analysis for the core solu-
tions in both the free-free and the rigid-rigid problems have the asymptotic forms

Nm =

9 = sA sin7r_ycos(3z

) + s 2 N 2 + ••• ,

+ £2/420(a~')sin2tfz

e V | - ^

zA2= —sAa 2JT cosnycosaz + szA
\_l6n2

0(a 2)cos2az H
J

(cos27rv — 1)

(3.3a)

(3.3b)

(3.3c)

(3.3d)
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(a) R = - 1 0 2

(b)R = -10

FIGURE 1. The scaled Nusselt number Nu* = (Nu — \)/(N/Nm — 1), as a function of the wavenumber
a, for the rigid-rigid problem with Pr = 1 and two values of the Rayleigh number R.

where A = O(a 3) and R is constant. These expansions show that, since the
amplitude A is decreasing as the wavenumber gets larger, it is not necessary to enforce
the requirement that e is small in order to maintain the structure of the solution.
In particular, we can make the correction to the mean temperature field the same
size as the fundamental, but still keep the temperature perturbations smaller than
in the conduction state, by allowing e to be as large as a. In this case the vertical
velocity, — \j/z, is O (1), indicating that the convection is much stronger than previously
considered.
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4. Intermediate strength convection

When £ is as large as a, expansions (3.3) suggest that there is a solution of the form

\{r = tf-'Oio + a~2f\2 H )s inaz + a~5^2osin2az H , (4.1a)

9 = a-20o + 92 + •••) + tf~2(0|O + a~2el2 H ) cosaz

+ a~%o cos 2az + • • • , (4.1b)

4> = <3~2(0o + 4>2 H ) + tf ~4(<£io + a~2<t>n H ) cos az
8

 ) (4.1c)

with

N = a4 + N2ct2-\ as a -> oo, (4. Id)

and where the VV/, #;, 0,y, <̂ , and 0,7 are functions of >> only. Since N2 is O(l) with
respect to a, a solution of this form describes the convection pattern at greater distances
above the marginal curve than the weakly nonlinear theory. These expansions are
suitable for the whole flow domain if free-free boundary conditions are used but
only for the core region if rigid-rigid boundary conditions are applied. In the latter
case, expansions appropriate for the wall layers are required. The problem described
here is very similar to the Rayleigh-Benard problem examined by Blennerhassett and
Bassom [1].

The substitution of expansions (4.1) into (3.1) and the comparison of like powers of
a and trigonometric terms, leads to the following equations for the unknown functions
in (4.1). At leading order in a, the vortex terms, that is, terms proportional to cosaz
or sinaz, give

4>l0 = -D9W, IA.O = -0io, (4.2a,b)

where D denotes differentiation with respect to y, whilst the mean parts of the leading
order Maxwell and energy equations give

D24>0 = D60, D2§0 = -±(^,OD01 O + el0Dfl0). (4.2c,d)

At next order in a2, the vortex components of (3.1) give

<Pn = D2<pi0 - D6l2, D29]0 - 9n - x/sn = -f]0D90, (4.3a,b)

iri2 - 2£>Vio + N29W + 012 - D0IO = 9l0D
24>0. (4.3c)

The substitution of (4.2b) into (4.2d) and the consistency of (4.3b) and (4.3c) leads
to the following equations for the perturbation 90 to the mean temperature and the
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fundamental 9]0,

D% = 9l0D9w, (4.4a)

D2el0 + L
4N29l0 = froD§o, (4.4b)

showing that the fundamental and correction to the mean are generated simultaneously,
in contrast to the weakly nonlinear calculation where they are generated sequentially.
Both these equations are second order and hence we can impose boundary conditions
on 90 and 9iQ. However, since 0iO has even symmetry and 90 has odd symmetry about
y = 1/2, we need only consider the interval [0, 1/2] and so impose the conditions

eo(O) = 0IO(O) = §o({) = D9W{{) = 0. (4.4c)

By using (4.4a-c), the remaining leading order mean and first harmonic terms can be
determined from 90 and 9\0. It follows, via (4.2a,b), that the boundary conditions on
V̂ io and 0io for the free-free problem are also satisfied so that no boundary layers are
required. In the rigid-rigid problem, however, the boundary conditions on Vio and
0io are violated and a boundary layer is required. Boundary conditions on 0O can be
accommodated in both cases by solving (4.2c), while the solution of (4.4) is valid in
both the free-free and rigid-rigid cases.

Second harmonic vortex terms, proportional to cos2#z or sin2oz, can be deter-
mined by going to the next order in (3.1) to obtain

<f>2o = - { D 9 2 O , (4.5a)

-402O - 202O = -{{f wD9n + ^l2D6l0 - 012DV,o ~ flioO^n), (4.5b)

16^20 + 2flffl = i[Pr- ' (D^I ODVio-^io£>Vio)

These equations show that the second harmonics are completely determined by the
fundamental vortex terms. A similar procedure can be used for higher vortex harmon-
ics but the expansions (4.1) show that these terms become insignificant in the limit as
a —> oo, and the structure of the flow is described by the mean and the fundamental
only.

Equations similar to (4.4) have previously been derived for high wavenumber
Rayleigh-Benard convection [1] and in the investigation of the properties of convection
cells in double-diffusive systems [11,13,14]. It can be shown that the system (4.4)
has an analytic solution in terms of elliptic integrals of the first and second kinds. Such
a solution, however, is not particularly useful in the present context, since a simple
asymptotic state for large N2 emerges.

The linear part of (4.4), namely D26i0+jN29\0 = 0, has eigenvalues at yV2 = 4(2/? —
1)27T2, with the corresponding eigenfunctions sin(2n — l)7r_y, for n — 1, 2, 3
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Hence, the nonlinear equations have a solution when N2 > 4n2. Now, equation (4.4a)
can be written as D200 = D(i 62

0), so that

D60 = \ 02
0 - Ao, (4.6)

for some real constant Ao. The value of Ao is determined by integrating (4.6) over
[0, 1/2] to give

Ao= f262
ody = \ f 9f0dy, (4.7)

Jo z Jo

by symmetry. For values of N2 close to An2, an expansion of the form

N2 = 4JT2 + «2<5 + • • • , AQ = ao8 -\ ,

--- , 90 = SC0sin2ny + • • • ,

where S is small, gives B2
0 = 4n2 — —8JTC0 = 4a0, which matches with the weakly

nonlinear expansions (3.3). For larger values of N2, both numerical and analytical
solutions indicate the emergence of an asymptotic state given by (see Russell [17] for
details)

]0
(4.9a,b)

on the interval [0, 1 /2]. The remaining functions in (4.2) therefore have the asymptotic
solutions

<A,o ~ =F J7f W2 t a n h ( ^ ^ ) , 0IO ~ =F ̂ i V 2
2 sech2(^/V2^), (4.9c,d)

0o ~ \N2\y
2 - f2 \n[cosh(±N2y)] j , (4.9e)

while the constant Ao has the asymptotic behaviour

^o ~ s ^ l - 5^2. (4.9f)

These solutions show that the strength of the vortex motion increases with increasing
N2, with boundary layers of thickness O{N2

l) appearing. Thus, when N2 = O(a)
the >>-derivatives will be the same size as the z-derivatives and all the harmonics will
be excited in the boundary layer. Figures 2 and 3 show profiles of #ioOO and 90(y)
respectively, for a range of values of N2. These solutions were generated numerically
and are in good agreement with the asymptotic results (4.9). This agreement is
demonstrated in Table 1, in which the numerically calculated value of Ao is compared
with the asymptotic prediction (4.90-
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TABLE 1. Comparison of the value of Ao as a function of N2 from a numerical solution and the
asymptotic result (4.9f).

N2

50
100
150
200
250
300

_

11.6427
106.206
276.562
525.000
851.563
1256.25

1 A/2 1 JV7
64 2 ~ 2 2

14.0625
106.250
276.563
525.000
851.563
1256.25

relative
error,%
-17.20
-0.04

-0.00036
0.00
0.00
0.00

The Nusselt number is given by

Nu = \ - a~2D§0(0) H = (4.10)

By comparing this with the weakly nonlinear result (3.2e), it is clear that the heat
transfer is now much greater even though the conduction state (Nu = 1) still domi-
nates. When N2 = O(a) however, there is the possibility that convective effects will
make an 0(1) contribution to Nu.

o.io 0.20 0.30 0.40

FIGURE 2. Profiles of the temperature fundamental 0\o(y) for a selection of values of the magnetic
Rayleigh number coefficient N2 (a) N2 = 50; (b) N2 = 100; (c) N2 = 150; (d) N2 = 200; (e) N2 = 250;
(f) N2 = 300.

4.1. Wall layers in the rigid-rigid problem The solutions (4.9) are valid only in
the core region away from the walls for the rigid-rigid problem and show that, for
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FIGURE 3. Profiles of the mean temperature function 60(y) for a selection of values of the magnetic
Rayleigh number coefficient N2 (a) N2 = 50; (b) N2 = 100; (c) N2 = 150; (d) N2 = 200; (e) N2 = 250;
(f) N2 = 300.

large N2, T/OO —> 0 with D ^ 1 0 finite as y —> 0 and <pl0 is finite as y —> 0. Hence, a
boundary layer of thickness O(a" ' ) is required to satisfy the boundary conditions for
D\frm and <f>0. As y ->• 0, 90 ~ —J, ^io ~ J , ^10 ~ J, 0o ~ —J2 and 01O is constant.
Thus, for the layer adjacent to y = 0, we define the (9(1) coordinate 7 = ay and use
the expansions

iff = a 2 V10 sin az + a 4 V2o sin 2az + • • • ,

= a~4P0 + a~4Pi0cosaz +a~6P2oCOs2az

with

N = a4 + N2a
2 -\ as a oo,

(4.11a)

(4.11b)

(4.11c)

(4. l id)

where Vi0, V2o, To, Ti0, T2o, PQ, P\O and P20 are functions of Y. When expansions
(4.11) are substituted into (3.1), the governing equations simplify to

(4.12a)

(4.12b)

(4.12c)

(4.12d)

(4.12e)

{D2
Y-l)Pi0 =

(D2
Y - l ) r 1 0 = V10,

(D2
Y-l)2Vi0 = DYPl0-Tl0,

D2
YP0 = DYf0,

^2DlTo = 0,
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where DY denotes differentiation with respect to Y. Equations (4.12a-c), governing
the vortex terms, reduce to

(D2
Y - 1)V1O - Tl0 = 0, (4.13a)

while the boundary conditions Vi0 = DY V10 = Tl0 = Pw = 0 at Y = 0 become

2 2 ) T l 0 = (DY-lfDYTl0 = 0 at 7 = 0, (4.13b)

and the other necessary conditions are obtained by matching with the core solutions.
The solution that does not grow exponentially as Y —> oo is

TW(Y) = k0 + k\ Y + k2 exp(-21 / 2K) + exp[-(21 / 4 cos7r/8)r]

JA:3sin[(2l/4sin7r/8)y]+A:4Cos[(21/4sin^/8)y]J.

The constants ku k2, k3 and k4 can be chosen in terms of kQ so that the required
conditions at Y = 0 are satisfied. For large values of Y, Ti0 ~ Y and matching
with the core can only be achieved if kx = D6l0(0) = yV|/(64-</2), thus completely
determining TIO(Y). The precise values of the remaining &,-'s a r e n o t required for our
purposes.

The solution of (4.12e) satisfying 7o(O) = OisTo = cY wherec = ^N2(l — ^N2) =
—AQ, obtained by matching with the core. Similarly, the solution of (4.12d) satisfying
Po(0) = DYP0(0) = 0 is Po = -\A0Y

2, which also matches with the core. The
Nusselt number is therefore

N u = 1 - a ' 2 D Y f 0 ( 0 ) + • • • = \ + a - 2 A 0 + --- , (4.15)

which is the same as the free-free result (4.10), at leading order.

5. Strongly nonlinear convection

From the results of the previous section, it is anticipated that when the magnetic
Rayleigh number is O(a3) above its value at marginal stability the flow field has a
core-boundary layer structure. In the core we look for a solution of the form

\j/ = (i//-|0 + a~xtyu -\- • • •)sinaz + a~2\j/2Osin2az + • • • , (5.1a)

e = a~xex +a~l(ew + a~leu -\ )cosaz + a~3e20cos2az -\ , (5.1b)

-a~l4>tl + • • •) cos az + a~5<p20cos2az + • • • , (5.1c)

with

N =a4
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as a —> oo and where the unknowns V07, 0,, 9jj, $, and fyj are functions of y only.
As in the previous section, we substitute the expansions (5.1) into (3.1) to obtain,

at leading order in powers of a,

0,o = -D9l0, V10 - -0io, (5.2a,b)

for the vortex components, and

D24>x = D9U 0 = -fl0D6w - 9wDfw (5.2c,d)

for the mean components. Equation (5.2d) shows that 9]0 is constant in the core so we
can write

(5.3)

for some constant y.
Second order vortex terms from the energy and momentum equations give

showing that the leading order mean temperature perturbation satisfies

D9X = \N,. (5.4)

This equation is first order, so boundary conditions at both v = 0 and 1 cannot be
imposed. Owing to the symmetry in the equations and boundary conditions, however,
the mean temperature perturbation must be an odd function about v = 1/2. The
required solution of (5.4) is therefore

0i = 5 ^ . 0 ' - 5 ) . (5-5)

The numerical solutions (Figures 2 and 3), and the large N2 asymptotic solution of
equations (4.4), also suggest this solution.

The solutions (5.3) and (5.5) do not satisfy the boundary conditions and so boundary
layers are required adjacent to y = 0 and 1. These layers must be of O(a~l) thickness
for the ^-derivatives in the governing equations to be at least as large as the z-
derivatives. Also, to match with the core solutions, 9 must be O(a~l) and ifr must
be 0(1) in these layers, while <p must be O(a~2) to balance with 9 in the Maxwell
equation (3.1a). With these sizes for the perturbation functions it is clear that all the
harmonics of the vortex are important in the layers, since the nonlinear interactions in
the governing equations generate all harmonics at the same order in a.

For the layer adjacent to v = 0, we define the 0(1) co-ordinates Y = ay and
Z = az and expand the perturbation functions in the form

) , 9 = a~iT(Y,Z), <p = a~2<i>(Y, Z). (5.6)
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The substitution of (5. Id) and (5.6) into (3.1) gives the boundary layer equations, at
leading order in powers of a, as

<1>YY + <$>zz - 7> = 0 , (5.7a)

fYY + TZZ-VZ = - VZTY + VYTZ, (5.7b)

VYYYY + 2VyYZZ + VZZZZ — TZ + $>YZ , . _ .
, (5.7c)

= Pl-l[Vy(VyYZ + VZZZ) - VZ(Vyyy + VYZZ)] + Ty<t>YZ - TZ<t>yy,

where the subscripts Y and Z denote partial differentiation with respect to Y and Z.
These equations are effectively the same as the governing equations since all terms

have been retained. The necessary boundary conditions are

V = VYY = T = OK = 0 or V = VY = T = O = 0 at 7 = 0 ,
(5.7ff,rr)

and matching with the core solutions requires

V 2ysinZ, Vy~0, T \Ni+2ycosZ, <S> \NtY
(5.7d-g)

as Y -» oo.
The equations and boundary conditions (5.7) contain two unknown parameters,

the strength 2y of the vortex in the core region and the magnetic Rayleigh number
coefficient N\, and thus define a nonlinear eigenvalue problem which can only be
solved numerically. The Nusselt number can be expressed in terms of y by averaging
(5.7b). If T0(Y) denotes the mean temperature field (1/2*) J^ T(Y, Z)dZ, then by
averaging (5.7b) and using the matching conditions (5.7d-g), we obtain the result

^ = -2y2 - J - f1" VzTdZ = -2y> - J - t VTzdZ.
dY 2TT JO 2JT JO

Thus, at leading order in a, the Nusselt number is given by

Nu = \+2y2, (5.8)

indicating that the heat transfer additional to the conduction state value is now 2y2.
By comparing this result with (4.10) and (4.15), and since y is an 0(1) constant, it
is clear that the convection is now much stronger than in the intermediate state and
deserves to be labeled as strongly nonlinear.

https://doi.org/10.1017/S0334270000012443 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000012443


164 Craig L. Russell, P. J. Blennerhassett, P. J. Stiles [19]

5.1. Numerical solution of the boundary layer equations To complete the descrip-
tion of the vortex structure, a numerical solution of the boundary layer problem (5.7)
is required. Since the required solution is 2n periodic in Z, we look for a solution of
the form

T= ^ Tj(Y)E\ T.j = Tj, (5.9a)
j=-oo

oo

V = - i J2 Vj(Y)EJ, V_j = -Vj, Vo = 0, (5.9b)
j=-oo

oo

j=-oo

where Tj(Y), V}(F) and Pj(Y) are real functions of Y and E = exp(iZ). The Fourier
series (5.9) effectively reduce the governing equations (5.7) to a boundary value
problem of an infinite system of coupled ordinary differential equations on a semi-
infinite domain. In practice, the series (5.9) must be truncated after a finite number
of harmonics, say M. The resulting finite-dimensional system of nonlinear equations
is then solved on a finite computational domain [0, yinf]. Substitution of expansions
(5.9) into (5.7), gives 8M + 2 first order equations for the unknown functions. Since
the boundary value problem (5.7) contains two free parameters, 8M + 3 boundary
conditions are required. These are

' = —f = 0 at Y = 0 (5.10ff)

or

dV;
To = P0 = Tj = Vj = —± = Pj = 0 at Y = 0, (5.10rr)

di

for j = 1, . . . , M, together with

0 = -±W,, Ti=y, V, = -y, -TTT = 0, Pi=0,

dVj ( 5 - H )

Tj = Vj = -^r=Pj = 0 forj = 2, 3, . . . . M,

at Y = YM.
The results presented here were obtained by keeping terms up to and including

£ " (that is, M = 11) in the series (5.9), with Yinf = 25. Clearly the accuracy of the
solution can be increased by taking more terms in the Fourier series, but this increases
the number of unknowns in the problem and hence the computational time and memory
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TABLE 2. Values of y as a function of Ni for a selection of values of Ym{ with the rigid-rigid boundary
conditions and Pr = 1.

10
125
200
300
400
500

YM = 25
0.751826
5.16999
7.14734
9.98387
12.5013
14.7915

IW = 50
0.751826
5.16999
7.14735
9.98379
12.5008
14.7903

YM = 75
0.751826
5.16999
7.14736
9.98382
12.5009
14.7903

Yinf = 100
0.751826
5.16999
7.14737
9.98385
12.5009
14.7903

requirements. Also, for the range of values of N\ considered, 11 harmonics proved
more than enough for six figure accuracy. The value of Ymf chosen was the smallest
that allowed relatively quick convergence of the solution while still providing adequate
resolution of the boundary layers that develop adjacent to Y = 0. Solutions using
smaller values of M and larger values of Yinf were also obtained in order to test the
accuracy of the results (Table 2 shows some values of y as a function of N\ for several
values of YM). These tests indicated that the results are correct for iVi up to 500.

The results were found using the routines for solving boundary value problems in
the AUTO package [6,7]. Using the automatic continuation facility in AUTO, the
starting point for the solution in both the free-free and rigid-rigid cases was the analytic
solution of the equations for small Nu which is effectively the large N2 solution of the
intermediate strength convection case (equation (4.9)). The computational problem
is very similar to the corresponding boundary layer analysis of large wavenumber
Rayleigh-Benard convection [1] except for one important detail. The values of N{

for which reliable results could be obtained are much lower here than those for the
corresponding parameter, /?,, in the Rayleigh-Benard problem. Blennerhassett and
Bassom [ 1 ] were able to increase ?̂i up to 4000 compared with 500 for N\. The reason
for this appears to be due to the more severe nonlinearity in equations (5.7) through
the terms TY®Yz and TZQ>YY in the momentum equation, a result of the magnetic
mechanism. These terms also play a significant role in the success of the analysis
of convection above a critical point [18]. At values of N\ greater than 500, in both
the free-free and rigid-rigid cases, the formation of thin boundary layers adjacent to
Y = 0 destroys the accuracy of the solution. The beginning of this effect can be seen
in Figures 6(d) and 7(d) close to the wall where the wiggles in the streamlines indicate
that there are not enough harmonics in the solution to adequately resolve the boundary
layer.

The heat transfer at the wall is determined by the mean temperature function T0(Y),
profiles of which are shown in Figure 4 for several values of Ni with rigid-rigid
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boundary conditions. Only the region 0 < Y < 5 is shown so as to demonstrate
the structure close to the wall. As N\ increases, the slope of To at Y = 0 steepens
dramatically, thereby increasing the heat transfer. This is further emphasized in
Figure 5, which shows the variation of y with Nlt by noting that Nu = 1 + 2y2

(equation (5.8)) and so the Nusselt number is much greater than its value in the
conduction, weakly nonlinear and intermediate strength states.

FIGURE 4. Profiles of the mean temperature function T0(Y) with Pr = 1, the rigid-rigid boundary
conditions and a selection of values of the magnetic Rayleigh number coefficient N\. The results were
computed on the domain 0 < Y < 25, but only the region 0 < Y < 5 is shown, (a) N, — 125; (b)
N, = 200; (c) N{ = 300; (d) N, = 400; (e) JV, = 500.

FIGURE 5. The variation of the vortex strength parameter y as a function of N\ for the choice of
Pr = 1 with the rigid-rigid boundary conditions.
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K = 0 Y = 25

(a) W, = 10, Af = 0.16, Vmax = 1.44

(b) /V, = 125, AV = 1.1, ^ a x = 9.90

Y = 0 = 25

(c) AT, = 300, Af = 2.1, V w = 18.9

= 25

= 3.1, fmax = 27.9

FIGURE 6. Lines of constant streamfunction xj/ for the solution of equations (5.7) with the rigid-rigid
boundary conditions (5.7rr). The calculations were performed with M = 11 and Pr = 1 on the domain
0 < Y < 25. The value of N,, the interval Aij/ between successive contours and the maximum value
m̂ax attained by ifr axe. shown in each case. The top, bottom and left hand boundaries correspond to
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(a) N, = 10, Atfr = 0.18, Vw = 1-62

= 2it

Y = 0 K = 25

(b) W, = 125, Ai/r = 1.15, V w = 10.35

Z = 7l

r = o Y = 25
(c) AT, = 300, Atfr = 2.1, V w = 18.9

= 2n
= 25

= 500, Ai/r = 2.7, Vmax = 24.3

FIGURE 7. Lines of constant streamfunction \j/ for the.solution of equations (5.7) with the free-free
boundary conditions (5.7ff). The calculations were performed with A/ = 1 1 and Pr = 1 on the domain
0 < Y < 25. The value of A^, the interval Af between successive contours and the maximum value
V̂max attained by ir are shown in each case. The top, bottom and left hand boundaries correspond to
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Figures 6 and 7 show some plots of the streamfunction \]/ for the rigid-rigid and
free-free boundary conditions respectively, between Z = n and Z = 2n (the reason
for choosing this particular cell rather than Z = 0 to n is so that ty is positive). The
boundaries at Y = 0, Z = n and Z = 2n are the lines ij/ = 0. The vertical velocity
is defined by -\j/z and the horizontal velocity by i/Y, so the diagrams show the fluid
moving towards the wall in the top half of each cell (near Z = n), being turned by
the wall and then returning to the core in the bottom half of each cell (near Z = 2n).
As A'I increases a boundary layer clearly develops near Y = 0 and the flow pattern
deviates significantly from the almost symmetrical pattern that occurs when /V, = 10.

6. Conclusion

In this paper an asymptotic structure has been found for the vortex pattern which
occurs above the large wavenumber end of a marginal curve. In this large wavenumber
limit, the flow has a core-boundary layer structure, in which the core region occupies
the majority of the flow domain and the boundary layers have O(a~x) thicknesses near
the walls. In the core region only the fundamental and the mean terms determine the
flow, while the higher harmonics are negligible, whereas in the boundary layers all the
harmonics are important. The solution of the boundary layer equations shows that the
heat transfer across the layer in this region of wavenumber-magnetic Rayleigh space
is much greater than in the conduction state. The present treatment shows that it is
possible to find an asymptotic structure for the vortex pattern in the unstable region
of parameter space which is a significant improvement over the weakly nonlinear
treatment. The more physically realistic problem of convection occurring above a
critical point is more complicated than the problem presented here and is presented
in two other papers [18,19]. It also demonstrates the similarities between problems
involving buoyancy driven instabilities (such as this one and the Rayleigh-Benard
problem) and problems involving centrifugal instability mechanisms (such as the
classical Taylor problem) [1].
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