TWO EXPONENTIAL DIOPHANTINE EQUATIONS by ERIK DOFS

(Received 17 April, 1996)

Introduction. In [3], two open problems were whether either of the diophantine equations

$$3n^2 + 3n + 1 = f^{\omega}, \qquad n^2 + 3n + 9 = f^{\omega} \tag{1}$$

with $n \in \mathbb{Z}$ and f a prime number, is solvable if $\omega > 3$ and $3 \nmid \omega$, but in this paper we allow f to be any (rational) integer and also $3 \mid \omega$. Equations of this form and more general ones can effectively be solved [5] with an advanced method based on analytical results, but the search limits are usually of enormous size. Here both equations (1) are norm equations in $K(\sqrt{-3}): N(a + b\rho) = f^{\omega}$ with $\rho = (-1 + \sqrt{-3})/2$, which makes it possible to treat them arithmetically.

The first problem. The equation $3n^2 + 3n + 1 = f^{\omega}$ is easily (in fact already) solved, for writing x = 3n + 1 reduces it to $x^2 + x + 1 = 3f^{\omega}$, and Nagell [4] proved a long time ago that this equation has no integer solutions with $\omega > 2$, except the trivial cases with |f| = 1. If $\omega = 2$, the equation is Pellian and has infinitely many solutions.

The second problem. Cohn [1] showed that $x^2 + 2x + 4 = y^m$ (m > 2) has no solutions but the second equation (1) has probably not been solved earlier so we give a proof of the following theorem.

THEOREM. The equation

$$x^2 + 3x + 9 = y^m (2)$$

has integer solutions if and only if m = 2 or 3, and the solutions are given by:

$$x = -8, -3, 0, 5$$
 if $m = 2$ and $x = -6, 3$ if $m = 3$.

Proof. It is sufficient to study the cases where m is a prime number and we first solve equation (2) for m = 2, 3: If m = 2, it can be written as $(2x + 3)^2 + 27 = (2y)^2$ and clearly there is only a finite number of x-values that satisfy this. If m = 3, we write it as $(x + 6)^3 - (x - 3)^3 = (3y)^3$ and then necessarily x = -6, 3.

The remaining cases $m \equiv \pm 1 \pmod{6}$ are considered now. We can assume $x \equiv \pm 1 \pmod{3}$ as $x \equiv 0 \pmod{3}$ in equation (2) leads to the impossible congruence $x_1^2 + x_1 + 1 \equiv 0 \pmod{9}$ if m > 3. Then $gcd(x - 3\rho, x - 3\bar{\rho}) = 1$ and we can write $x - 3\rho = (a + b\rho)^m$ if $a + b\rho$ is chosen to be primary/semi-primary depending on $x \pmod{3}$. By defining $u_m = \frac{(a + b\rho)^m - (a + b\bar{\rho})^m}{(a + b\rho) - (a + b\bar{\rho})}$, we find (from $x - 3\rho = (a + b\rho)^m$)

$$u_m = -3/b, \tag{3}$$

i.e. $b = \pm 3$, as $u_m \in \mathbb{Z}$ and $b \equiv 0 \pmod{3}$. Further, by developing u_m we see that the sign of b is determined by $m \pmod{3} : ma^{m-1} \equiv m \equiv -3/b \pmod{3}$.

Glasgow Math. J. 39 (1997) 231-232.

ERIK DOFS

First assume that m is a prime number congruent to $1 \pmod{6}$. Now b = -3 and equation (3) becomes

$$\binom{m}{1}a^{m-1} + \binom{m}{2}3a^{m-2} - \binom{m}{4}3^{3}a^{m-4} - \binom{m}{5}3^{4}a^{m-5} + \dots - \binom{m}{m-2}3^{m-3}a^{2} + 3^{m-1} = 1 \quad (4)$$

where the coefficient of a^{m-k} is $A_k = \pm {\binom{m}{k}} 3^{k-1}$ if $3 \nmid k$ and $A_k = 0$ if $3 \mid k$. Assuming $m \equiv 1 \pmod{3^g}$ for some maximum g, we now prove that $3^{g+2} \mid A_k$ when $k \ge 4$. For k = 4 this is clearly true. Now $3^g \mid m-1$ and if $3^h \mid k!$ then h < k/2, thus $3^{g+k-1-[k/2]} \mid A_k$, i.e. $3^{g+2} \mid A_k$ if $5 \le k < m$. Finally, if k = m clearly $m \ge g + 3$, and consequently $3^{g+2} \mid 3^{m-1}$. We have thus proved that $m \equiv 1 \pmod{3^g}$ implies

$$ma^{m-1} + {m \choose 2} 3a^{m-2} \equiv 1 \pmod{3^{g+2}}.$$
 (5)

Writing (5) as $(m-1)a^{m-1} + (a^{m-1}-1) + \binom{m}{2} 3a^{m-2} \equiv 0 \pmod{3^{g+2}}$ one sees that

 $3^{g} \parallel (m-1)a^{m-1}$ while 3^{g+1} divides both the other terms, which is impossible.

Next assume that *m* is a prime number congruent to $-1 \pmod{6}$. Then however, equation (3) is unsolvable and one way of seeing this is to use the periodicity of $u_m \pmod{7}$ [2]. The period is a factor of 6 as $(-3 \mid 7) = 1$ and for any *a* (and b = 3), $u_m \equiv u_5 \equiv 1, \pm 3 \pmod{7}$, contradicting (3). Thus the equation $x^2 + 3x + 9 = y^m \pmod{m} > 1$) has integer solutions if and only if m = 2, 3.

ACKNOWLEDGEMENT. The author is sincerely grateful to the referee for suggesting several simplications of the proof.

REFERENCES

1. J. H. E. Cohn, The Diophantine equation $x^2 + 3 = y^n$, Glasgow Math. J. **35** (1993), 203-206. **2.** J. H. E. Cohn, The Diophantine equation $x^2 + C = y^n$, Acta Arith. **65** (1993), 367-381.

3. E. Dofs, On some classes of homogeneous ternary cubic diophantine equations, Ark. Mat. 13 (1975), 29-72.

4. T. Nagell, Des équations indéterminées $x^2 + x + 1 = y^n$ et $x^2 + x + 1 = 3y^n$, Norsk Mat. For. Skr. Series I 2 (1921).

5. T. N. Shorey, A. J. van der Poorten, R. Tijdeman and A. Schinzel, Applications of the Gel'fond-Baker method to diophantine equations, *Transcendence theory: advances and applications* (Academic Press, 1977), 59–77.

Royal Institute of Technology S-10044 Stockholm Sweden