TWO EXPONENTIAL DIOPHANTINE EQUATIONS by ERIK DOFS

(Received 17 April, 1996)

Introduction. In [3], two open problems were whether either of the diophantine equations

$$
\begin{equation*}
3 n^{2}+3 n+1=f^{\omega}, \quad n^{2}+3 n+9=f^{\omega} \tag{1}
\end{equation*}
$$

with $n \in \mathbf{Z}$ and f a prime number, is solvable if $\omega>3$ and $3 \nmid \omega$, but in this paper we allow f to be any (rational) integer and also $3 \mid \omega$. Equations of this form and more general ones can effectively be solved [5] with an advanced method based on analytical results, but the search limits are usually of enormous size. Here both equations (1) are norm equations in $K(\sqrt{-3}): N(a+b \rho)=f^{\omega}$ with $\rho=(-1+\sqrt{-3}) / 2$, which makes it possible to treat them arithmetically.

The first problem. The equation $3 n^{2}+3 n+1=f^{\omega}$ is easily (in fact already) solved, for writing $x=3 n+1$ reduces it to $x^{2}+x+1=3 f^{\omega}$, and Nagell [4] proved a long time ago that this equation has no integer solutions with $\omega>2$, except the trivial cases with $|f|=1$. If $\omega=2$, the equation is Pellian and has infinitely many solutions.

The second problem. Cohn [1] showed that $x^{2}+2 x+4=y^{m}(m>2)$ has no solutions but the second equation (1) has probably not been solved earlier so we give a proof of the following theorem.

Theorem. The equation

$$
\begin{equation*}
x^{2}+3 x+9=y^{m} \tag{2}
\end{equation*}
$$

has integer solutions if and only if $m=2$ or 3 , and the solutions are given by:

$$
x=-8,-3,0,5 \text { if } m=2 \text { and } x=-6,3 \text { if } m=3 .
$$

Proof. It is sufficient to study the cases where m is a prime number and we first solve equation (2) for $m=2,3$: If $m=2$, it can be written as $(2 x+3)^{2}+27=(2 y)^{2}$ and clearly there is only a finite number of x-values that satisfy this. If $m=3$, we write it as $(x+6)^{3}-(x-3)^{3}=(3 y)^{3}$ and then necessarily $x=-6,3$.

The remaining cases $m \equiv \pm 1(\bmod 6)$ are considered now. We can assume $x \equiv$ $\pm 1(\bmod 3)$ as $x \equiv 0(\bmod 3)$ in equation (2) leads to the impossible congruence $x_{1}^{2}+x_{1}+1 \equiv 0(\bmod 9)$ if $m>3$. Then $\operatorname{gcd}(x-3 \rho, x-3 \bar{\rho})=1$ and we can write $x-3 \rho=$ $(a+b \rho)^{m}$ if $a+b \rho$ is chosen to be primary/semi-primary depending on $x(\bmod 3)$. By defining $u_{m}=\frac{(a+b \rho)^{m}-(a+b \bar{\rho})^{m}}{(a+b \rho)-(a+b \bar{\rho})}$, we find (from $\left.x-3 \rho=(a+b \rho)^{m}\right)$

$$
\begin{equation*}
u_{m}=-3 / b \tag{3}
\end{equation*}
$$

i.e. $b= \pm 3$, as $u_{m} \in \mathbf{Z}$ and $b \equiv 0(\bmod 3)$. Further, by developing u_{m} we see that the sign of b is determined by $m(\bmod 3): m a^{m-1} \equiv m \equiv-3 / b(\bmod 3)$.

Glasgow Math. J. 39 (1997) 231-232.

First assume that m is a prime number congruent to $1(\bmod 6)$. Now $b=-3$ and equation (3) becomes
$\binom{m}{1} a^{m-1}+\binom{m}{2} 3 a^{m-2}-\binom{m}{4} 3^{3} a^{m-4}-\binom{m}{5} 3^{4} a^{m-5}+\ldots-\binom{m}{m-2} 3^{m-3} a^{2}+3^{m-1}=1$
where the coefficient of a^{m-k} is $A_{k}= \pm\binom{ m}{k} 3^{k-1}$ if $3 \nmid k$ and $A_{k}=0$ if $3 \mid k$. Assuming $m \equiv 1\left(\bmod 3^{g}\right)$ for some maximum g, we now prove that $3^{g+2} \mid A_{k}$ when $k \geq 4$. For $k=4$ this is clearly true. Now $3^{g} \| m-1$ and if $3^{h} \| k$! then $h<k / 2$, thus $3^{g+k-1-[k / 2]} \mid A_{k}$, i.e. $3^{g+2} \mid A_{k}$ if $5 \leq k<m$. Finally, if $k=m$ clearly $m \geq g+3$, and consequently $3^{g+2} \mid 3^{m-1}$. We have thus proved that $m \equiv 1\left(\bmod 3^{g}\right)$ implies

$$
\begin{equation*}
m a^{m-1}+\binom{m}{2} 3 a^{m-2} \equiv 1\left(\bmod 3^{g+2}\right) \tag{5}
\end{equation*}
$$

Writing (5) as $(m-1) a^{m-1}+\left(a^{m-1}-1\right)+\binom{m}{2} 3 a^{m-2} \equiv 0\left(\bmod 3^{8+2}\right)$ one sees that $3^{8} \|(m-1) a^{m-1}$ while 3^{8+1} divides both the other terms, which is impossible.

Next assume that m is a prime number congruent to $-1(\bmod 6)$. Then however, equation (3) is unsolvable and one way of seeing this is to use the periodicity of $u_{m}(\bmod 7)[2]$. The period is a factor of 6 as $(-3 \mid 7)=1$ and for any a (and $b=3$), $u_{m} \equiv u_{5} \equiv 1, \pm 3(\bmod 7)$, contradicting (3). Thus the equation $x^{2}+3 x+9=y^{m}(m>1)$ has integer solutions if and only if $m=2,3$.

Acknowledgement. The author is sincerely grateful to the referee for suggesting several simplications of the proof.

REFERENCES

1. J. H. E. Cohn, The Diophantine equation $x^{2}+3=y^{n}$, Glasgow Math. J. 35 (1993), 203-206.
2. J. H. E. Cohn, The Diophantine equation $x^{2}+C=y^{n}$, Acta Arith. 65 (1993), 367-381.
3. E. Dofs, On some classes of homogeneous ternary cubic diophantine equations, Ark. Mat. 13 (1975), 29-72.
4. T. Nagell, Des équations indéterminées $x^{2}+x+1=y^{n}$ et $x^{2}+x+1=3 y^{n}$, Norsk Mat. For. Skr. Series I 2 (1921).
5. T. N. Shorey, A. J. van der Poorten, R. Tijdeman and A. Schinzel, Applications of the Gel'fond-Baker method to diophantine equations, Transcendence theory: advances and applications (Academic Press, 1977), 59-77.

Royal Institute of Technology

S-10044 Stockholm
Sweden

