
J. Functional Programming 11 (4): 411–424, July 2001. Printed in the United Kingdom

c© 2001 Cambridge University Press

411

FUNCTIONAL PEARLS

Maximum marking problems

RICHARD S. BIRD

Programming Research Group, Oxford University,

Wolfson Building, Parks Road, Oxford OX1 3QD, UK

1 Introduction

Here are two puzzles for you to solve. First, consider the binary tree in figure 1.

Take a pencil (I am assuming that this is your personal copy of JFP!) and mark

some of the nodes in such a way that the sum of the values of marked nodes is

as large as possible. The catch is that you cannot mark all the nodes: if you mark

a node, then you are not allowed to mark its parent. Equivalently, no two marked

nodes can be contiguous in the tree.

The second puzzle is similar though both the datatype and constraint are different.

Consider the rose tree of figure 2 (a rose tree is a tree with arbitrary branching

structure). Mark some of the nodes so that all marked nodes are now contiguous in

the tree. For example, if you mark the root value 4 and the leaf value 1, then you

must also mark the values 5 and −3 along the path from 4 to 1. Again the idea is

to maximise the sum of the marked nodes. Of course, if all values were nonnegative,

the best solution would be to mark all nodes. But they aren’t and the maximum

sum is obtained only by a judicious choice of marking. Answers to both puzzles are

given at the end of the paper.

The Maximum Marking Problem (MMP) is the problem of marking the entries

of some given data structure in such a way that a given constraint is satisfied and

the sum of the values associated with marked entries is as large as possible. By the

end of this pearl, you will be convinced that there is a linear-time solution for both

the puzzles described above.

Other variations of the MMP correspond to some well known problems. If the

data structure is a list of items along with their weights and values, and the marking

7

3

4 6

6

4

2 1

3

5 2

Fig. 1. A binary tree.

https://doi.org/10.1017/S0956796801004038 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004038

412 R. S. Bird

4

−3

−2 7

5

−3

1 7

−9

5 4 −2

Fig. 2. A rose tree.

constraint is that the sum of the weights of the items does not exceed a given

quantity, then the problem of identifying the maximum value sum is just the classic

Knapsack Problem. If the data structure is a list of numbers, and the constraint is

that marked entries should be adjacent, then we have the well-known Maximum

Segment Sum problem.

The theory behind these problems and how they can be solved efficiently is given

in the chapter entitled ‘Thinning Algorithms’ of Bird and de Moor (1996). The

real purpose of this pearl is to try and explain the essential ideas behind thinning

algorithms in the context of a specific class of examples, without delving too much

into the categorical theory of relations that forms the basis of Bird and de Moor

(1996). This pearl has also been written to try and answer the criticism made

in Sasano et al. (2000) to the effect that thinning algorithms are too difficult for

functional progammers to apply in practice.

Let us end this introduction with one way of specifying the marking constraint

of the first puzzle. We will mark a tree of type Tree Int , where

data Tree a = Leaf a | Node a (Tree a) (Tree a)

by attaching a Boolean label to each integer, where a True label indicates that an

integer is marked and so contributes to the sum, while a False label indicates that

it does not. The constraint is that the binary tree should be atiguously marked, a

fancy name for a non-contiguous marking. One way to formalise atiguousness is to

say that a marked tree x is atiguous if atig x returns a well-defined value, where

atig :: Tree (Int × Bool) → Bool

atig = foldTree base step

base (n , b) = b

and

step (n , b) bx by =

{
b ∧ ¬bx ∧ ¬by → True

¬b → False

Thus, a tree x is atiguous iff atig x returns either True or False. The function

foldTree is the fold function for the type Tree a . It is easy to see that atig x is

undefined if, during the folding process and evaluation of step on tree x , a node is

encountered which is labelled True and one or both of its daughter nodes is also

https://doi.org/10.1017/S0956796801004038 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004038

Functional pearls 413

labelled True. Thus atig is a partial function. Haskell programmers can implement

atig as a total function using Maybe Bool as the target type. The important point is

that the target type of atig is finite. As we will see, the fact that atig can be expressed

as a fold returning a value in a finite set is enough to guarantee a linear-time solution

for the problem.

2 Specification

Forget binary trees, rose trees or lists, and imagine only that we are given a

datatype T Int of integers. The marking problem for T is solved by a function

mmp :: T Int → Int that returns the maximum sum available. For simplicity we will

concentrate only on the value of the best marking rather than on the marking itself,

but it is just as easy to consider instead a function mmp :: T Int → T (Int × Bool)

that returns the best marking.

The function mmp can be specified in the following way:

mmp = max (6) · Λ(value · dom test · mapT mark)

The remainder of this section is devoted to explaining the notation and the subsidiary

functions appearing in the specification of mmp.

First of all, the specification and its components are interpreted not as Haskell

(or ML) functions over types living in the universe CPO⊥ of complete partial orders

with bottom element ⊥, but as multifunctions over types in the universe SET of

ordinary sets. A multifunction is a nondeterministic function or, more simply, a

relation that associates zero or more results with each argument. We indicate a

multifunction by writing its type as A ; B rather than A → B . For example,

mark :: Int ; Int × Bool

mark n = (n , True)2 (n , False)

The box 2 signifies nondeterministic choice. Thus mark is a multifunction that

attaches an arbitrary Boolean value to an integer. To simplify subsequent type

expressions, we introduce Mark = Int × Bool , so mark :: Int ; Mark .

The type of mapT is

mapT :: (a ; b) → (T a ; T b)

This function, whose definition will be given a little later on, is just like the ordinary

map function associated with a datatype T except that it can take a multifunction

as argument and return a multifunction as result.

The combination mapT mark denotes the operation of marking an element of T Int

in a completely nondeterministic way. The functional programmer may wonder at

this point why multifunctions are being brought in. “Aren’t we going to be interested

in the set of all possible markings?”, she may ask. The answer is: “Yes, but that

will come later”. It is notationally much simpler to consider things at the level of

an arbitrary marking, and then move wholesale to the set level at the last possible

moment. There is also another reason why multifunctions are necessary, as we will

soon see.

Next, the function dom , which takes a multifunction as argument and returns a

https://doi.org/10.1017/S0956796801004038 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004038

414 R. S. Bird

partial function as result, is defined as follows:

dom :: (a ; b) → (a ; a)

dom p = fst · 〈id , p〉
The split operation 〈f , g〉 is defined by 〈f , g〉 x = (f x , g x). The expression 〈f , g〉
denotes a multifunction that returns a result on an argument x if and only if both

f and g do. We are working with types as flat sets remember, and there is no ⊥ or

partially defined tuples. The function fst is standard and selects the first component

of a (well-defined) pair. It will be appreciated from these remarks that dom p applied

to an argument x returns x if and only if x is in the domain of p. Thus, dom p is a

partial function included in the identity function. A partial function is a special case

of a multifunction, namely a multifunction that returns either one value or none.

In the specification of mmp the function dom is applied to a given multifunction

test :: T Mark ; Test . For example, in the atiguous-marking problem, test = atig

and Test = Bool .

Next, the function value is defined as follows:

value :: T Mark → Int

value = sum · mapT val

val (n , b) = if b then n else 0

The subsidiary function sum :: T Int → Int for summing a structure of integers will

be defined shortly.

Next, the operation Λ turns a multifunction into the corresponding set-valued

function:

Λ :: (a ; b) → (a → Set b)

(Λf) a = {b | b (-: f a}
We write b (-: f a to denote the fact that b is a possible value of f a . Thus (Λf) a

returns the set of all possible values b that can be returned as the result of applying

the multifunction f to a .

Finally, the multifunction max is defined by

max :: (a → a → Bool) → (Set a ; a)

a ← max (£) as ≡ a ∈ as ∧ (∀b ∈ as : b £ a)

In words, max takes an ordering £ and a set as as argument, and returns some

maximum element in as under £. An ordering is also a relation, but it would

seem strange to consider it as a multifunction, so we choose to represent it as a

curried function returning a Boolean result. The minimum requirement on £ is that

it should be a connected preorder, that is, a reflexive and transitive relation with

the property that for all x and y either x £ y or y £ x . (The usual name for a

connected preorder is a total preorder but that name invites confusion because of

the ambiguity of the word total.) Then we are guaranteed that max (£) as produces

at least one result for all nonempty sets as .

Note that max (£) as does not specify which element of as should be chosen.

This freedom of action is crucial to the success of the reasoning to come, and is the

second reason why the move to multifunctions is necessary.

https://doi.org/10.1017/S0956796801004038 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004038

Functional pearls 415

2.1 Folds and functors

Two operations, sum and mapT were left unspecified above (the multifunction test

is part of the input of the problem). To remedy the omission we need to say how

T is defined and what the fold function for T is. In brief, a parameterised recursive

datatype T a can be defined as the least fixed point of another, so-called base

datatype F (a , b). The fixed-point property means that

T a ∼= F (a , T a)

For example, List a ∼= 1+a ×List a , so List a is a fixed point of F (a , b) = 1+a ×b.

The use of ∼= rather than equality is because the two types are isomorphic rather

than identical. The constructors of a data declaration in Haskell are functions that

convert the component types on the right-hand side into elements of the type being

declared. We can parcel all constructors into just one function inT : F (a , T a) → T a .

The converse function outT : T a → F (a , T a), the other half of the isomorphism,

is implicit in the permitted use of pattern matching with elements of declared

datatypes.

The least fixed-point property of T means that given any function f :: F (a , b) → b

we can construct a unique function h :: T a → b satisfying

h · inT = f · mapF (id , h)

The function h is denoted by foldF f . Thus foldF :: (F (a , b) → b) → (T a → b). For

example, sum = foldF plusF , where plusF :: F (Int , Int) → Int . We cannot say what

plusF is without knowing the structure of F . However, plusF can be defined for the

so-called regular functors F (basically, polynomial functors closed under recursive

data declarations) by induction over the structure of type constructors.

Given f :: a → x and g :: b → y , the function mapF (f , g) has type F (a , b) →
F (x , y). Moreover, this function satisfies the two equations

mapF (id , id) = id

mapF (f · h , g · k) = mapF (f , g) · mapF (h , k)

In a word, F is a functor. We will make free use of the above equations in what

follows without always making it explicit that we are doing so.

Given f :: a → b, the combination inT · mapF (f , id) has type F (a , T b) → T b;

consequently foldF (inT · mapF (f , id)) :: T a → T b. As might be suggested by this

type signature, we have

mapT f = foldF (inT · mapF (f , id))

Thus the action of T on functions is defined. Moreover, one can show that

mapT id = id and mapT (f · g) = mapT f · mapT g

Hence T is also a functor. The proof of this claim involves two facts that will be

useful later on. The identity law states that foldF inT is the identity function on T a .

Thus,

mapT id = foldF (inT · mapF (id , id)) = foldF inT = id

https://doi.org/10.1017/S0956796801004038 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004038

416 R. S. Bird

and the first part is proved. The second law is called type-functor fusion and states

that

foldF f · mapT g = foldF (f · mapF (g , id))

In words, a fold after a map can always be re-expressed as a single fold. We omit

the simple proof that this gives the second claim.

All the above extends to the case that the argument of a fold is a multifunction

rather than a plain function. There are one or two details that have to be addressed

in a full explanation (such as what precisely does the functor × mean in a relational

setting), but we will not go into them. It suffices to state that we can take

foldF :: (F (a , b) ; b) → (T a ; b)

In particular, we can replace both occurrences of ; by → in this type signature.

2.2 The banana-split and fusion laws

We need two other pieces of technical machinery before we can proceed with deriving

an implementation of mmp. The first is called the banana-split law, and states that

〈foldF f , foldF g〉 = foldF 〈f · mapF (id , fst), g · mapF (id , snd)〉
In words, a split involving two folds can be rewritten as a fold involving a split. (In

the old days, folds were written with ‘banana’ brackets, hence the catchy name.)

The second piece of machinery is the fusion condition

f · foldF g ⊇ foldF h ⇐ f · g ⊇ h · mapF (id , f)

The fusion condition also holds when both occurrences of ⊇ are replaced by =, or

replaced by ⊆. See Bird (1998) for a discussion of the fundamental role of fusion

in proving facts about functional programs. In fact, type-functor fusion is a special

case of fusion. We will need fusion in section 5.

3 Rewriting the specification

To save looking back, here is the specification of mmp again:

mmp = max (6) · Λ(value · dom test · mapT mark)

Let us start with the subexpression value · dom test:

value · dom test

= {definition of dom}
value · fst · 〈id , test〉

= {claim}
fst · 〈value, test〉

= {definition of value}
fst · 〈foldF plusF · mapT val , test〉

https://doi.org/10.1017/S0956796801004038 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004038

Functional pearls 417

= {type functor fusion}
fst · 〈foldF (plusF · mapF (val , id)), test〉

= {assume test = foldF partF }
fst · 〈foldF (plusF · mapF (val , id)), foldF partF 〉

= {banana split}
fst · foldF f

where, setting Result = Int × Test , we have

f :: F (Mark , Result) ; Result

f = 〈plusF · mapF (val , fst), partF · mapF (id , snd)〉
The claim is a consequence of two laws:

f · fst = fst · (f × id)

(f × g) · 〈h , k〉 = 〈f · h , g · k〉
where (f × g) (x , y) = (f x , g y). Note our assumption on test :: T Mark → Test ,

namely that test = foldF partF , where partF :: F (Mark , Test) ; Test .

Now we can continue:

value · dom test · mapT mark

= {above}
fst · foldF f · mapT mark

= {type functor fusion}
fst · foldF g

where g :: F (Int , Result) ; Result is defined by g = f · mapF (mark , id). Using this

result, we now obtain

max (6) · Λ(value · dom p · mapT mark)

= {above}
max (6) · Λ(fst · foldF g)

= {claim}
fst · max (61) · Λ(foldF g)

where (61) :: Result → Result → Bool is defined by

(a1, b1) 61 (a2, b2) =̂ (a1 6 a2)

The claim is intuitively obvious but to justify it calculationally would involve more

notation than we want to expose. See Bird and de Moor (1996) for the proof.

Where are we? Well, we have in effect reduced the MMP problem to one of

computing an expression of the form max (£) · Λ(foldF h) efficiently. The only

assumption was that test can be expressed as a fold. Time now for some standard

theory.

https://doi.org/10.1017/S0956796801004038 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004038

418 R. S. Bird

4 Thinning

How can we compute an expression max (£) · Λ(foldF h), given suitable definitions

of £ and h? One possibility is to make use of the Eilenberg–Wright theorem, which

says that

Λ(foldF h) = foldF (Λ(h · mapF (id , choose)))

where choose :: Set a ; a is the membership relation for sets (so a (-: choose as iff

a ∈ as). In words, the set of results returned by a relational fold can be obtained

as a functional fold that at each stage returns the set of all possible intermediate

results. Proof of the Eilenberg-Wright theorem is given in Bird and de Moor (1996),

as are the proofs of other results in this section.

At the other extreme lies the Greedy theorem, which states that

max (£) · Λ(foldF h) ⊇ foldF (max (£) · Λh)

provided h :: F (a , b) ; b is monotonic under the preorder (£) :: b → b → Bool ,

that is,

x £F y ∧ u (-: h x ⇒ (∃v : v (-: h y ∧ u £ v)

where (£F) :: F (a , b) → F (a , b) → Bool is the ordering on F induced by £. Note

that the Greedy theorem asserts a refinement relation between the two sides, not

an equality. In words, the Greedy theorem says that some optimum result (not

necessarily every optimal result) can be computed by maintaining a single optimum

partial result at each stage of the folding process.

For the MMP problem, h :: F (Int , Result) ; Result is given by

h = 〈plusF · mapF (val , fst), partF · mapF (id , snd)〉 · mapF (mark , id)

and it is not too difficult to see that h is not monotonic under 61: we can have

x 61F y and h x returning some result without having h y returning any result

because 61 does not depend on second components. Hence monotonicity fails.

The minimum generalisation that restores monotonicity is to define 62 by

(a1, b1) 62 (a2, b2) =̂ (a1 6 a2 ∧ b1 = b2)

Then it is fairly easy to see that h is monotonic under 62. The problem is that 62

is not a connected preorder, so we cannot expect max (62) as to return a value for

all nonempty sets as .

What saves the day is the idea of thinning. Define

thin :: (a → a → Bool) → (Set a ; Set a)

bs ← thin (�) as ≡ bs ⊆ as ∧ (∀a ∈ as : ∃b ∈ bs : a � b)

In words, thin takes a not necessarily connected preorder � and a set as and

nondeterministically returns some subset bs of as with the property that all elements

of as have an upper bound under � in bs .

The thinning theorem states that

max (£) · Λ(foldF h) ⊇ max (£) · foldF k

https://doi.org/10.1017/S0956796801004038 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004038

Functional pearls 419

newtype T a = InT (F a (T a))

foldF :: (F a b -> b) -> T a -> b

foldF f (InT x) = f (mapF id (foldF f) x)

Fig. 3. The datatype T a .

where

k :: F (a , Set b) ; Set b

k = thin (�) · Λ (h · mapF (id , choose))

provided that: (i) x � y ⇒ x £ y; and (ii) h is monotonic under �. In words, the

thinning theorem says that we can compute an optimum result by maintaining a

representative number of partial solutions at each stage of the folding process.

How many partial solutions have to be kept on the go for the MMP? Look

again at the definition of 62 (the instantiation for �) and observe that the second

components b1 and b2 are each elements of Test , the target type of test . If Test has

size k , then we need keep at most k partial solutions at each stage. For the atiguous

problem, Test = Bool , so only two partial solutions have to be kept. As we will

see later on, Test will also have finite size for the other problem described in the

introduction.

5 Implementation

As a consequence of applying the thinning theorem to the MMP problem we have

mmp ⊇ fst · max (61) · foldF k

k = thin (62) · Λ(f · mapF (mark , choose))

f = 〈plusF · mapF (val , fst), partF · mapF (id , snd)〉
The types of these multifunctions are as follows:

mmp :: T Int → Int

k :: F (Int , Set Result) ; Set Result

f :: F (Mark , Result) ; Result

Our task now is to implement the various functions in Haskell. In particular,

foldF can be implemented as in figure 3 which uses Haskell’s newtype construction

to introduce the type T . The base functor F has to be supplied to complete

the definition. Functions not decorated with an F subscript can be implemented

independently of the details of any particular marking problem.

The aim of the game is to represent sets by lists and set-processing functions

by list-processing ones. In particular, the functions maxlist :: List a → a and

thinlist :: List a → List a are specified by

max (£) ⊇ maxlist (£) · listify

thin (£) ⊇ setify · thinlist (£) · listify

where setify :: List a → Set a converts a list into the set of its elements and

https://doi.org/10.1017/S0956796801004038 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004038

420 R. S. Bird

maxlist :: (a -> a -> Bool) -> [a] -> a

maxlist r = foldr1 max2 where max2 a b = if r a b then b else a

thinlist :: (a -> a -> Bool) -> [a] -> [a]

thinlist q = foldr step []

where step a [] = [a]

step a (b:x) | q a b = b:x

| q b a = a:x

| otherwise = b:step a x

cplist :: ([a],[b]) -> [(a,b)]

cplist (xs,ys) = [(x,y) | x <- xs, y <- ys]

tlist :: a -> [a]

tlist a = [a]

split :: (a -> b) -> (a -> c) -> a -> (b,c)

split f g x = (f x, g x)

type Mark = (Int,Bool)

mlist :: Int -> [Mark]

mlist n = [(n,True),(n,False)]

val :: Mark -> Int

val (a,b) = if b then a else 0

type Result = (Int,Test)

leq1 :: Result -> Result -> Bool

leq1 (a1,b1) (a2,b2) = (a1 <= a2)

leq2 :: Result -> Result -> Bool

leq2 (a1,b1) (a2,b2) = (a1 <= a2 && b1 == b2)

Fig. 4. Generic utility functions.

listify :: Set a ; List a does the reverse. Thus

setify · listify = id and listify · setify ⊇ id

Use of ⊇ rather than = is necessary in these formulae because we are replacing

multifunctions by functions and hence exorcising nondeterminism. Figure 4 gives

possible implementations of maxlist and thinlist .

It is important to note that thinlist works by comparing every element on the list

with every other, and so takes quadratic time in the length of the list. Although

thinlist is optimal at thinning, its quadratic behaviour is not acceptable for thinning

algorithms in general. A better solution, explored in Bird and de Moor (1996), is to

implement a linear-time version of thinlist and combine it with a implementation

https://doi.org/10.1017/S0956796801004038 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004038

Functional pearls 421

of sets as sorted lists that bring candidates for thinning together, so allowing the

linear-time version to be effective at thinning.

However, for an MMP problem that maintains k partial solutions at each step,

thinlist will be applied to a list of length at most 2k at each step because application

of mark doubles the number of candidates. Hence the quadratic definition of thinlist

is acceptable, indeed welcome because it implies that we can implement a set by

listing its elements in any order we like.

We have to implement Λ as a list-generating function. As a first step we ‘localize’

occurrences of Λ by making use of three rules:

Λ(f · g) = union · mapS (Λf) · Λg

Λ〈f , g〉 = cp · 〈Λf , Λg〉
Λ(mapF (f , g)) = cpF · mapF (Λf , Λg)

The subsidiary functions have types

union :: Set (Set a) → Set a

mapS :: (a → b) → (Set a → Set b)

cp :: Set a × Set b → Set (a × b)

cpF :: F (Set a , Set b) → Set (F (a , b))

The function union takes the union of a set of sets, mapS is the map function for

sets, cp takes the cartesian product of two sets, and cpF is the generalisation of

cp = cp× to an arbitrary F .

If g :: a → b, then Λg = τ · g , where τ :: b → Set b returns a singleton set. In

such a case we have

Λ(f · g) = Λf · g

Using these rules, together with the fact that Λchoose is the identity function on sets,

we can rewrite the specification of mmp to read:

mmp ⊇ fst · max (61) · foldF k

k = thin (62) · union · mapS f · cpF · mapF (Λmark , id))

f = cp · 〈τ · plusF · mapF (val , fst), ΛpartF · mapF (id , snd)〉
The type of f is now f :: F (Mark , Result) → Set Result .

Let us now implement f . We will need three functions cplist , tlist and plistF
satisfying

cp · (setify × setify) = setify · cplist

τ = setify · tlist

ΛpartF = setify · plistF
Definitions of cplist and tlist are given in figure 4; the definition of plistF de-

pends upon the particular marking problem and will be given later. Installing these

definitions we obtain f = setify · flist , where flist is given in figure 5.

Turning to k , we will need functions mlist and cplistF satisfying

Λmark = setify · mlist

cpF · mapF (setify , setify) = setify · cplistF

Figure 4 gives one implementation of mlist; the definition of cplistF depends on F

and will be given later. Installing these identities and using the rules relating listify

https://doi.org/10.1017/S0956796801004038 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004038

422 R. S. Bird

mmp :: T Int -> Int

mmp = fst . maxlist leq1 . foldF klist

klist = thinlist leq2 . concat . map flist . cplistF . mapF mlist id

flist = cplist . split (tlist . plusF . mapF val fst) (plistF . mapF id snd)

Fig. 5. The generic program.

and setify given above, together with the equation

union · mapS setify · setify = setify · concat

we obtain

listify · k ⊇ klist · mapF (id , listify)

where klist is defined in Figure 5.

Finally, we turn to mmp and reason:

mmp

⊇ {given}
fst · max (61) · foldF k

⊇ {specification of maxlist}
fst · maxlist (61) · listify · foldF k

⊇ {fusion; see above}
fst · maxlist (61) · foldF klist

The result as a Haskell program is summarised in Figure 5.

6 Applications

Finally we are in a position to instantiate the generic marking problem for our two

examples. Figure 6 gives the instantiations of the remaining functions mapF , cplistF ,

plusF and plistF for the atiguous problem on binary trees.

To bring out a crucial point about efficiency, we have declared the type of cplistF
to be the instance at which it is used in the generic marking problem. If Result has

size k (and k = 2 in the atiguous problem), then the thinning algorithm maintains

k partial results at each step. Consequently, cplistF generates 2k 2 candidate new

partial results for subsequent thinning. These partial results can be processed in

constant time, so the complete algorithm requires linear time.

The situation changes when the base functor F is not polynomial, as is the case

with rose trees. For rose trees we have F (a , b) = a × List b, and for a node with

n immediate offspring, the associated function cplistF will produce a list of 2k n

candidates. Although these candidates are subsequently thinned to only k results,

the process will no longer take constant time. In fact, direct instantiation of any

non-trivial marking problem for rose trees will take exponential time.

The only way out of this unfortunate situation seems to be to recast a marking

problem for rose trees as a marking problem for leaf-labelled binary trees, exploiting

https://doi.org/10.1017/S0956796801004038 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004038

Functional pearls 423

data F a b = Leaf a | Fork a b b

type Test = Bool

mapF :: (a -> c) -> (b -> d) -> F a b -> F c d

mapF f g (Leaf a) = Leaf (f a)

mapF f g (Fork a b1 b2) = Fork (f a) (g b1) (g b2)

cplistF :: F [Mark] [Result] -> [F Mark Result]

cplistF (Leaf as) = [Leaf a | a <- as]

cplistF (Fork as bs1 bs2)

= [Fork a b1 b2 | a <- as, b1 <- bs1, b2 <- bs2]

plusF :: F Int Int -> Int

plusF (Leaf a) = a

plusF (Fork a b1 b2) = a + b1 + b2

plistF :: F Mark Test -> [Test]

plistF (Leaf (a,b)) = [b]

plistF (Fork (a,b) b1 b2)

| b && not b1 && not b2 = [True]

| not b = [False]

| otherwise = []

Fig. 6. The atiguous problem.

a

b1 b2 · · · bn

→

b1

b2

· · ·
bn a

Fig. 7. Isomorphism between rose trees and leaf-labelled binary trees.

the isomorphism between rose trees and binary trees illustrated in Figure 7. This

is also the resolution proposed by Sasano et al. (2000), though the problem is not

identified in quite the same way.

Figure 8 gives the instantiation for the contiguous problem for rose trees, expressed

as a problem on binary trees. The type Test contains three values: A signifies that

the tree is contiguous and the root is marked; B that the tree is contiguous and the

root is unmarked (i.e. marked False), and C that the tree is completely unmarked.

The definition of plistF is reasonably clear once one ploughs through the clauses.

7 Conclusions

Consider the benefits of the treatment above: we have derived a generic solution

to all marking problems whose constraint can be expressed as a fold involving

https://doi.org/10.1017/S0956796801004038 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004038

424 R. S. Bird

data F a b = Leaf a | Fork b b

data Test = A | B | C deriving (Eq,Ord)

mapF :: (a -> c) -> (b -> d) -> F a b -> F c d

mapF f g (Leaf a) = Leaf (f a)

mapF f g (Fork b1 b2) = Fork (g b1) (g b2)

cplistF :: F [a] [b] -> [F a b]

cplistF (Leaf as) = [Leaf a | a <- as]

cplistF (Fork bs1 bs2) = [Fork b1 b2 | b1 <- bs1, b2 <- bs2]

plusF :: F Int Int -> Int

plusF (Leaf a) = a

plusF (Fork b c) = b+c

plistF :: F Mark Test -> [Test]

plistF (Leaf (a,b)) = if b then [A] else [C]

plistF (Fork A A) = [A]

plistF (Fork C A) = [A]

plistF (Fork A C) = [B]

plistF (Fork B C) = [B]

plistF (Fork C B) = [B]

plistF (Fork C C) = [C]

plistF (Fork x y) = []

Fig. 8. The contiguous problem.

a multifunction. The only fly in the ointment is that, for efficiency, any problem

involving a datatype that is not based on a polynomial functor has to be re-expressed

in terms of a datatype that is. What is more, we have shown how thinning algorithms

can solve a whole range of optimisation problems. (Oh, yes, the two puzzles yield

maximum values 28 and 18, respectively.)

References

Bird, R. (1998) Introduction to Functional Programming using Haskell. Prentice Hall.

Bird, R. and de Moor, O. (1998) The Algebra of Programming. Prentice Hall.

Sasano, I., Hu, Z., Takeichi, M. and Ogawa, M. (2000) Calculating linear-time algorithms

for solving maximum weightsum problems. Proc. International Conference on Functional

Programming, Montreal, Canada.

https://doi.org/10.1017/S0956796801004038 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004038

