Canad. Math. Bull. Vol. 16 (1), 1973

SMOOTHING ONE-DIMENSIONAL FOLIATIONS ON $S^1 \times S^1$

BY MAURICE COHEN

Let $f: S^1 \to S^1$ be an orientation preserving C^1 -diffeomorphism. Denote by $\sum (f)$ the flow on $S^1 \times S^1$ which is the suspension of f (see Smale [5]).

We consider the problem of approximating $\sum (f)$ by a smoother foliation.

THEOREM. (a) If f is C^1 and structurally stable, or

(b) If f is C^1 , has a finite (>0) number of periodic points of period p, and f^p has derivative $\neq 1$ at the periodic points of f, or

(c) If f is C^2 ,

then $\sum (f)$ can be C⁰-approximated (i.e. pointwise) by a C^{∞} foliation C⁰-conjugate to it.

(d) There exist examples of C^1 maps f such that no foliation on $S^1 \times S^1$ of class C^2 is C^0 -conjugate to $\sum (f)$.

For the definition of approximation of foliations see Cohen [1].

Proof. Since the C⁰-conjugacy class of $\sum (f)$ is determined by the C⁰-conjugacy class of f, and since if f and f' are close then $\sum (f)$ and $\sum (f')$ are close (see Smale [5] and Denjoy [2]), (a) and (b) are immediate.

In [2] Denjoy constructs a C^1 , orientation preserving diffeomorphism $f: S^1 \rightarrow S^1$ which has a minimal invariant closed set which is a Cantor set. The suspension $\sum (f)$ then has an exceptional leaf. On the other hand, Schwartz shows in [4] that C^2 foliations of codimension one on compact two-dimensional manifolds which come from vector fields (as $\sum (f)$ does) have no exceptional leaves. Hence $\sum (f)$ cannot be C^0 -conjugate to a foliation of class C^2 , which shows (d).

The proof of (c) is immediate using the following:

PROPOSITION. Let $f: S^1 \rightarrow S^1$ be an orientation preserving C^2 diffeomorphism. Then f is C^0 -conjugate to a C^{∞} diffeomorphism $f': S^1 \rightarrow S^1$, which is C^0 -close (i.e. pointwise) to f.

Proof. By [2], a minimal closed invariant set for f is either S^1 or a finite set of points. Hence either very orbit is dense or f has periodic points with common period p. In the first case f is conjugate to a rotation by an irrational angle

Received by the editors March 24, 1971 and, in revised form, July 26, 1971.

MAURICE COHEN

 $R: S^1 \to S^1$ by a homeomorphism $h_0: S^1 \to S^1$ (see Van Kampen [6]). Approximate h_0 by a C⁰-close C^{∞} diffeomorphism $g: S^1 \to S^1$. We have

$$h_0 f h_0^{-1} = R$$
, $g^{-1} h_0 f h_0^{-1} g = g^{-1} R g$.

Put $f'=g^{-1}Rg$ and $h=g^{-1}h_0$. Then f' is a C^{∞} diffeomorphism and h is a homeomorphism C^0 -close to the identity with $hfh^{-1}=f'$. In the second case, we may assume that the periodic points are fixed points. The only minimal invariant closed sets of f are the fixed points. It will suffice to show that $f \mid [x_0, x_1]$ is conjugate to a C^0 -close C^{∞} diffeomorphism $f_{[x_0, x_1]}$ of $[x_0, x_1]$ with $Df_{[x_0, x_1]} = Df$ at x_0 and x_1 and prescribed values for the higher derivatives of $f_{[x_0, x_1]}$ at x_0 and x_1 , where $[x_0, x_1] \subset S^1$, x_0 and x_1 fixed points of f, has one of the following properties:

(a) x_0 and x_1 are the only fixed points of f in $[x_0, x_1]$,

(b) there is a sequence $\{y_n\}$ of fixed points of f, $y_0 = x_0$, $y_i < y_{i+1}$, $\lim_{n \to \infty} y_n = x_1$ (or $y_i > y_{i+1}$, $\lim_{n \to \infty} y_n = x_0$),

(c) there is a Cantor set of fixed points of f in $[x_0, x_1]$.

Case (a) is considered in the lemma below. Case (b) follows by applying (a) successively to intervals $[y_i, y_{i+1}]$ and case (c) follows by applying (a) simultaneously to closures of intervals of length greater than or equal to $\frac{1}{2k}$ in $[x_0, x_1] - C$, where C is the Cantor set in question, for each $k=1, 2, \ldots$.

LEMMA. Let $f:[0, 1] \rightarrow [0, 1]$ be a C^1 diffeomorphism, f(0)=0, f(1)=1 and such that f has no fixed points in (0, 1). Then f is C^0 -conjugate to a C^∞ diffeomorphism f' by a homeomorphism which is C^0 -close to the identity, with

$$Df'|_0 = Df|_0, \quad Df'|_1 = Df|_1$$

and with prescribed higher derivatives at 0 and 1.

Proof. If $Df|_0 \neq 1$, $Df|_1 \neq 1$, any $f' C^1$ -close to f with $Df'|_0 = Df|_0$, $Df'|_1 = Df|_1$ and with higher derivatives equal to the prescribed values will do. If $Df|_0 = 1$ or $Df|_1 = 1$, we have in addition to choose f' such that the character of the point where the derivative equals one is preserved, i.e. remains an attractor or repeller.

REFERENCES

1. M. Cohen, Approximations of foliations, Canad. Math. Bull. (3) 14 (1971), 311-314.

2. A. Denjoy, Sur les courbes définies par les equations différentielles à la surface du tore, J. Math. Pures Appl. (9) 11 (1932), 333-375.

3. G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Act. Sci. et Ind., 1183, Hermann, Paris, 1952.

4. A. J. Schwartz, A generalization of a Poincaré-Bendixon theorem to closed two-dimensional manifolds, Amer. J. Math. 85 (1963), 453–458.

5. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817.

6. E. R. Van Kampen, *The topological transformations of a simple closed curve into itself*, Amer. J. Math. 57 (1936), 142–152.

SIR GEORGE WILLIAMS UNIVERSITY, MONTREAL, QUEBEC