Nanostructured layered vanadium oxide as cathode for high-performance sodium-ion batteries: a perspective

Wen Luo, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; Laboratoire de Chimie et Physique: Approche Multi-échelles des Milieux Complexes, Institut Jean Barriol, Université de Lorraine, Metz 57070, France
Liqiang Mai, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; Department of Chemistry, University of California, Berkeley, California 94720, USA

Address all correspondence to Jean-Jacques Gaumet at jean-jacques.gaumet@univ-lorraine.fr and Liqiang Mai at mlq518@whut.edu.cn

(Received 22 January 2017; accepted 7 April 2017)

Abstract
Sodium-ion batteries (SIBs) have received intensive attentions owing to the abundant and inexpensive sodium (Na) resource. Layered vanadium oxides are featured with various valence states and corresponding compounds, and through multi-electron reaction they are capable to deliver high Na storage capacity. The rational construction of unique structures is verified to improve their Na storage properties. This perspective provides an overview of recent advances in layered vanadium oxide for SIBs, with a particular focus on construction of novel nanostructures, and mechanism studies via in situ characterization. Finally, we predict possible breakthroughs and future trends that lie ahead for high-performance layered vanadium oxides SIBs cathode.

Introduction
Recently, there are increasing concerns of sustainable energy and environment due to the growing consumption of non-renewable fossil fuels. The urgent requirement for clean and renewable energy sources has stimulated the rapid development of efficient, stable and reliable electricity supply systems. Lithium-ion batteries (LIBs) have been widely utilized in modern society such as in portable electronic device, electrical vehicles (EVs), and large-scale grid.[1–3] Recently, with the great concerns about the limited lithium (Li) resource, sodium-ion batteries (SIBs) have emerged as one of promising alternatives to LIBs due to its abundant and inexpensive sodium (Na) resource.[4,5] Meanwhile, Na has been studied to exhibit suitable redox potential and similar intercalation chemistry to Li; thus, SIBs hold promise to be viable complement or replacement to LIBs as the next-generation energy storage device.[6,7]

However, the larger radius of Na+ ions requires an expanding host space when a typical sodiation/desodiation process occurs. Consequently the size effect of Na+ ions would result in severe damage on the lattice structure of the host. Besides, Na+ ions are demonstrated to exhibit lower diffusion rate compared with Li+ ions. Therefore, the understanding and development of reliable cathode with suitable lattice space to host Na+ ions are the key issues to be addressed.

Vanadium oxides feature unique open-layered structures, which allow a diversity of other cations or molecules to insert into the layers.[8,9] In LIBs, these open-layered structures are capable to accommodate more Li+ ions, thus give rise to higher specific capacity than those of the commercial cathodes.[10] Moreover, vanadium oxides display rich redox chemistry due to different oxidation states and coordination geometries, therefore resulting in their different valence states and phase structures. With concerns to their layered structures, vanadium oxides generally contain [VO4] tetrahedral geometry with less [VO2] octahedral. Basically, these octahedral can form two-dimensional (2D) sheet structures by sharing edges and/or corners (sometimes faces).[11] These octahedral or tetrahedron possessed with a long V–O bond (2.1–2.6 Å, and 2.79 Å in V2O5 itself) and a short vanadyl bond, –V=O (1.55–1.75 Å) are capable to form various layered structures (Fig. 1). As depicted in literature, a double chain of edge-sharing [VO6] octahedral is the basic assembly unit. When the double chains are congregated by sharing the side corners, and a single layer can occur in most vanadium oxides [Fig. 1(a)]. In orthorhombic α-V2O5 [Fig. 1(b)], a short vanadyl bond and the other longer V–O bonds coexist. Consequently, the vanadium coordination polyhedron changes into a square pyramid due to the longer weak bond [weak V–O bond illustrated in Fig. 1(c)].[11] As suggested by Sohn et al., when these (V2O4)n chains closely aligned by sharing edges, no-vacancy square-pyramidal layered VO2 is formed [Fig. 1(f)].[12] V6O13 structure is formed by single and double layers sharing corners alternatively [Fig. 1(e)].[13] When all the apices (vanadyl bonds) emerge up in one layer and also down in the other layers, a typical double
layer of δ-type vanadium oxides can be created from single sheets [Fig. 1(g)]. To avoid confusion with double-sheet V_2O_5, this unique double layer of vanadium oxide is designated as $\delta-MxV_4O_{10}$, which predominately exists in most of vanadium oxides gels.\cite{14} When double layers of the $\delta-MxV_4O_{10}$ structure collapse through the elimination of the interlayer species such as water molecule or metal ions, a metastable form of vanadium dioxide $VO_2(B)$ is constructed [Fig. 1(h)].\cite{15}

The sodiation/desodiation in vanadium oxide cathode are complex multi-electronic reaction processes. The applications of vanadium oxides in SIBs are restricted by rapid capacity fading caused by a decrease of the Na diffusion coefficient and severe structure deterioration. The concept of enhancing Na storage performance via nanostructuring has been recognized in numerous research works.\cite{16-20} These novel nanostructures are proved to possess robust structural integrity and stability, faster electrochemical reaction rate, and enhanced reaction reversibility. In this perspective, we provide a brief review of recent advances of the layered binary vanadium oxides cathode systems, together with their electrochemical cycling data for SIBs, as summarized in Table. 1.

Electrochemical performance of layered vanadium oxide cathode for SIBs

Binary vanadium oxide

In general, large families of vanadium oxides include binary vanadium oxides (containing V and O elements exclusively) and multicomponent vanadium oxides. Firstly, we briefly provided representative recent advances of the layered binary vanadium oxides cathode systems, together with their electrochemical cycling data for SIBs, as summarized in Table. 1.

VO_2

VO_2 have been reported to exist in dozens of different phases species with their particular structural characteristics.\cite{21,22} Among these known phases, metastable $VO_2(B)$ exhibits layered structure to allow the intercalation of guest ions for high-performance SIBs. Various novel $VO_2(B)$ nanostructures have been reported, such as $VO_2(B)$ nanospheres,\cite{23} nanowires,\cite{24} nanosheets,\cite{25} nanowires assembled hollow spheres,\cite{26} and micro/nano-structured nanoparticles.\cite{27} It should be noted that, in a typical heat treatment or solution reaction process, $VO_2(B)$ tends to transform into monoclinic phase $VO_2(M)$.
Table 1. Summary of representative recent advances of the binary layered vanadium oxides (containing V and O elements exclusively) cathode systems, together with their electrochemical cycling data for SIBs.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Reversible capacity</th>
<th>Cycling performance</th>
<th>Main advances</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-crystalline VO$_2$ nanosheets</td>
<td>179 mA h/g at 20 mA/g</td>
<td>Capacity remains at 108 mA h/g over 50 cycles at the current density of 500 mA/g</td>
<td>The reaction during charge/discharge can happen between Na$_0.3$VO$_2$ and NaVO$_2$</td>
<td>[28]</td>
</tr>
<tr>
<td>Graphene quantum dots coated VO$_2$ arrays</td>
<td>306 mA h/g at 100 mA/g</td>
<td>A capacity of more than 110 mA h/g after 1500 cycles at 18 A/g</td>
<td>A binder-free cathode by bottom-up growth of biface VO$_2$ arrays directly on a graphene network was achieved</td>
<td>[29]</td>
</tr>
<tr>
<td>Carbon quantum dots coated VO$_2$ nanowires</td>
<td>328 mA h/g at 0.3 C</td>
<td>A capacity of 133 mA h/g even at the rate of 60 C</td>
<td>The energy and power densities of as-fabricated cathode for Na storage reach 264 Wh/kg and 41333 W/kg</td>
<td>[30]</td>
</tr>
<tr>
<td>VO$_2$/rGO nanorods</td>
<td>160 mA h/g at 60 mA/g</td>
<td>The capacity retention is 90% after 400 cycles (against 2th) at 1 C</td>
<td>Phase amorphization of VO$_2$ (B) occurs when potential below 0.5 V</td>
<td>[31]</td>
</tr>
<tr>
<td>α-V$_2$O$_5$/C composite</td>
<td>183 mA h/g at 40 mA/g</td>
<td>A capacity over 90 mA h/g at a high current density of 640 mA/g</td>
<td>A large portion of Na-ion storage at high rates is due to V$_2$O$_5$ pseudocapacitance</td>
<td>[20]</td>
</tr>
<tr>
<td>α-V$_2$O$_5$ hollow nanospheres</td>
<td>159 mA h/g at 20 mA/g</td>
<td>A capacity of 109.5 mA h/g after 100 cycles at 160 mA/g</td>
<td>The exposed (110) crystal planes of V$_2$O$_5$ with 2D diffusion path Na$^+$ contribute to excellent performance</td>
<td>[33]</td>
</tr>
<tr>
<td>α-V$_2$O$_5$/C composite</td>
<td>192 mA h/g at a current density of 0.05 C</td>
<td>A capacity of 160 mA h/g at 1 C</td>
<td>The reversible change of oxidation state of vanadium was verified as V$^{4+}$↔V$^{5+}$ (de/sodiation)</td>
<td>[32]</td>
</tr>
<tr>
<td>Bilayered porous V$_2$O$_5$ nanoribbons</td>
<td>250 mA h/g at 20 mA/g</td>
<td>85% of its initial value up to 350 cycles under various current rates</td>
<td>An electrochemically responsive bilayered structure with adjustable interlayer spacing was evidenced to accommodate Na$^+$ intercalation</td>
<td>[34]</td>
</tr>
<tr>
<td>Bilayered sponge-like V$_2$O$_5$ nanosheets</td>
<td>216 mA h/g at 20 mA/g</td>
<td>Capacity retention of 73% for 100 cycles at a current density of 100 mA/g</td>
<td>The thin nanosheets along [001]-axis provide short diffusion pathways for Na ions</td>
<td>[36]</td>
</tr>
<tr>
<td>Bilayered V$_2$O$_5$ nanobelts</td>
<td>231.4 mA h/g at 90 mA/g</td>
<td>170 mA h/g after 100 cycles at current density of 80 mA/g</td>
<td>Exposed (100) crystal planes provide large interlayer spacing (~11.53 Å) for Na$^+$ intercalation</td>
<td>[35]</td>
</tr>
<tr>
<td>V$_2$O$_5$·2.1H$_2$O</td>
<td>130 mA h/g at 560 mA/g</td>
<td>325, 250, and 150 mA h/g at C/10, 1 C, and 7 C, respectively</td>
<td>Green binder system was used to optimize Na$^+$ intercalation</td>
<td>[41]</td>
</tr>
<tr>
<td>V$_2$O$_5$·0.55H$_2$O</td>
<td>A high initial capacity of 338 mA h/g at 0.05 A/g</td>
<td>High-rate capacity of 96 mA h/g at 1 A/g</td>
<td>Pseudocapacitive behavior makes a great contribution to the high capacities</td>
<td>[42]</td>
</tr>
<tr>
<td>Fe-VO$_x$ nanobelts</td>
<td>An initial capacity of 184 mA h/g at 0.1 A/g</td>
<td>High-rate capacities of 118 and 92 mA h/g obtained at 1.0 and 2.0 A/g</td>
<td>Iron pre-intercalation to reduce the lattice expansion/contraction upon cycling</td>
<td>[43]</td>
</tr>
<tr>
<td>Amorphous V$_2$O$_5$</td>
<td>175 mA h/g at a current density of 23.6 mA/g</td>
<td>Overall charging–discharging rates are much faster, a capacity of 78 mA h/g at a current density of 1180 mA/g</td>
<td>The fast Faradaic reactions occur in amorphous V$_2$O$_5$</td>
<td>[50]</td>
</tr>
<tr>
<td>Amorphous V$_2$O$_5$ particles</td>
<td>265 mA h/g at a current density of 80 mA/g</td>
<td>Both amorphous and crystalline V$_2$O$_5$ cathodes can be reversibly worked for 10,000 cycles at 2560 mA/g</td>
<td>Amorphous V$_2$O$_5$ cathode possesses higher reversible capacities than the crystalline V$_2$O$_5$ at low current densities, whereas it is reversed at high current densities</td>
<td>[53]</td>
</tr>
</tbody>
</table>
and tetragonal phase VO$_2$(R), which barely exhibit electrochemical activity. Therefore, the controllable synthesis of pure phase VO$_2$(B) is critical for its good electrochemical performance. Jiao and co-workers for the first time synthesized single-crystalline VO$_2$(B) parallel ultrathin nanosheets for the cathode material in SIBs via a simple hydrothermal method.(28) As the number of the inserted Na$^+$ ions increases from 0 to 1.0, the formation energy gets lower, implying the formation of the more stable phase. As the number of inserted Na$^+$ ions exceed 1.0, the Na$_x$VO$_2$ becomes more positive compared with NaVO$_2$, and on this occasion, the discharge process cannot take place spontaneously [Fig. 2(a)]. As they indicated that when the number of inserted Na$^+$ ions per formula increases from 0.25 to 1, the interlayer distance changes a little. For more Na ions inserted into the tunnels ($x > 1$), the cell volume begins to expand consecutively. The backbone of the V–O tunnels is completely broken down and the stability and reversibility of the VO$_2$-like structure are destroyed [Fig. 2(b)]. The proposed reaction mechanism can be illustrated as VO$_2$ + xNa$^+$ + xe$^-$ \rightarrow Na$_x$VO$_2$ [Fig. 2(c)] based on their findings.

The weak Na$^+$ ions transport kinetics has been considered as the major drawback of cathode electrode for SIBs. Nanoscale surface engineering has significant effects on promoting the reaction kinetics of battery electrode. Chao et al. reported a binder-free cathode composed of VO$_2$ arrays directly growing on graphene networks for SIBs cathode [Figs. 3(a)–3(f)].(29) The integrated electrode delivers a capacity of 306 mA h/g at 100 mA A/g, and a capacity of more than 110 mA h/g after 1500 cycles at 18 A/g [Fig. 3(g)]. Furthermore, at the ultrahigh rate of 120 C, the power density based on mass of the whole electrode is as high as 42 kW/kg with an energy density of more than 100 W h/kg [Fig. 3(h)]. Tong and co-workers also reported an unique free-standing cathode consisted of carbon quantum dots coated VO$_2$ nanowires.(30) The carbon quantum dots, which are flexible for surface engineering can efficiently ensure the integrity of nanowire. Another interesting work demonstrates the facile microwave-assisted solvothermal method to fabricate VO$_2$(B)/ reduced graphene oxide (rGO) with good Na storage performance.(31) The phase amorphization of VO$_2$ when potential bellows 0.5 V confirmed some stable metal oxides might display better behavior in SIBs than expected.

Orthorhombic V_2O_5

With respect to orthorhombic V_2O_5, a storage mechanism was proposed by Chung and co-workers that the appearance of NaV$_2$O$_5$ was a major phase with minor Na$_2$V$_2$O$_5$ when fully discharged.(32) Their synchrotron based near edge X-ray adsorption fine structure (NEXAFS) spectroscopy results also suggested the charge compensation during desodiation/sodiation process accomplished by the reversible changes between V$^{4+} \rightarrow$ V$^{5+}$. As for the Na storage performance of α-V$_2$O$_5$ cathode, the major issue hinders the performance caused by the slow Na ion diffusion. Therefore, the controllable synthesis of α-V$_2$O$_5$ electrode materials with versatile nanostructures plays an important role for achieving good electrochemical performance. Ji and co-workers reported an orthorhombic V$_2$O$_5$ coated inside nanoporous carbon composite for SIBs cathode. For the first time they demonstrated that this composite displays superior Na storage performance [Figs. 4(a) and 4(b)].(20) and a capacity of over 90 mA h/g at a current rate of 640 mA/g [Fig. 4(c)]. They also demonstrated V$_2$O$_5$ pseudocapacitance contributes to a large portion of the Na storage especially under high current rates operating condition [Figs. 4(d) and 4(e)].

Bilayered V_2O_5

Bilayered V$_2$O$_5$ has attracted much interest due to its larger interlayer distance compared to that of aforementioned α-V$_2$O$_5$. Rajh and co-workers found that bilayered V$_2$O$_5$ stacks are split up by large interlayer spacing, which is evidenced by a broad strong peak at high d spacing (\approx13.5 Å), confirmed by X-ray scattering [Figs. 5(a) and 5(b)] and TEM results [Figs. 5(c)–(e)].(34) Notably, bilayered V$_2$O$_5$ undergoes an entirely different intercalation mechanism compared to orthorhombic V$_2$O$_5$. Two phase transitions have been discovered when Na$^+$ ions incorporate into the orthorhombic electrode, implying that the orthorhombic crystalline structure changes two times to accommodate increased concentration Na$^+$ ions. In contrast, no phase transitions occur when Na$^+$ ions intercalate into bilayered V$_2$O$_5$, revealed by the representative smooth, solid state solution intercalation profiles [Fig. 5(f)]. Notably, the crystallinity of the materials does not degenerate during cycling and the sample maintains stable crystalline structure after 80 cycles [Fig. 5(g), red curve]. In a word, the intercalation of Na$^+$ ions causes arrangement of structure to possess both long- and short-range order; whereas the deintercalation process results in the loss of long-range order and the retention of short-range order [Fig. 5(h)].

Besides, more articles also reported high-performance bilayered V$_2$O$_5$ cathode for SIBs with controllable nanostructures, such as single-crystalline bilayered V$_2$O$_5$ nanobelts(35) sponge-like layered V$_2$O$_5$ nanosheets.(36) A large (001) interlayer spacing (\approx11.53 Å) of V$_2$O$_5$ nanobelts can accommodate Na-ion intercalation and deintercalation. Interestingly, the unique bilayered vanadium oxide nanobelts were revealed to possess...
predominantly exposed {100} crystal planes, which offer large interlayer spacing for facile Na extraction/insertion.[35]

\[V_2O_5 \cdot nH_2O \]

The reduced structural order, the large interlayer space and the short diffusion length are the key factors that allow \(V_2O_5 \cdot nH_2O \) to reversibly host cations.[37,38] Recently, Moretti and Passerini provided a comprehensive review on bilayered nanostructured \(V_2O_5 \cdot nH_2O \) for metal batteries, which confirms the renewed interests on \(V_2O_5 \cdot nH_2O \) for energy storage.[39] Briefly, \(V_2O_5 \cdot nH_2O \) can be obtained in xerogel or aerogel depending on different drying methods. This unique \(V_2O_5 \cdot nH_2O \) is a representative class of \(\delta-M_xV_4O_{10} \) [Fig. 1(g)] where water molecules intercalate and regular the layer spacing.[40]

A variety of methods to prepare \(V_2O_5 \cdot nH_2O \) as thin film or bulk powder have been developed. Among them, vapor deposition (physical or chemical) and solution methods draw great interests due to their facility and versatility. For example, Passerini and co-workers employed supercritical fluid (CO\(_2\)) extraction to eliminate the water in \(V_2O_5 \) and fabricate a porous aerogel \(V_2O_5 \cdot nH_2O \) (\(n = 2.1 \)) [Fig. 6(a)].[41] When applied as a SIBs cathode, high specific capacities were achieved due to its open framework with expanded interlayer spacing and decreased diffusion path [Fig. 6(b)]. Mai and co-workers developed a facile freeze-drying process to synthesize a \(V_2O_5 \cdot nH_2O \) aerogel composed of thin interconnected nanowire networks [Fig. 6(c)].[42] Ex situ XRD indicated the layer of \(V_2O_5 \cdot nH_2O \) is shrinking/expanding accompanied by the Na\(^+\) ion insertion/extraction, which is different from the irreversible phase transition of \(\alpha-V_2O_5 \) [Figs. 6(d) and 6(e)]. Ex situ Fourier transform infrared spectroscopy (FTIR) results demonstrated that the crystal water is not completely replaced during Na\(^+\) ion insertion [Fig. 6(f)]. To improve its stability, iron preintercalated vanadium oxide ultrathin nanobelts (Fe-VO\(_x\)) with constricted interlayer spacing were fabricated.[43] The electrochemical performances of \(V_2O_5 \cdot nH_2O \) have been enhanced via electrolyte optimization[44] or cut-off voltage,[45] even though long-term cycling stability still need to be addressed.

Amorphous \(V_2O_5 \)

Amorphous electrode materials have received considerable interests as they can reduce the stress and might provide isotropic transport path for ions compared with crystalline materials.[9,46]
As exemplified in some reports, some amorphous aerogels or xerogel prepared are featured with low density, highly porous and high surface area and are being explored as new promising materials in electrochemistry.[47–51] Gao et al. demonstrated amorphous V$_2$O$_5$ exhibited superior Na storage performance compared with its crystalline counterpart.[52] No distinctive peak can be observed when the cyclic voltammetry (CV) scan was conducted on this amorphous V$_2$O$_5$, however the current response was scaled with the potential and was even greater than that of the crystalline counterpart. The less ordered and abundant open channels decrease the diffusion barrier for Na$^+$ ions to transport, which contribute to high-rate capability and high-energy density. The amorphous matrix makes it easier for Na$^+$ ions to intercalate into the crystal and diffuse deeper into the host material. Due to the isotropic penetration pathway of ions rather than some certain preferential directions, the overall charging–discharging rates are much faster, as evidenced by a capacity of 78 mA h/g at a current density of 1180 mA/g. Recently, Li and co-workers demonstrated that amorphous V$_2$O$_5$ cathode possesses higher reversible capacities than the crystalline V$_2$O$_5$ at low-current densities, whereas it is inverses at high current densities.[53] Therefore, the rational selection of amorphous or crystalline V$_2$O$_5$ cathode for SIBs need to be further investigated with respects to various operation requirements.

Layered-structured vanadate compounds
Layered-structured vanadates are studied as typical layered vanadium oxides incorporating second metals such as Li, Na, or transition metals such as cobalt, silver, and iron. In this short perspective article, we will focus on the classic intensively studied Na$_3$V$_2$(PO$_4$)$_3$ (NVP) composites and emerged promising K$_3$V$_2$(PO$_4$)$_3$ composites in this group and get inspiration upon the investigation of other vanadate compounds.

Figure 3. (a–c) Fabrication process of GF supported GQDs-coated VO$_2$ nanobelts array, (d–f) the corresponding SEM images in each process, respectively. (g) Cycling performance of the three electrodes at 60 C for 1500 cycles (1/3 C at the first five cycles for activation); (h) Ragone plot based on the total mass of the whole electrode, the sloping lines indicate the relative time to get the charge in or out of the electrodes. (Adapted/Reproduced with permission from Ref. 29, American Chemical Society, 2015.)
Na$_3$V$_2$(PO$_4$)$_3$

Among the big family of vanadium compounds, NVP have been intensively studied as SIBs cathodes because of its high theoretical capacity and stable Na super ion conductor (NASICON) structure. Especially, NVP displays two potential plateaus located at 3.4 and 1.6 V versus Na/Na$^+$, related to the V$^{3+}$/V$^{4+}$ and V$^{2+}$/V$^{3+}$ redox couples, respectively. These two reactions can provide a specific capacity of approximately 117 and 50 mA h/g at the high- and low-voltage zones, respectively. Since the first report on superior electrochemical performance and storage mechanism of NVP cathode for room-temperature SIBs, numerous literatures demonstrated the great advances in performance enhancement and mechanism investigation, which cannot be totally included in this perspective. Herein some great advances are exemplified subsequently. Carbon or graphene modification has been proven as an efficient strategy to improve conductivity and rate capability. A hierarchical carbon framework wrapped NVP composite is fabricated via chemical vapor deposition on NVP particles. Especially, NVP displays two potential plateaus located at 3.4 and 1.6 V versus Na/Na$^+$, related to the V$^{3+}$/V$^{4+}$ and V$^{2+}$/V$^{3+}$ redox couples, respectively. These two reactions can provide a specific capacity of approximately 117 and 50 mA h/g at the high- and low-voltage zones, respectively. Since the first report on superior electrochemical performance and storage mechanism of NVP cathode for room-temperature SIBs, numerous literatures demonstrated the great advances in performance enhancement and mechanism investigation, which cannot be totally included in this perspective. Herein some great advances are exemplified subsequently. Carbon or graphene modification has been proven as an efficient strategy to improve conductivity and rate capability. A hierarchical carbon framework wrapped NVP composite is fabricated via chemical vapor deposition on NVP particles.

K$_3$V$_2$(PO$_4$)$_3$

Apart from intensively researched Na vanadates, a new type of potassium phosphate material K$_3$V$_2$(PO$_4$)$_3$, was designed for the first time and explored for Na storage by Mai et al. K$_3$V$_2$(PO$_4$)$_3$/C bundled nanowires were fabricated through a simple organic acid-assisted approach [Figs. 7(c) and 7(d)]. Beneficial from a stable framework, nanoporous structure, and conductive carbon coating, the K$_3$V$_2$(PO$_4$)$_3$/C bundled nanowires cathode displays good electrochemical performances in SIBs. A capacity of 119 mA h/g can be achieved at a current density of 100 mA/g and K$_3$V$_2$(PO$_4$)$_3$/C bundled
nanowires exhibit enhanced electrochemical performance compared to bulk KVP at various current densities [Fig. 7(e)].

In situ characterization of layered vanadium oxide cathode

In situ characterization has been recognized as a powerful tool to provide deeper and more direct insights into the materials degradation and phase transformation mechanisms under real-time working condition.\(^{64-66}\) The comprehensive understanding of morphological and microstructural changes of layered vanadium oxide cathode during charge and discharge processes are essential for the improving of the electrochemical performance.\(^{67,68}\) Some advances on in situ XRD characterization of vanadium oxide cathode will be discussed to emphasize its importance and arouse broad research interests. For more knowledge on in situ characterization on energy storage materials, readers can be referred to some specific reviews.\(^{64}\)

Delmas and co-workers firstly present the detailed phase diagram and in situ XRD experiments of the layered P2-Na\(_x\)VO\(_2\) system for electrochemical Na insertion/extraction in SIBs.\(^ {69}\) Notably, four predominate single phase can be detected within the 0.5 \(\leq x \leq 0.9\) range [Figs. 8(a) and 8(b)]. During the Na insertion/extraction, they exhibit different Na/vacancy ordering between the VO\(_2\) layers, which results in comparable or unmatched superstructures. Na\(^+\) ions are found to perfectly order to minimize Na\(^+\)/Na\(^+\) electrostatic repulsions [Fig. 8(c)]. Within the VO\(_2\) layers, the vanadium ions tend to form pseudo-trimers possessing extremely short V–V distances.
More importantly, this phase exhibits a first-order structural transition beyond room temperature along with noticeable electronic and magnetic transitions. This work for the first time gets a precise study of phase diagram of this system in SIBs at room temperature, associated with in situ XRD experiments, and highlights the importance and powerfulness of in situ characterization combined with suitable simulation techniques.

(two at 2.581 Å and one at 2.687 Å [Figs. 8(d) and 8(e)]. More importantly, this phase exhibits a first-order structural transition beyond room temperature along with noticeable electronic and magnetic transitions. This work for the first time gets a precise study of phase diagram of this system in SIBs at room temperature, associated with in situ XRD experiments, and highlights the importance and powerfulness of in situ characterization combined with suitable simulation techniques.

Figure 6. (a) SEM image of dried V₂O₅ powder; (b) Cycling behavior of V₂O₅ electrodes at high current densities. (Adapted/reproduced with permission from Ref. 41, Wiley, 2015.) (c) SEM image of V₂O₅·nH₂O xerogel. (d) Ex situ XRD patterns (e) related d₀₀₁ value changes. (f) FTIR spectra of the V₂O₅·nH₂O xerogel cathodes in the SIB. (Adapted/Reproduced with permission from Ref. 42, Journal of Materials Chemistry A, Royal Society of Chemistry, 2015.)

Figure 7. (a) TEM image of Na₃V₂(PO₄)₃@rGO; (b) ultraong cycling stability of the Na₃V₂(PO₄)₃@rGO for 15,000 cycles at a high rate of 50 C. (Adapted/reproduced with permission from Ref. 61, Wiley, 2016.) (c, d) HRTEM images of the K₃V₂(PO₄)₉/C bundled nanowires; (e) rate performance of the K₃V₂(PO₄)₉/C bundled nanowires and blocks. (Adapted/reproduced with permission from Ref. 63, Wiley, 2015.)
In situ XRD characterization can also provide detailed structure information for new-type vanadium oxide cathode candidates for SIBs. Mai et al. employed a new-type K$_3$V$_2$(PO$_4$)$_3$/C as cathode materials for SIBs [63]. Through in situ XRD investigation, the intensity and position of peak shifted during the charge and discharge reversibly, corresponding to the (de)insertion of K$^+$/Na$^+$ and the expansion/extraction of the lattice distance [Figs. 9(a) and 9(b)]. The vanadium phosphate showed excellent stability, which allows the deinsertion of K$^+$ ion and insertion of Na$^+$ ion without collapse of crystal structure.

Beside, in situ XRD characterizations are capable to offer direct observation on crystal structure evolution of cathode material during Na$^+$ ions insertion/deinsertion process. The prepared NVP nanofiber in situ cell was charged to 3.9 V and then discharged to 2.3 V. All the Na$_{3-x}$V$_2$(PO$_4$)$_3$ peaks disappear on charge and are restored on discharge; Conversely, Na$_x$V$_2$(PO$_4$)$_3$ peaks start to form and grow on charge and disappear on discharge [Figs. 9(d) and 9(e)]. [62] It is clear that the (211) and (300) peaks shift to higher angles during charge process, indicating that the d-spacings decrease during the Na$^+$ ions de-insertion. After recharging to 3.9 V, the peaks return to the original positions, indicating the good reversibility.

Summary and outlook

As discussed above, notable progress has been made on the synthesis of vanadium oxide for high-performance SIBs along with some in situ XRD characterizations to disclose its intrinsic Na storage mechanism. However, there are still big challenges to be faced. Some perspectives are carefully addressed here, and the future studies on vanadium oxide as SIBs cathode are suggested to be deliberately initiated in the following aspects:

1. Developing facile, efficient, sustainable, and controllable synthesis of novel nanostructures. In terms of the controllable synthesis of vanadium oxide cathode for SIBs, nanoscience engineering makes it possible to control the morphology and composition of cathode to effectively enhance the electrochemical performance. Recently, numerous reported method can be applied to obtain diverse nanostructures (i.e., hollow structure, [33] hierarchical heterostructures, [18,19,60] complex 3D architectures, [62] etc.) with peculiar electrochemical properties, interlayer spaces and morphologies. However, some synthetic methods are generally time-consuming and danger-risking in which various sophisticated steps and/or toxic, expensive chemicals involve. At this stage, developing facile, efficient and controllable synthesis of novel vanadium nanostructures is still urgently demanded. Therefore, more efforts shall be addressed on the knowledge and capability to construct the desired nanostructure architectures based on a comprehensive understanding.

Figure 8. (a) Evolution of cell voltage as a function of Na content in Na$_x$VO$_2$ over the $0.5 \leq x \leq 0.92$ range; (b) In situ XRD data recorded during the galvanostatic intermittent titration technique experiments. (c) Synchrotron diffraction pattern of P2-Na$_{1/2}$VO$_2$ and Rietveld refinement of its structure. (d–f) Projection of the structure of P2-Na$_{1/2}$VO$_2$ along the c-axis. (Adapted/reproduced with permission from Ref. 69, Nature Publishing Group, 2012.)
(2) Precisely designing and regulating layered structure with direct evidences. Normally, vanadium oxides feature rich redox chemistry due to different oxidation states and coordination geometries. The open framework facilitates ion movement, while the nanostructuring strategy can decrease the solid-state diffusion limitations and thus enhance the intercalation kinetics. To name a few, preferentially exposed facets, metal ions, or water molecule preintercalation and the regulation of short-range order in layered structure show great interests upon high-performance vanadium layered oxides. Whereas how to accurately tune the lattice space and stabilize its layered structure for long-term cycle needs to be addressed. Moreover, intercalation chemistry opens up a possibility to explore potential new-type vanadium oxide host materials for SIBs, and challenges and breakthroughs might lie ahead bearing the deeper understanding of solid state physics.

(3) Gaining insights into mechanism via various modern techniques. With regards to in situ characterization of cathode for SIBs, the working mechanisms of novel vanadium oxide cathode and their designing principles need further investigations. More direct evidences showing the correlation between the structure of the vanadium oxide and the electrochemical performance are greatly needed. For instance, although in situ XRD characterization show great advantages in observing the structural evolution of some typical vanadium oxides and present the detailed phase diagram, some important characterization methods (e.g., atomic force microscopy) are absent. Recent advances in the disclosing the role of structural H2O in intercalation vanadium oxide are assisted by PDF (pair distribution function) analysis and/or DFT (density functional theory) calculations. Intrinsic electrochemical mechanisms are expected to be addressed with the help of more advanced characterization instruments. The combination of novel nanostructure design and computational simulation may be a feasible way.

(4) Better understanding of amorphous layered vanadium oxides. Notably, some amorphous vanadium oxides are demonstrated to exhibit impressive Na storage performance. Such outstanding electrochemical performance can be attributed to the large amounts of disordered lattice vacancies as well as abundant defects within the amorphous materials. It has been studied the introduction of defect favors the development of optimized intercalation compounds and leads to substantial improvements for energy storage applications. Nevertheless, to monitor the lattice vacancy and defect as well as disclose the possible effects on electrochemical performance still remains as a big
challenge. In an attempt to explore high-performance amorphous vanadium oxides for SIBs, new techniques and practical applications should be developed supported by numerous experimental and simulation results toward defects chemistry.

(5) Systematic and overall evaluation of the SIBs performance. Standardized methods for accurately characterizing the performance of full SIBs need to be established. Apparently, SIBs are indeed sophisticated systems associated with electrode structure, efficient electrolyte, packaging technology, and so forth. Comparing to the commercial LIBs, the development of high-efficiency electrolyte and separator, which are also vital for constructing high-performance vanadium oxide cathode-based full batteries, is insufficient. Currently, most reported research works on electrode materials have to conduct and present the optimization of electrolyte experiment for overall high-performance SIBs\(^{17-19}\). Besides, the rational choice of high-efficient binder and separator also highly depends on surface and interface chemistry knowledge\(^{80,81}\). Thus, to establish reliable standard system is essential for the development of commercial SIBs. Na-ion related knowledge must be deeply explored to introduce new alternative energy storage systems in the near future. Opportunities exist for researchers to bring together chemistry, physics, and engineering in imaginative morphologies.

Acknowledgment
This work was supported by the National Key Research and Development Program of China (2016YFA0202603), the National Basic Research Program of China (2013CB934103), the Programme of Introducing Talents of Discipline to Universities (B17034), the National Natural Science Foundation of China (15175001), the Natural National Science Foundation for Distinguished Young Scholars (51425204), and the Fundamental Research Funds for the Central Universities (WUT: 2016-JL-004, 2016II1001 and 2017II009). Prof. Dr. Liqiang Mai gratefully acknowledged financial support from China Scholarship Council (Grant no. 201606955096).

References

