
8

Phase Shift Functions with Exponential Edge

The surface densities of heavy nuclei can be well represented by exponential func-
tions. In fact, the function familiar from its role in the thermal Fermi distribution
is widely used as an approximation in the description of densities of heavy nuclei.
Such (Woods–Saxon) densities lead to phase shift functions that also have exponen-
tial edges. The present chapter is devoted to a survey of some properties of phase
shift functions that have such an exponential edge. We have chosen to consider
three examples,

χexp(bx,by) = Aexp e−b/β

= Aexp exp
(
−
√

b2
x + b2

y/β
)
, (8.1)

χcosh(bx,by) = Acosh

cosh(b/β)

= Acosh

cosh
(√

b2
x + b2

y/β
), (8.2)

χF(bx,by) = AF

1 + exp[(b − c)/β]

= AF

1 + exp
[(√

b2
x + b2

y − c
)

/β
], (8.3)

which we shall refer to as the exponential, the inverse cosh, and the “Fermi” phase
shift function, respectively.

In analogy with the comparison of phase shift functions with a Gaussian edge in
Fig. 7.1, we also compare the three phase shift functions with an exponential edge
in Fig. 8.1. For this purpose, we choose the relative normalizations

Acosh = Aexp/2, AF = Aexp/ exp(c/β), (8.4)
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Phase Shift Functions with Exponential Edge 81

Figure 8.1 Phase shift functions Eqs. (7.1–7.3) with an exponential edge. The
same three phase shift functions are shown both in linear (a) and logarithmic
(b) representations.

and use the illustrative values Aexp = 100, c = 2 fm, and β = 0.5 fm. At first sight
(Fig. 8.1(a), where they are plotted linearly) they are rather different. However, in
the case of strong absorption, it is the edge region which is important. This region
is shown on a logarithmic scale, in Fig. 8.1(b). With the normalization of Eq. (8.4),
the edge regions for these three phase shift functions are essentially the same in
magnitude, as will be the envelopes of their patterns of oscillations.

Because of cylindrical symmetry, in the asymptotic approach we only need these
phase shift functions for by = 0, and therefore define

Xexp(bx) = Aexp e−bx/β, Re bx > 0,

Xexp(−bx) = Xexp(bx), (8.5)

Xcosh(bx) = Acosh

cosh(bx/β)
, (8.6)

XF(bx) = AF

1 + exp[(bx − c)/β]
, Re bx > 0,

XF(−bx) = XF(bx). (8.7)

Since the pure exponential and the “Fermi” phase shift functions are not analytic at
the origin, we need to give explicit definitions for Re bx < 0. Eqs. (8.5) and (8.7)
correctly represent continuations of phase shift functions as even-valued in bx . We
can use these continuations as long as the stationary points do not get close to
the origin.

In the case of the “Fermi” phase shift function, one can easily construct variations
of Eq. (8.3) that are even and analytic at the origin. These include
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82 Phase Shift Functions with Exponential Edge

χ̃F(bx,by) = A

{1 + exp[(b − c)/β]}{1 + exp[(−b − c)/β]}, (8.8)

and

χ̄F(bx,by) = A{[1 + exp[(−b − c)/β]]−1 + [1 + exp[(b − c)/β]]−1 − 1}. (8.9)

For large values of |b|/β, i.e., at the nuclear surface, the three forms, Eqs. (8.1–
8.3) have the same exponential behavior. As we shall see, for suitable choices
of the parameters, and for small momentum transfers q, they therefore all lead
to similar cross sections. However, their analytic properties in the complex
bx-plane are different (even disregarding the subtleties along the line Re bx = 0)
and at sufficiently large momentum transfers the differential cross sections will
therefore differ.

8.1 Evenness

Since we integrate over Cartesian coordinates bx and by rather than cylindrical
ones, we need to define the integrand carefully for negative values of bx and by .
The “Fermi” phase shift function Eq. (8.3) is for fixed by written as an even func-
tion of bx . After integrating over by and evaluating the integrand for by = 0, the
evenness is lost. The construction Eq. (8.7) is explicitly even in bx , but it is not
analytic at the origin. In fact, all odd derivatives are non-vanishing and opposite on
the two sides. For the stationary-phase integration, this does not pose any problems,
since the integrand is exponentially small near bx = 0 and that region does not give
any numerically significant contribution. The same is true for the exponential phase
shift function, given by Eqs. (8.1) and (8.5).

For the direct numerical evaluation of the diffraction integral Eq. (7.29) in cylin-
drical coordinates, however, the distinction between Eqs. (8.3) and (8.8) is impor-
tant at large momentum transfers. Without the evenness imposed by Eq. (8.8), the
scattering amplitude would start to exhibit noise-like behavior at large momentum
transfers.

8.2 Exponential Phase Shift Function

Consider first Xexp(bx). The stationary points can be determined analytically as

bα x = β

[
− log

( |Aexp|
qβ

)
− iϕA

]
, (8.10a)

bβ x = β

[
log

( |Aexp|
qβ

)
− i(π − ϕA)

]
, (8.10b)
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8.2 Exponential Phase Shift Function 83

where

Aexp ≡ |Aexp|eiϕA . (8.11)

Now, using the values of Xexp and X′′
exp at the stationary points,

Xexp(bα x) = −Xexp(bβ x) = qβ,

X′′
exp(bα x) = −X′′

exp(bβ x) = q/β, (8.12)

we obtain simple expressions for the corresponding amplitudes,

F = F(bα x) + F(bβ x), (8.13)

with

F(bα x) = k

iq

√
βbα x e−iq(bα x−β), (8.14a)

F(bβ x) = k

iq

√−βbβ x e−iq(bβ x+β). (8.14b)

The moduli of each of these will obviously fall as

|F(bα x)| ∼ e−qβϕA, (8.15a)

|F(bβ x)| ∼ e−qβ(π−ϕA). (8.15b)

The different rates at which these fall off are thus simply given by the phase ϕA,
and are equal for ϕA = π/2. Similarly, the period of oscillation in the cross section
is given by

�q = π

| Re [bα x − bβ x − 2β]|
= π

2

[
log

( |Aexp|
qβ

)
+ β

] . (8.16)

Thus, we see that the asymptotic method provides us with simple and explicit
formulas for the characteristics of the cross section.

In Fig. 8.2 we display the trajectories of the stationary points for ϕA = 0◦, 30◦,
60◦, and 90◦. The arrows indicate the movement of the points of stationary phase,
as the momentum transfer, q, is increased. Note that there is no rainbow singularity
associated with Xexp(bx) for ϕA = 0◦.

The cross sections corresponding to ϕA = 30◦ and 90◦ are shown in Figs. 8.3
and 8.4. Fig. 8.3 shows characteristic damping of the oscillations due to the differ-
ent imaginary parts of the trajectories. Fig. 8.4 shows oscillations with increasing
period as q increases as the two stationary points approach each other. Were the
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84 Phase Shift Functions with Exponential Edge
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Figure 8.2 Trajectories of stationary points for the exponential phase shift
function, χexp = Aexp exp(−b/β). [Its definition for Cartesian coordinates,
b = (bx,by) is given by Eq. (8.1).] These trajectories are shown in the complex
bx-plane, the arrows indicate how they move with increasing q. (At the stationary
points, by = 0.) Here Aexp = |Aexp| exp(iϕA); four phases are considered,
ϕA = 0◦, 30◦, 60◦, and 90◦. Further, β = 0.5 fm. The present simple phase shift
function, which is only an approximation to more realistic phase shift functions,
has a discontinuous derivative along the line Re bx = 0. That line separates
the two trajectories labeled α and β. For the case of pure absorption, the two
trajectories satisfy Im bj x = − 1

2πβ = −0.785 fm.

imaginary parts of the stationary point coordinates the only parameters determining
the slope of the envelope of the differential cross section, the envelope would have
a constant slope on a logarithmic plot. The more slowly varying factors in the
expression for the scattering amplitude are seen, on the contrary, to lead to a slight
deviation from this constancy of slope.

8.3 Inverse cosh Phase Shift Function

Next, we consider Xcosh(bx) given by Eq. (8.6). Elementary algebra leads to explicit
expressions for the stationary points. These take a simple form if we introduce the
abbreviations

λ = Acosh

2qβ
, (8.17)

s± = −λ ± i
√

1 − λ2, (8.18)
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8.3 Inverse cosh Phase Shift Function 85
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Figure 8.3 Differential cross section for χexp(b) = Aexp exp(−b/β). Here Aexp =
|Aexp| exp(iϕA), with |Aexp| = 400. The phase shift function has a small
absorptive part, ϕA = 30◦, and β = 0.5 fm. The inserts show the trajectories
of stationary points for the range in momentum transfer 0.02 GeV/c ≤ q ≤
6.0 GeV/c (dotted). The parts of the trajectories that correspond to the cross-
section plots, 0.05 GeV/c ≤ q ≤ 2.0 GeV/c, are indicated as solid curves. (The
arrows indicate the sense in which the stationary points move as the momentum
transfer increases.) The differential cross sections contributed by each of the
stationary points, α and β, are shown as dotted curves. The solid curve shows the
resulting cross section, evaluated in the asymptotic approach, whereas the dashed
curve shows the result of a numerical evaluation of the diffraction integral, given
by Eq. (2.2).
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Figure 8.4 Similar to Fig. 8.3, for ϕA = 90◦.
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86 Phase Shift Functions with Exponential Edge

namely

bj x = β log

[
s− ±

√
s2− + 1

]
, j = α,β, (8.19a)

bj x = β

{
log

[
s+ ±

√
s2+ + 1

]
− 2πi

}
, j = γ,δ. (8.19b)

Out of the infinite number of periodically repeating solutions, with period 2πiβ,
we have selected those satisfying the inequality −2πβ < Im bj x ≤ 0 and through
which the path of integration must be passed. For cases with absorption, only bα x

and bβ x are relevant in this way, whereas for Acosh real and positive (negative), bγ x

(bδ x) will also be needed. For ϕA = 0◦, 30◦, 60◦, and 90◦, these stationary points
are shown in Fig. 8.5. The case ϕA = 90◦ corresponds to the function discussed in
Section 5.1.
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Figure 8.5 Trajectories of stationary points for χcosh(b) = Acosh/ cosh(b/β), with
Acosh = |Acosh| exp(iϕA). These trajectories are shown in the complex bx-plane,
where b = (bx,by). (At the stationary point, by = 0.) Four different phases are
considered, ϕA = 0◦, 30◦, 60◦, and 90◦, and β = 0.5 fm. The filled circles indicate
poles of the phase shift function, whereas the open circles indicate zeros of its
second derivative. One of these zeros, the one where for ϕA = 0◦ the trajectories
α and γ run together, is a rainbow point. The other zero shown for ϕA = 0◦ (in
the fourth quadrant) is not a rainbow point. In fact, neither the trajectory labeled
β, nor its counterpart on the other side of the open circle, is encountered along the
path of integration for ϕA = 0◦. (Compare the insert in Fig. 8.6.)
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8.3 Inverse cosh Phase Shift Function 87

Rainbow points can occur where

X′′
cosh(bx) = −Acosh

β2

1 − sinh2(bx/β)

cosh2(bx/β)
= 0, (8.20)

if X′
cosh(bx) is simultaneously real and positive. These conditions are met for Acosh

real, and then correspond to

bx,R = −β log(
√

2 + 1), for Acosh > 0, (8.21a)

bx,R = β log(
√

2 + 1), for Acosh < 0. (8.21b)

The stationary point trajectories are seen to turn suddenly at right angles at the
rainbow point (small circle) in Fig. 8.5. The rainbow singularity occurs for

qR = Acosh/2β. (8.22)

In Fig. 8.6 we show the cross section for a real phase shift function with Acosh =
10 and β = 0.5 fm. A comparison with the exact evaluation of the diffraction
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Figure 8.6 Differential cross sections for χcosh(b) = Acosh/ cosh(b/β), with
Acosh = 10 and β = 0.5 fm. The insert shows the trajectories of stationary points
for the range in momentum transfers, 0.02 GeV/c ≤ q ≤ 6.0 GeV/c (dotted). The
parts of the trajectories that correspond to the cross-section plot, 0.05 GeV/c ≤
q ≤ 4.0 GeV/c, are indicated as solid curves. (The arrows indicate the sense
in which the stationary points move as the momentum transfer is increased.) As
may be seen from a study of maps of the type given in Figs. 5.6 and 11.6, for a
real, positive Acosh, the trajectory labeled β in Fig. 8.5 is not encountered along
the path of integration. The differential cross sections contributed by each of the
stationary points α and γ , are shown as dotted curves. The solid curve shows the
resulting cross section, evaluated in the asymptotic approach (the spike represents
the rainbow singularity), whereas the dashed curve shows the result of a numerical
evaluation of the diffraction integral.
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88 Phase Shift Functions with Exponential Edge

integral shows that the agreement is excellent, apart from small intervals close to
q = 0 and q = qR. These features are quite analogous to those encountered for
the real Gaussian phase shift function. (Compare Fig. 7.3 and the corresponding
discussion in Chapter 7.)

Consider for a moment parameters Acosh, β, and a range in q such that

|λ| ≡ |Acosh|
2qβ

� 1. (8.23)

We then have

bα x � β

[
− log

(
2|Acosh|

qβ

)
− iϕA

]
, (8.24a)

bβ x � β

[
log

(
2|Acosh|

qβ

)
− i(π − ϕA)

]
, (8.24b)

which for 2Acosh = Aexp are the same as for the exponential case, Eq. (8.10).
In this limit, we also find that Xcosh(bj x) and X′′

cosh(bj x) are equal to Xexp(bj x)

and X′′
exp(bj x), respectively. It follows that in the range of momentum transfers

satisfying Eq. (8.23), one cannot distinguish between Xexp(bx) and Xcosh(bx).
Let us now turn to a discussion of weaker interactions or larger momentum

transfers, such that

|λ| ≡ |Acosh|
2qβ

� 1. (8.25)

Neglecting terms of order |λ|, we find from Eqs. (8.18) and (8.19) that

bj x � β

[
±(−1 + i)

( |Acosh|
2qβ

) 1
2
eiϕA/2 − iπ

2

]
, j = α,β. (8.26)

Thus

Re bj x � ∓β

( |Acosh|
2qβ

) 1
2
(

cos
ϕA

2
+ sin

ϕA

2

)
, (8.27)

and

Im bj x � −β

[
π

2
∓

( |Acosh|
2qβ

) 1
2
(

cos
ϕA

2
− sin

ϕA

2

)]
. (8.28)

In this regime, the period of oscillation will increase as

�q = π∣∣∣∣ Re

{
bα x − bβ x − 1

q

[
X(bα x) − X(bβ x)

]}∣∣∣∣
= π

β

(
2qβ

|Acosh|
) 1

2
/(

cos
ϕA

2
+ sin

ϕA

2

)
, (8.29)

which is much faster than the logarithmic behavior found for |λ| � 1. Also,
the rate at which the modulus of each term, |F(bα x)| and |F(bβ x)|, decreases
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8.3 Inverse cosh Phase Shift Function 89

[cf. Eq. (8.28)], is different from what it was for |λ| � 1. In particular, both slopes
tend to the same value, −πβ/2, as q → ∞, independent of ϕA. This is of course
dictated by the singularity at bx = −iπβ/2. Their difference vanishes like q−1/2.

This type of behavior is illustrated in Fig. 8.7, where we have plotted dσ/ d�

corresponding to |Acosh| = 5, ϕA = 75◦ and 90◦, β = 0.5 fm. As in Chapter 7,
we have adopted the value of the momentum as k = 1.7 GeV/c, corresponding
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Figure 8.7 Differential cross sections for χcosh(b) = Acosh/ cosh(b/β), with
Acosh = |Acosh| exp(iϕA), |Acosh| = 5, and β = 0.5 fm. Two cases are considered,
(a) ϕA = 75◦, and (b) ϕA = 90◦. The individual contributions of the two stationary
points (see inserts) are shown as dotted curves, whereas the resulting interference
patterns are shown by the solid curves. The dashed curves give the results of
numerical evaluations of the diffraction integrals.
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90 Phase Shift Functions with Exponential Edge

to Tkin = 1 GeV. The value of |λ| for this case ranges between 0.99 and 0.25
for q in the interval 1 GeV/c ≤ q ≤ 4 GeV/c. In Fig. 8.7a the differential cross
section for ϕA = 75◦ shows a sequence of damped oscillations of a sort frequently
encountered in diffraction patterns. The oscillations are of course produced by the
interference of the amplitudes contributed by the stationary points labeled α and β.
The damping of the oscillations occurs because the two trajectories yield stationary
points which have different imaginary parts. The scattered intensity for large q is
given almost entirely by the squared modulus of the amplitude corresponding to
bα x . In Fig. 8.7b, corresponding to a purely imaginary interaction, ϕA = 90◦, the
oscillations are undamped, since the two trajectories have equal imaginary parts. In
both Figs. 8.7a and 8.7b, a lengthening of the period of oscillation is evident as q

increases, since the distance between the stationary points decreases. Both graphs
show excellent agreement between the asymptotic theory and the exact evaluation
of the diffraction integral.

8.4 “Fermi” Phase Shift Function

The third example of a phase shift function with exponential edge is the “Fermi”
form, Eq. (8.7). This differs from the previous two by possessing one more shape
parameter, the radius c. As in the two previous cases, the stationary point can once
more be determined analytically. As an abbreviation, let us introduce

λ ≡ AF

2qβ
. (8.30)

The stationary points are then given in terms of c, β, and λ for ϕA > 0 by

bα x = −c − iπβ − β log
[
1 − λ +

√
(1 − λ)2 − 1

]
, (8.31a)

bβ x = c − iπβ + β log
[
1 + λ +

√
(1 + λ)2 − 1

]
. (8.31b)

Similarly, for ϕA = 0◦, we find

bα x = −c − iπβ − β log
[
1 − λ − i

√
2λ − λ2

]
, (8.32a)

bβ x = c − iπβ + β log
[
1 + λ +

√
2λ − λ2

]
, (8.32b)

bγ x = −c + iπβ − β log
[
1 − λ + i

√
2λ − λ2

]
. (8.32c)

In these expressions, as well as in Eq. (8.31), the signs in front of the square roots
correspond to the solutions that are relevant for |λ| → 0. For large values of |λ|,
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Figure 8.8 Trajectories of stationary points for the “Fermi” phase shift function,
χF(b) = AF/{1+exp[(b−c)/β]}. These trajectories are shown in the complex bx-
plane, where b = (bx,by). (At the stationary points, by = 0.) Again four different
phases are considered, ϕ = 0◦,30◦,60◦, and 90◦. The radius and surface thickness
parameters are: c = 3 fm and β = 0.5 fm. The filled circles indicate poles of the
phase shift function (at bx = ±c−iπβ), and the open circle (for ϕ = 0◦) indicates
a rainbow point (at bx = −c).

these square roots, as well as the logarithms, must be continued in an analytic
fashion, starting with |λ| < 1.

Asymptotically, as q → ∞, |λ| → 0 and

bα x � −c − iπβ + iβeiϕA/2

( |AF|
qβ

)1/2

, (8.33a)

bβ x � c − iπβ + βeiϕA/2

( |AF|
qβ

)1/2

, (8.33b)

i.e., they approach the poles of X′
F(bx).

Trajectories of the stationary points corresponding to c = 3 fm, β = 0.5 fm, and
ϕA = 0◦, 30◦, 60◦, and 90◦ are given in Fig. 8.8. One may note that, as q → ∞, the
poles are approached from different directions, depending on ϕA [cf. Eq. (8.33)].

For small momentum transfers (|λ| � 1), the stationary points are well approxi-
mated by
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bα x = −c − β log

( |AF|
qβ

)
− iβϕA, (8.34a)

bβ x = c + β log

( |AF|
qβ

)
− iβ(π − ϕA). (8.34b)

In this limit, they will coincide with those for Xexp [cf. Eq. (8.10)] provided

AF = Aexp e−c/β . (8.35)

At the stationary point, the phase shift function and its second derivative may be
written as

XF(bα x) = 1
2AF − i[AF qβ − 1

4AF
2]1/2, (8.36a)

XF(bβ x) = 1
2AF − [AF qβ + 1

4AF
2]1/2, (8.36b)

and

X′′
F(bα x) = q

β

[
1 − 2

XF(bα x)

AF

]
, (8.37a)

X′′
F(bβ x) = −q

β

[
1 − 2

XF(bβ x)

AF

]
. (8.37b)

It is now easily seen that when qβ/|AF| � 1, and if Eq. (8.35) is fulfilled, the
cross section will be the same as for Xexp. This is yet another example of how the
asymptotic method allows us to determine quantitatively when phase shift functions
with similar edges yield cross sections which are quite different in form. In the
present examples, such differences indeed occur for qβ/|AF| >∼ 1 and are illustrated
in Fig. 8.12.

For large values of qβ/|AF|, it follows from Eq. (8.36) that

XF(bα x) � −ieiϕA/2[qβ|AF|]1/2, (8.38a)

XF(bβ x) � −eiϕA/2[qβ|AF|]1/2. (8.38b)

Thus, the modulus of each term will fall for large q in a nearly exponential fashion,

|F(bα x)| ∼ exp

{
−qβ

[
π − 2 cos

(
ϕA

2

)( |AF|
qβ

)1/2]}
, (8.39a)

|F(bβ x)| ∼ exp

{
−qβ

[
π − 2 sin

(
ϕA

2

)( |AF|
qβ

)1/2]}
, (8.39b)
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Figure 8.9 Differential cross section for the “Fermi” phase shift function, χF(b) =
AF/{1 + exp[(b − c)/β]}, with AF = |AF| exp(iϕA). Here |AF| = 1, c = 3 fm,
and β = 0.5 fm. A significant degree of absorption is considered, ϕA = 60◦.
The inserts show the trajectories of stationary points for the range in momentum
transfer, 0.02 GeV/c ≤ q ≤ 6.0 GeV/c (dotted). The parts of the trajectories that
correspond to the cross section plots, 0.05 GeV/c ≤ q ≤ 2.0 GeV/c, are indicated
as solid curves. The differential cross sections contributed by each of the stationary
points, α and β, are indicated by dotted curves. The solid curve shows the resulting
cross section, evaluated in the asymptotic approach, whereas the dashed curve
shows the result of a numerical evaluation of the diffraction integral.

and the period of oscillation will approach its constant asymptotic value, π/2c in a
similar fashion

�q � π

2

[
c + β

(
cos

ϕA

2
+ sin

ϕA

2

)( |AF|
qβ

)1/2] . (8.40)

We note that the asymptotic period is approached from below.
In Figs. 8.9 and 8.10 we show cross sections corresponding to XF for |AF| = 1,

c = 3 fm, and β = 0.5 fm. In Fig. 8.9 ϕA = 60◦ while in Fig. 8.10 ϕA = 90◦

and XF is purely imaginary. For the latter case the choice of parameters is roughly
appropriate to proton–calcium scattering at 1 GeV. These graphs show two features
that are frequently noted as approximate qualities of scattering by heavy nuclei.
Their envelopes have nearly constant logarithmic slopes and their periods of oscil-
lation are nearly constant as well. The reason for this behavior of the calculated
cross sections lies in the pole singularity of the function XF given by Eq. (8.1). As
the momentum transfer q increases to larger values, the stationary points labeled
α and β approach the poles of XF [see Eq. (8.33)]. In fact, they approach the poles
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Figure 8.10 Similar to Fig. 8.9, for ϕA = 90◦.

closely for modest values of q and then hardly move at all as q increases. The
effect of the poles of XF then is to stabilize the slope and the oscillation period of
the corresponding elastic differential cross section.

Once again, characteristically, the cross section oscillations for the purely imag-
inary interaction, Fig. 8.10, are undamped, while those for the complex interaction,
Fig. 8.9, are damped. From these and our earlier results it is clear that the presence
of undamped oscillations in a logarithmic plot of a differential cross section indi-
cates that the interaction is greatly dominated by the imaginary or absorptive part.
Another characteristic of purely absorptive interactions is that within the context
of diffraction theory the differential cross sections have periodic zeros. Corrections
to the diffraction theory, Coulomb field effects, and various spin-dependent effects
will tend to fill in the zeros, however, and leave minima that are often considerably
less pronounced. Figs. 8.9 and 8.10 both indicate that the asymptotic theory is fairly
accurate away from the forward direction for the “Fermi” phase shift function.
Actually, the result of the numerical evaluation of the diffraction integral is based
on the symmetrized phase shift function, Eq. (8.8). Without such a symmetry (or
evenness, see Section 8.1), the cross section would start to deviate from this regular
pattern around q = 1.5 GeV/c.

As is seen from Eq. (8.31), the stationary points depend on the strength of the
interaction through the parameter λ = AF/2qβ. On the other hand, XF(bj x) and
X′′

F(bj x) are functions of both AF and λ, and thus the cross section will depend on
AF and λ separately. As a result, the period of oscillation of the differential cross
section and the slope of its envelope will depend not only on c and β, but on the
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Figure 8.11 Differential cross sections for the “Fermi” phase shift function,
χF(b) = AF/{1 + exp[(b − c)/β]}. Two radius parameters are considered,
(a) c = 3 fm, (b) c = 6 fm. In both cases, β = 0.5 fm and AF is purely imaginary.
The figure illustrates the fact that not only the geometry, but also the strength of
the interaction is of importance for the shape of the differential cross section.

magnitude of AF as well. This dependence is illustrated in Fig. 8.11 for interactions
of two different radii. Increasing the strength of the interaction is seen to decrease
the oscillation period of the cross section. The same dependence is evident in our
earlier Fig. 7.7.

We have seen that at small momentum transfers three different phase shift
functions, Xexp, Xcosh, and XF may lead to the same cross section. Obviously, at
sufficiently large momentum transfer, one may distinguish between them. This is
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Figure 8.12 A comparison of the differential cross sections resulting from two
phase shift functions that coincide at large parameters, but that are different in the
interior, χexp(b) = Aexp exp(−b/β) (dashed), and χF(b) = AF/{1 + exp[(b −
c)/β]} (solid). The parameters satisfy Eq. (8.35). Further, c = 3 fm, β = 0.5 fm,
and AF = 2i. The trajectories of stationary points are given in the insert.

illustrated in Fig. 8.12, where we compare the cross sections corresponding to Xexp

and XF, for parameters satisfying Eq. (8.35), and with c = 3 fm, β = 0.5 fm, and
AF = 2i. We see that the oscillations in the cross sections corresponding to XF and
Xexp start to get out of phase and differ in slope when

q >∼
|AF|
2β

, (8.41)

which corresponds to q >∼ 0.4 GeV/c. (A similar comparison between Xexp and
Xcosh, with Aexp = 2Acosh, would lead to an agreement between the two out to
q ≤ |Acosh|/2β.)

We conclude this section with a comparison of the potentials corresponding to
the phase shift functions studied in Fig. 8.12. These are easily determined numer-
ically from Eq. (2.6a). As shown in Fig. 8.13, for a choice of parameters satis-
fying Eq. (8.35), they are quite similar at large values of r , but differ greatly for
smaller radii.

For applications to proton–nucleus scattering, one often considers an optical
potential proportional to a Woods–Saxon density function ρWS. If we assume a
proportionality between the optical potential and the density, then the density,
ρ[TF] corresponding to a “Fermi” thickness function,1 TF(b) is readily determined

1 If the range of interaction can be neglected, this is equivalent to a “Fermi” phase shift function, χF(bx,by).
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Figure 8.13 Moduli of the potentials corresponding to the exponential and
“Fermi” phase shift functions considered in Fig. 8.12.
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Figure 8.14 (a) A comparison of the Woods–Saxon density, ρWS(r) = ρ0/{1 +
exp[(r−c)/β]}, with the density corresponding to the “Fermi” phase shift function
(or a “Fermi” thickness function), ρ[TF]. The normalization is

∫
d3rρ(r) = 1. The

shape parameters, c and β, are the same in both cases. (b) A comparison of the
thickness function corresponding to the Woods–Saxon density, T [ρWS], with the
“Fermi” thickness function, TF = T0/{1 + exp[(b − c)/β]}. The normalization is∫

d2bT (b) = 1. Again the shape parameters are the same.
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from the Abel integral equation, Eq. (2.6c). These densities (both normalized
to

∫
d3rρ(r) = 1) are compared in Fig. 8.14a for c = 3 fm and β = 0.5 fm.

For r >∼ c (i.e., in the region that is most significant in determining the cross
section) they are rather similar in shape, but differ somewhat in normalization.
We also note that ρ[TF] has an enhancement in the region of the surface. Since
such an enhancement is sometimes encountered in shell-model calculations [4,18]
of nuclear densities, there could be instances in which ρ[TF] better represents the
nuclear density than ρWS.

For completeness, we also compare in Fig. 8.14b the corresponding thickness
functions, T [ρWS] and TF, which are quantities more closely related to the cross
section. The fact that these are more similar than the densities from which they are
derived indicates one reason why nuclear cross sections depend only weakly on the
behavior of the density function at small radii.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316219256.011
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.36, on 24 Nov 2025 at 08:30:30, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316219256.011
https://www.cambridge.org/core

