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1 Introduction

1.1 The Aims of Statistical Mechanics

Statistical mechanics (SM) is the third pillar of modern physics, next to

quantum theory and relativity theory. Its aim is to account for the behaviour

of macroscopic systems in terms of the dynamical laws that govern their

microscopic constituents and probabilistic assumptions about them. The use

of probabilities is motivated by the fact that systems studied by SM have

a large number of microscopic constituents. Paradigmatic examples of sys-

tems studied in SM are gases, liquids, crystals, and magnets, which all have

a number of microscopic constituents that is of the order of Avogadro’s

number (6.022 × 1023).1

The focal point of SM is a particular aspect of the behaviour of macro-

systems, namely equilibrium. To introduce equilibrium, and to boost intu-

itions, let us consider a standard example. A gas is confined to the left half of

a container with a dividing wall, as illustrated in Figure 1a. The gas is in

equilibrium in the sense that there is no manifest change in any of its macro

properties like pressure, temperature, and volume, and the gas will have these

macro properties so long as the container remains unchanged. Now consider

such a change: remove the dividing wall in the middle, as illustrated in

Figure 1b. The gas is now no longer in equilibrium because it does not fill

the container evenly. As a result, the gas starts spreading through the entire

available volume, as illustrated in Figure 1c. The spreading of the gas comes to

an end when the entire container is filled evenly and no further change takes

place, as illustrated in Figure 1d. At this point, the gas has reached a new

equilibrium. Since the process of spreading culminates in a new equilibrium,

this process is an approach to equilibrium. A key characteristic of the

approach to equilibrium is that it seems to be irreversible: systems move

from non-equilibrium to equilibrium, but not vice versa: gases spread to fill

the container evenly, but they do not spontaneously concentrate in the left half

of the container. Since an irreversible approach to equilibrium is often associ-

ated with thermodynamics, this is referred to as thermodynamic behaviour.2

1 From now on, we will use ‘micro’ and ‘macro’ as synonyms for ‘microscopic’ and ‘macroscopic’,
and we will speak of macro systems and their micro constituents, as well as of macro or micro
properties, macro or micro characterisations, and so on. We will also use ‘micro-states’ and
‘macro-states’, where we add the hyphen to indicate that they are unbreakable technical terms.We
use ‘SM systems’ as a shorthand for ‘the systems studied in SM’.

2 This is commonly seen as a result of the second law of thermodynamics. However, as Brown and
Uffink (2001) note, the irreversibility of the kind illustrated in our example is not part of
the second law and has to be added as an independent principle to the theory, which they call
the minus-first law.
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Characterising the state of equilibrium and accounting for why, and how,

a system approaches equilibrium are the core tasks for SM. Sometimes these

two problems are assigned to separate parts of SM, namely equilibrium SM

and non-equilibrium SM.

What does characterising the state of equilibrium involve? We said that the

gas is in equilibrium when there is no manifest change in any of its macro

properties. This is a valid macro characterisation. Yet if the aim of SM is to

account for the macro properties of a system in terms of the behaviour of its

micro constituents, then we need a characterisation of equilibrium in micro-

physical terms: what condition does the motion of the molecules in a gas have to

satisfy for the gas to be in equilibrium? And how do the values of macroscopic

properties like local pressure and local temperature depend on the state of

motion of gas molecules? Equilibrium SMprovides answers to these and related

questions.

Turning to non-equilibrium, the core question is how the tendency of systems

to move to equilibrium when prepared in a non-equilibrium state is grounded

in the dynamics of the micro constituents of the system: what is it about the

motions of molecules that leads them to spread so that the gas assumes a new

equilibrium state when the shutter is removed? And, crucially, what accounts

for the fact that the reverse process does not happen?

Figure 1 The spreading of gas when removing a shutter.

2 Philosophy of Physics
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This Element focuses on these questions. This, however, is not to say that SM

deals solely with equilibrium.While equilibrium occupies centre stage, SM also

addresses other issues such as phase transitions, the entropy costs of computa-

tion, and the process of mixing substances; and in philosophical contexts SM

has been employed to shed light on issues like the direction of time and the

possibility of knowledge about the past. Space constraints prevent us from

delving into these issues, and we will concentrate on equilibrium.

1.2 The Theoretical Landscape of SM

Foundational debates in many other areas of physics can take as their point of

departure a generally accepted formalism and a clear understanding of what the

theory is. A discussion of the nature of space and time, for instance, can base its

considerations on the general theory of relativity, and a discussion of the

foundations of quantum mechanics has the formalism of the theory as reference

point. The situation in SM is different because, unlike quantum mechanics and

relativity theory, SM has not yet found a generally accepted theoretical frame-

work, let alone a canonical formulation. Those delving into SM find a multitude

of different approaches and schools of thought, each with its own conceptual

apparatus and formal structure.3 A discussion of the foundations of SM can

therefore not simply begin with a concise statement of the formalism of SM

and its basic principles. Indeed, the choice, articulation, and justification of

a theoretical framework for SM is an integral part of the foundational endeavour!

It has become customary in the foundations of SM to organise most (although

not all) theoretical approaches in SM under one of two broad theoretical

umbrellas. These umbrellas are known as Boltzmannian SM (BSM) and

Gibbsian SM (GSM) because their core principles are attributed to Ludwig

Boltzmann (1844–1906) and Josiah Willard Gibbs (1839–1903) respectively.

Accordingly, approaches are then classified as ‘Boltzmannian’ or ‘Gibbsian’.4

In this Element, we follow this classificatory convention and use it to structure

our discussion. We note, however, that from a historical point of view, this

labelling is not entirely felicitous. While Boltzmann did indeed champion the

approach now known as BSM, his work was in no way restricted to it.

3 For reviews of these approaches see Frigg (2008b), Penrose (1970), Shenker (2017a, 2017b),
Sklar (1993), and Uffink (2007).

4 There is an interesting historical question about the origin and subsequent evolution of this
schism. We cannot discuss this question here, but we speculate that it goes back to Ehrenfest
and Ehrenfest-Afanassjewa’s seminal review (1912/1959). While they do not use the labels BSM
and GSM, they clearly separate a discussion of Boltzmann’s ideas, which they discuss under the
heading of ‘The Modern Formulation of Statistico-Mechanical Investigations’, and Gibbs’
contributions, which they discuss in a section entitled ‘W. Gibbs’s Elementary Principles in
Statistical Mechanics’.

3Foundations of Statistical Mechanics
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Boltzmann in fact explored many different theoretical avenues, among them

also ensemble methods that are now classified as Gibbsian. So ‘BSM’ is a

neologism that should not be taken to be an accurate reflection of the scope of

Boltzmann’s own work.5

1.3 Outline

In this Element we discuss how BSM and GSM deal with the questions

introduced in Section 1.1. Both BSM and GSM are formulated against the

background of dynamical systems theory and probability theory. In Section 2

we introduce the basic concepts of both theories and state results that are

important in the context of SM. In Section 3 we turn to BSM. We start by

introducing the core concepts of BSM and then discuss different ways of

developing them. Section 4 is dedicated to GSM. After introducing the formal-

ism, we discuss its interpretation and different developments, and we end by

considering the relation between BSM and GSM.

It goes without saying that omissions are inevitable. Some of them we have

already announced in Section 1.1: we focus on equilibrium and the approach

to it, and we set aside topics like phase transitions and the entropy costs of

computation, and we will only briefly touch on questions concerning

reductionism.6 In addition to these, we set aside approaches to SM that do not

clearly fall under the umbrella of either BSM or GSM, which implies that we do

not discuss the Boltzmann equation.7

2 Mechanics and Probability

As the name ‘statistical mechanics’ indicates, SM aims to give an account of the

behaviour of systems in terms of mechanics and statistics. The use of the word

‘statistics’ in this context is, however, out of sync with its modern use, where the

term usually means something like ‘the technology of extracting meaning from

data’ (Hand 2008, 1). As a branch of theoretical physics, SM is not concerned

with the collection and interpretation of data (although data are of course

important in testing the theory). In the second half of the nineteenth century,

when the foundations of the discipline were laid, one of the main uses of the

term ‘statistics’ was also to designate a ‘description of the properties or behav-

iour of a collection of many atoms, molecules, and so on, based on the applica-

tion of probability theory’ (OED ‘statistics’). So a ‘statistical’ treatment of

5 For an overview of Boltzmann’s contributions to SM see Uffink (2022); for detailed discussions
see, for instance, Brush (1976), Cercignani (1998), Darrigol (2018), and Uffink (2007).

6 For recent discussions of reduction with special focus on statistical mechanics, see Batterman
(2002), Butterfield (2011a, 2011b), Lavis, Kühn, and Frigg (2021), and Palacios (2022).

7 For a discussion of the Boltzmann equation, see Uffink (2007).
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a problem is simply a treatment in terms of probability theory. This use of

‘statistics’ has become less common, and hence ‘probabilistic mechanics’might

better describe the discipline to a modern reader. But, for better or worse,

historical labels stick. What this short excursion into the etymology of ‘statis-

tical mechanics’ brings home is that the theory builds on two other disciplines,

namely mechanics and probability, which provide its background theories.

The aim of this section is to introduce these background theories. The

mechanical background theory against which SM is formulated can be either

classical mechanics or quantum mechanics, resulting in either classical SM or

quantum SM. Foundational debates are by and large conducted in the context of

classical SM. We follow this practice in this Element, and for this reason the

current section focuses on classical mechanics.8

The section is structured as follows. We begin by introducing dynamical

systems at a general level, along with some basic mechanical notions like

trajectory, measure, and determinism (Section 2.1). We then have a closer

look at a specific class of dynamical systems, Hamiltonian systems, which are

important in this context because they provide the fundamental structure of SM

systems (Section 2.2). Hamiltonian systems have two dynamical properties that

feature prominently in discussions about SM, namely time-reversal invariance

(Section 2.3) and Poincaré recurrence (Section 2.4). Being ergodic is a property

that certain time evolutions possess. This property plays an important role in

SM because different approaches appeal to it to justify the equilibrium behav-

iour of SM systems (Section 2.5). This brings our discussion of mechanics to

a conclusion, and we turn to probability. We introduce the basic formalism of

probability theory and discuss the three main philosophical interpretations of

probability (Section 2.6).

2.1 Dynamical Systems

At the level of theirmicro constituents, SM systems have the structure of a so-called

dynamical system, a triple ðX ; �t; μÞ.9 This is illustrated in Figure 2. Here, X is

the state space of the system: it contains all states that, the system could possibly

assume. In classical mechanics, the state of motion of an object (understood as a

point particle) is completely specified by saying what its position and momen-

tum are. If a system consists of several objects, the state of motion of the system

is specified by saying what the positions and the momenta of all its objects are.

Molecules move in three-dimensional physical space, and so a molecule has

8 For a discussion of foundational issues in quantum SM see, for instance, Emch (2007).
9 Our characterisation of a dynamical system is intuitive. For mathematical discussions see, for
instance, Arnold and Avez (1968) and Katok and Hasselblatt (1995).
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three degrees of freedom. This means that a specification of the position of the

molecule requires three parameters, one for each spatial direction. Since the

molecule has a momentum in each direction, a further three parameters are

needed to specify its momentum. So we need six parameters to specify the state

of motion of a molecule. Accordingly, the specification of the state of the entire

gas with n molecules requires 6n parameters. Hence, X is a 6n-dimensional

space containing the positions and momenta of all molecules.

The second element of a dynamical system, �t, is the time evolution function.

This function specifies how the state of a system changes over time, and we write

�tðxÞ to denote the state into which an initial state x evolves after time t. If the

time evolution is specified by equations of motion like Newton’s, Lagrange’s, or

Hamilton’s, then �tðxÞ is the solution of that equation (we discuss Hamilton’s

equations in more detail in the next section). As time passes, �tðxÞ draws a ‘line’
through X that represents the time evolution of a system that was initially in

state x; this ‘line’ is called a trajectory. This is illustrated in Figure 1.

The third element of a dynamical system, μ, is a measure on X. At a general

level, a measure is a device to attribute a size to an object. Familiar examples are

the attribution of a length to a segment of a line, a surface to a part of a plane, and

a volume to a portion of space. From amathematical point of view X is a set, and

the measure μ attributes a ‘size’ – or ‘measure’ – to subsets of X in much the

same way in which a ruler attributes a length to, say, a pencil. If the measure μ is

able to attribute a size to a particular subset A⊆X , then A is said to be

measurable. In what follows we assume that all sets are measurable. If

a measure is such that μðX Þ ¼ 1, then the measure is normalised.

Things can be measured in different ways. One measure is of particular

importance in the current context: the so-called uniform Lebesgue measure.

This measure is a mathematically precise rendering of the measure we use when

attributing lengths and surfaces to objects. For instance, the interval [2, 5] has

uniform Lebesgue measure (or length) 3, and a circle with radius r has uniform

Lebesgue measure (or surface) of πr2.

Figure 2 A dynamical system and a subset A⊆X .
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The time evolution �t is deterministic. It is common to define determinism in

terms of possible worlds (Earman 1986, 13). LetW be the class of all physically

possible worlds. The world w 2 W is deterministic if and only if for anyworld

w’ 2 W it is the case that: if w and w’ are in the same state at some time t0, then

they are in the same state at all times t. This definition can be restricted to an

isolated subsystem s of w. Consider the subset world Ws ⊆W of all possible

worlds which contain an isolated counterpart of s, and let s’ be the isolated

counterpart of s in w’. Then s is deterministic if and only if for any world

w’ 2 Ws it is the case that if s and s’ are in the same state at some time t0, then

they are in the same state at all times t. The system s can be a dynamical system

of the kind we have just introduced. Determinism then implies that every state x

has exactly one past and exactly one future, or, in geometrical terms, trajectories

cannot intersect (neither themselves nor other trajectories).

2.2 Hamiltonian Mechanics

The notion of a dynamical system introduced in the previous section is

extremely general, and more structure must be added to make it useful for the

treatment of SM systems. The structure that is usually added is that of

Hamiltonian mechanics.10

In Hamiltonian mechanics, the state of an object is described by its position

q and its momentum p. In fact, there is a q-and-p pair for every degree of

freedom. Hence, for a gas with n molecules moving in the three-dimensional

physical space there are 3n q-and-p pairs. The 3n pairs constitute the state space

X of the system, which in this context is often referred to as phase space (and

since having 3n pairs means having 6n variables, the phase space has

6n dimensions as noted previously).

The Hamiltonian equations of motion are

_qk ¼
∂H
∂pk

and _p
k
¼ � ∂H

∂qk
;

where the dot indicates a derivative with respect to time and the index k ranges

over all degrees of freedom (so, for a gas we have k = 1, . . ., 3n). This defines

a system of k differential equations, and the solution to this equation is the time

evolution function �t of the system. Solving these equations for SM systems is

usually a practical impossibility, and so we will not be able to write down �t

explicitly. This does not render Hamiltonian mechanics useless. In fact, the

equations ensure that �t has a number of general features, and these can be

10 For a brief introduction see, for instance, Argyris, Faust, and Haase (1994, ch. 4).
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established even if �t is not explicitly known. In the remainder of this section we

review some of the features that are central to SM.

The Hamiltonian equations contain the function H, which is called the

Hamiltonian of the system. The Hamiltonian H is the energy function of

the system, which, in general, depends on all coordinates qk and pk . So, the

Hamiltonian equations of motion specify how a system evolves in time based on

the energy function of the system. If the energy of the system does not explicitly

depend on time (which is the case, for instance, if a system is not driven by

outside influences like pushes or kicks), then the system is autonomous. In an

autonomous system, H is a conserved quantity (or a ‘constant of motion’),

meaning that it does not change over the course of time. This has the immediate

consequence that any function f ðHÞ is a conserved quantity too.

The gas that we used as our introductory example is an autonomous system: it

is isolated from the environment through the box and once the shutter has been

removed, it is not subject to any outside disturbances. The gas is no exception,

and typical systems in SM are autonomous Hamiltonian systems. The fact that

the energy is conserved has an important consequence. Once the energy of the

system is fixed to have a certain value E, the conservation of energy means that

H ¼ Emust hold all the time.H is a function of the coordinates qk and pk , which

means that it defines a hypersurface XE in X. This surface has one dimension

fewer than X itself. In the case of the gas, it is therefore 6n – 1 dimensional. This

surface is known as the energy hypersurface.11 SinceH ¼ E holds at all times, it

follows that the motion of the system is confined to the energy hypersurface:

trajectories that start in an initial condition x in the energy hypersurface will

never leave the hypersurface.

The total energy of the system may not be the only conserved quantity.

Depending on the nature of the system, other quantities may be conserved

too. From a formal point of view, each conserved quantity is a function Q of

the coordinates qk and pk for which Q ¼ C holds for all times, where C is the

value that Q assumes. In geometric terms, each conserved quantity defines

a hypersurface to which trajectories remain confined. Such surfaces are also

called invariant hypersurfaces. The crucial aspect (and this will be important

later on) is that these hypersurfaces divide the phase space into regions that are

‘disconnected’ in the sense that trajectories cannot penetrate the surface to get to

the other side. This is schematically illustrated in Figure 3, where we see an

invariant surface and three trajectories. While Trajectory 1 and Trajectory 2 are

11 It is a hypersurface because ‘surface’ has the connotation of being two-dimensional, like
a tabletop, which the surface of constant energy is not.
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possible, Trajectory 3 is impossible because no trajectory can cross an invariant

hypersurface. So, invariant hypersurfaces divide the state space X into sectors

that are mapped onto themselves under the dynamics.

AutonomousHamiltonian systems have an important feature that is related to the

third element of a dynamical system, the measure μ. As we have seen in the

previous section, a measure allows us to attribute a ‘size’ or ‘measure’ to a part

of the state space such as the blob A shown in Figure 2. A blob ultimately

consists of points and, as we have seen, points lie on trajectories: a point

x evolves into �tðxÞ as time evolves. This means that the evolution of the blob

as whole is determined by the evolution of its constituent points. We write �tðAÞ
to denote the time-evolved blob. We can now ask how a blob evolves. One of the

most important questions to ask about the evolution of blobs iswhat happens to their

measure. The initial measure of the blob is μðAÞ, and the measure of the time-

evolved blob is μð�tðAÞÞ. How do these compare? If these two are identical –

namely μðAÞ ¼ μð�tðAÞÞ – for all blobs A⊆X and all times t, then �t is

measure preserving. An important result in Hamiltonian mechanics, known as

Liouville’s theorem, says that any �t that is the solution of the Hamiltonian

equations of motion is measure preserving. This means that if a system is

governed by the Hamiltonian equations, a blob can change its shape but not

its size. This is illustrated in Figure 4, which shows how A evolves under two

different time evolution functions, � ð1Þ
t and �

ð2Þ
t . Under the first function,

A evolves into �
ð1Þ
t ðAÞ, which does not have the same shape as A but is of the

same size. This kind of evolution is allowed under the Hamiltonian equations of

motion. Under the second function, A evolves into �
ð2Þ
t ðAÞ, which is smaller

than A. This is ruled out by the Hamiltonian equations, and a function like � ð2Þ
t

could not be a solution of the equations. It is important to point out that this

feature is specific to the Hamiltonian equations. Far from ruled out in general,

Figure 3 Invariant surface.
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evolutions like �
ð2Þ
t are common in other contexts, and they are allowed, for

instance, if the guiding equation is Newton’s rather than Hamilton’s.

Before moving on, we briefly note that even though Hamiltonian mechanics is

assumed to be the fundamental theory of SM systems, in practical calculations

other dynamical laws are sometimes considered. Typical examples are theKac ring

or the baker’s gas.12 These dynamical laws are typically chosen for two reasons:

they are simple and can be implemented relatively easily on computers, and yet

they share important features with the full Hamiltonian dynamics, most notably

measure preservation. So, even when considerations are made with alternative

dynamical laws, Hamiltonian mechanics informs and guides the choice.

2.3 Time-Reversal Invariance

An important aspect of Hamiltonian dynamics is time-reversal invariance.13 To

introduce the concept, imagine you are watching a movie showing a ball

moving horizontally from the left to the right. Intuitively, reversing the time

of the process amounts to playing the movie backward, which results in you

seeing a ball moving horizontally from the right to the left. Assume now that the

moving balls are governed by a theory T, which regulates which processes are

allowed and which are banned. Theory T is time-reversal invariant if and only if

for every process that is allowed by the theory, its time reverse is allowed too.14

To give a precise statement of this idea, we need two things. The first is

a time-reversal transformation t →� t. The second is the reversal of an instant-

aneous state of a system. Consider again our ball. Its state is given by the

Figure 4 Two different time evolution functions acting on A.

12 For a discussion of the Kac ring, see Jebeile (2020); for the baker’s gas, see Lavis (2008).
13 In what follows we restrict attention to autonomous Hamiltonian systems.
14 Note that time-reversal invariance does not imply that processes must be such that they look the

same in both temporal directions: processes do not have to be palindromic. In our example, you
see a ball moving from left to right in one temporal direction and from right to left in the other.
For detailed discussions of time-reversal invariance see, for instance, Roberts (2022) and Uffink
(2001).
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coordinates q and p. When we stop the movie and start playing it backwards, the

position of the ball remains unchanged, but its momentum flips from p to �p.

So, the time-reversed state of ðq; pÞ is ðq;�pÞ. Hence, performing a so-called

time-reversal transformation amounts to replacing t by �t and p by �p.

In Hamiltonian mechanics the verdict on whether a process is allowed is cast

by the Hamiltonian equations of motion: if a process satisfies the equations, it is

allowed, and if not, it is ruled out. So, let us see how the Hamiltonian equations

behave under a time-reversal transformation. Some elementary algebraic

manipulations show that the equations are left unchanged if you replace t by

�t and p by �p. This means that processes unfolding backward in time are

governed by the same equation as those unfolding forward in time, and this

means that the theory – the Hamiltonian equations – cast the same verdict about

what is allowed in both directions of time. Hence, Hamiltonian mechanics is

time-reversal invariant. This means that if a process from an initial state ðqi; piÞ
to a final state ðqf ; pf Þ during timespan Δt is allowed, then a process starting in
state ðqf ;�pf Þ and ending in ðqi;�piÞ during timespan Δt is allowed too. As we
will see, this is the crucial formal ingredient of what is now known as

Loschmidt’s reversibility objection.

2.4 Poincaré Recurrence

How do Hamiltonian systems behave in the long run? With an eye on irreversi-

bility, one might hope that SM systems will be such that they start in one part of

X and then end up in another part of X. Poincaré’s so-called recurrence theorem

establishes that this cannot be. Consider a system with a state space of finite

measure (μðX Þ < ∞) and with a dynamics that is measure preserving and maps

the state space onto itself (�tðX Þ ¼ X for all t). The theorem then says that for

any set A⊆X of finite measure (μðAÞ > 0) it is the case that almost every point

x in Awill return to A infinitely many times as t→∞. The set A can be chosen to

be an arbitrarily small area around an initial condition x. The theorem then says

that for almost all initial conditions, the systemwill return arbitrarily close to the

initial condition infinitely many times. The time that it takes the system to return

close to its initial condition is called the recurrence time.15

The Hamiltonian systems that are of interest in SM satisfy the requirements

of the theorem: they are measure preserving (as we have seen), and since they

have finite energy and are bounded in space (they are things like vessels full of

gas), the accessible region of the state space is bounded. We can then ‘throw

away’ the regions of the state space that the system cannot access and associate

Xwith the accessible region, which is finite. Hence, SM systems show Poincaré

15 For a discussion of Poincaré recurrence, see, for instance, Cornfeld, Fomin, and Sinai (1982).
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recurrence. As we will see, this is the mathematical backbone of what is now

known as Zermelo’s recurrence objection.

2.5 Ergodicity

Among the many properties that a time evolution can have, ergodicity is of

particular importance because it plays a crucial role in discussions of both BSM

and GSM.16 Consider a function f : X → ℂ, where ‘ℂ’ denotes the complex

numbers. Sometimes such a function is called a ‘phase function’ because in the

context of Hamiltonian mechanics X is also referred to as the phase space

(Section 2.2). The space average f of f (sometimes also called ‘phase average’,

for the same reasons) is

f ¼
ð
x
f dx: ð1Þ

The time average of the same function is

f �ðxÞ ¼ limτ→∞

ðt0þτ

t0

f ð�tðxÞÞdt; ð2Þ

where x is the initial condition of the trajectory at the initial time t0. It is

important to note that the time average depends on the initial condition and

can, in principle, be different for different initial conditions. Intuitively, the

space average gives us information about the mean distribution over space. If,

for instance, a village occupies an area of 3 square kilometres, and there are 100,

300, and 800 dwellers in the first, second, and third square kilometre respect-

ively, then the average population per square kilometre is 400. The time average

gives us information about the distribution over time. Consider the first square

kilometre of our village and trace its population over time. You find that it had

50 dwellers from 1800 to 1900 and 100 dwellers from 1900 to 2000. The time

average of the population in the first square kilometre over the period from 1800

to 2000 is then 75.

The so-called Birkhoff theorem states that f �ðxÞ exists for almost all initial

conditions and does not depend on t0 (but may well depend on x). The qualifi-

cation ‘almost all’ means all except, perhaps, for a set of measure zero.

Intuitively, measure zero sets are small: a point in an interval has measure

zero, and so does a line within a plane. With this result in the background, we

can state the definition of ergodicity: a dynamical system is ergodic if and only if

16 For rigorous discussions of ergodicity and ergodic theory, see, for instance, Arnold and Avez
(1968), Cornfeld, Fomin, and Sinai (1982), and Petersen (1983).
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f �ðxÞ ¼ f for almost all x. As we will see, ergodicity is a non-trivial property

and many systems – also Hamiltonian systems – are not ergodic.

Without loss of generality, we now assume that the measure is normalised,

that is: μðX Þ ¼ 1.17 Two consequences of ergodicity are worth emphasising

because both play central roles in SM. The first consequence transpires if we

choose f to be the so-called characteristic function of a set A in X: the function

assumes value one for x that are in A and zero for x outside A. The space average

for this function is then simply the measure of A, and the time average is the

fraction of time that the system spends in A in the long run. If the system is

ergodic, it follows that for any area A in X, the fraction of time the system spends

in A is equal to the measure of A. This is illustrated in Figure 5. If, for instance,

A takes up a quarter of X, then the system will spend a quarter of its time in A in

the long run, and this is the case for almost all initial conditions.

The second consequence is that since the preceding holds for any A in X, there

cannot be a part B of the state space (with μðBÞ > 0) that the system does not

visit. As we have seen in Section 2.2, if a system has invariant hypersurfaces,

these divide the state space into disconnected areas. This is incompatible with

ergodicity, and so it follows immediately that an ergodic system must not have

invariant hypersurfaces. This is sometimes expressed by saying that ergodic

systems are ‘indecomposable’ or ‘metrically transitive’.

An important question concerns the space on which a system is ergodic. So

far we have formulated everything in terms of X, the state space of the system.

This is a choice of convenience. As we have seen, an autonomous Hamiltonian

system always has at least one conserved quantity, namely the energy of the

system, and so its motion is always confined to the energy hypersurface XE.

Figure 5 Ergodicity.

17 We can do this without loss of generality because, as we have seen, SM systems have a finite
phase space and one can then always choose the measure so that the entire space has measure
one.
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Hence, a Hamiltonian system cannot possibly be ergodic on X. This, however,

does not preclude it from potentially being ergodic on XE, or, indeed, a subspace

of XE. Crucial discussions in SM revolve around exactly this issue: whether the

system is ergodic on XE or a relevant subspace of it.

As noted, many systems are not ergodic, not even when restricting consider-

ation to the energy hypersurface XE. But now there is a surprising result. An

ergodic decomposition of a system is a partition of the state space into different

parts so that the parts are invariant under the dynamics (i.e. are mapped onto

themselves under �t) and that, for all parts (of which there can be a finite or an

infinite number), the dynamics within the part is ergodic. The ergodic decom-

position theorem makes the – intuitively surprising – statement that such

a decomposition exists for every measure-preserving dynamical system with

a normalised measure, and that the decomposition is unique. In other words, the

dynamics of a system can be as complex as we like and the interactions between

the constituents of the system can be as strong and intricate as we like, and yet

there exists a unique ergodic decomposition of the state space of the system.We

will come back to this result later in the Element.

2.6 Probability Theory

Probability is a familiar concept. We consider the probability of rain before

going out, or we consider the probability of getting the number three when

throwing a die. As we will see, in the context of SM we are interested in the

probability of a system approaching equilibrium, the probability of entropy

increasing, and the probability of finding the system in a certain state. The

theory of probability can be divided into two parts. The first part, the formal

theory of probability, develops the mathematical apparatus of probability.

The second part, the interpretation of probability, is concerned with how the

formal apparatus of the mathematical theory relates to the real world.

Let us begin with the formal theory of probability. An event space Ω is the

space of all possible events (this is also known as the outcome space). The events

in Ω are mutually exclusive. Intuitively, this space contains all basic events that

can happen. In the case of the question of whether it will rain, the space contains

the two elements, ‘rain’ and ‘no rain’, and in the case of a die it has six elements,

the numbers one, two, three, four, five, and six. From a formal point of viewΩ is

a set, and so the event space for the die is the set {1, 2, 3, 4, 5, 6}. But we may not

only be interested in basic events. When throwing a die, for instance, we may not

only be interested in getting, say, the number three, but also in events like getting

an even number or getting a number smaller than four. Such events are associated

with subsets ofΩ: getting an even number is associated with the subset {2, 4, 6}
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and getting a number smaller than four with {1, 2, 3}.We can now also form a set

of subsets. For instance, we can construct the set consisting of the sets {2, 4, 6}

and {1, 2}: {{2, 4, 6}, {1, 2}}. Let Σ be a set of subsets of Ω. The set Σ is

a sigma-algebra if and only if it satisfies the following conditions: Ω is an

element of Σ ; if s is an element of Σ , then also Ωns is element of Σ (where

‘Ωns’ denotes the complement of s with respect to Ω); and every countable

union of subsets of Ω is in Σ . A probability measure then is a function

p : Σ → ½0; 1� such that pðΩÞ ¼ 1 and pðs1 ∪ s2Þ ¼ pðs1Þ þ pðs2Þ for all

mutually exclusive events s1 and s2 in Σ , where ‘∪ ’ denotes the set union.

Or, more intuitively, a probability measure is a function that assigns every event

(basic and non-basic) a number between zero and one, and this number then is

the probability of the event.18 The triple (Ω; Σ; p) is called a probability space.

The probability of s1 conditional on s2 is pðs1js2Þ ¼ pðs1 ∩ s2Þ=pðs2Þ provided
that pðs2Þ > 0, where ‘∩ ’ denotes the set intersection.

The probability space of a die is relatively simple. Not all probability spaces

are like this. Some situations are such that the event space is continuous. As an

example, consider a dartboard. In principle, a dart can hit any point of the

dartboard. So, the event space is the entire disk that constitutes the dartboard,

which has an uncountable infinity of points. In such cases, the probability

measure is defined by a normalised function ρ on the event space via the

following equation:

pðRÞ ¼
ð
R
ρ dω; ð3Þ

where R is a subset of Ω: The function ρ is called a probability density. The

condition that ρ be normalised means that

ð
Ω
ρ dω ¼ 1: ð4Þ

In effect this is just the ‘continuous version’ of the condition that probabilities

add up to one.

Let us now very briefly turn to the second part, the interpretation of

probability.19 An interpretation of probability specifies the meaning of prob-

ability statements. Interpretations of probability fall into two groups: objective

18 These conditions are known as the axioms of probability. What we have presented here is the
standard axiomatisation of probability. There are alternative axiomatisations. Nothing in what
follows depends onwhich axioms we choose. For a discussion of alternative axiomatisations, see
Lyon (2016). For an in-depth discussion of the formal theory of probability, see, for instance,
Fine (1973).

19 We here largely follow Hájek’s (2019) classification of interpretations but concentrate on
accounts that are, at least in principle, candidates for the interpretation of SM probabilities.

15Foundations of Statistical Mechanics

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
02

27
98

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009022798


and subjective. Objective interpretations take probabilistic statements to

describe objective features of the world. If, say, the probability of obtaining

number three when throwing a die is said to be 1/6, then an objectivist sees this

as being a statement of fact. Subjectivists, by contrast, see probabilities

as credences. A credence is a degree of belief that an agent has (or ought to

have) in the occurrence of a certain event.

The foremost question for the objectivist is: what facts in the world do

probabilities describe? The two most common answers to this question are

relative frequencies and propensities. Frequentism interprets probabilities as

frequencies that are calculated in a sequence of events of the same kind.

Frequencies thereby provide a statistical summary of the distribution of certain

features in that sequence. For a frequentist, the statement that the probability for

number three is 1/6 simply means that in a sequence of throws of a die, number

three has come up in 1/6th of the cases. Frequentism comes in different versions,

the most important division being between finite and infinite frequentism.

Infinite frequentism, most prominently developed by von Mises, interprets

probabilities as limiting relative frequencies of events in sequences extended

to infinity. Finite frequentism insists that in the real world we never have infinite

sequences of events and hence interprets probabilities in terms of relative

frequencies in finite sequences. One of the main problems of finite frequentism

is that one cannot rule out that one gets an ‘atypical’ sequence of events (you

may get the number three a hundred times in a series of a hundred throws). So-

called Humean best systems accounts address this problem by requiring that

probabilities are not determined by finite frequencies alone; they also have to be

consequences of a system of laws that strikes the best balance between the

theoretical virtues of simplicity, strength, and fit. These requirements allow the

account to rule out ‘atypical’ results on the grounds of overall theoretical

considerations.

The second common objectivist interpretation takes probabilities to be pro-

pensities that are inherent in objects. Propensities are dispositions or tendencies

or powers to yield an outcome, and the strength of the propensity is described

(or quantified) by the probability. On this interpretation, there is a tendency

inherent in the die to produce the number three, and this tendency has strength

1/6. Different versions of the interpretation differ in what account of powers

they give, and a large array of options is available. A problem that all propensity

accounts have is that they do not seem to be compatible with determinism:

either processes are fundamentally driven by ‘chancy’ powers, or they are

What follows is only the briefest of sketches. Extended discussion can be found in Galavotti
(2005) and Gillies (2000); for a discussion of Best Systems accounts, see Hoefer (2019).
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deterministic, but not both.20 This is obviously a problem in the context of SM,

where, as we have seen, the underlying dynamics is deterministic.

Subjectivists, also known as Bayesians, think that both frequentism and the

propensity interpretations got started on the wrong foot because probabilities

are not descriptions of fact but rather descriptions of the state of mind of an

agent. The probabilities we attach to outcomes codify the degree of belief, or

credence, that an agent has about a certain outcome. To a subjectivist, the

statement that the probability for the number three is 1/6 means that an agent’s

degree of belief that the number three will appear is 1/6. Subjectivists fall into

two groups. Personalist Bayesians hold that probabilities are nothing over and

above the credences of suitable agents, and it is then perfectly conceivable that

two agents disagree on their probability assignments. This is what objective

Bayesians reject.21 They insist that while probabilities are degrees of belief,

probabilities cannot vary across rational agents and are uniquely determined

by the available evidence and objective methods of determining probabilities.

Among those methods, the maximum entropy principle plays an important

role. The principle says that in a situation of lack of knowledge, or ignorance,

a rational agent should set their credences so that the entropy of their prob-

ability distribution is maximal. We will encounter this principle again in

Section 4.7.

2.7 Points of Contact

Looking back at the subsections in this section, the reader may be left

under the impression that mechanics and probability theory are wholly

different and unrelated subject matters. There is a grain of truth in this: the

two theories have developed autonomously, and they can be (and are)

practiced independently from each other. However, the two theories make

contact at two points. The first point of contact is the fact that the state

space X of a dynamical system can be regarded as the event space Ω of

a probability space, and subsets of X can form its sigma algebra Σ. Indeed,
this the standard move in SM, where the events of interest are events in the state

space such as ‘the system is in state x’ or ‘the state of the system lies in blob A’.

The second point of contact is the measure μ. In Section 2.5 we noted that the

measure can be normalised without loss of generality. But a normalised measure

has the mathematical structure of a probability. It is therefore no coincidence

that in SM μ is often used to provide probabilities of events. Hence, despite

20 For a discussion of chance and determinism, see Frigg (2016).
21 The label ‘objective Bayesian’ is somewhat unfortunate because this is obviously not an

objective interpretation in the sense in which frequencies and propensities are.
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being different theories, the associations of X with Ω and of μ with p provide

a strong bridge between the two theories. Indeed, much of SM can be seen as the

attempt to articulate the exact nature of this bridge and to show how it works.

The main challenge in this endeavour is the handling of the time evolution

function �t. Not only does this function have no ‘cousin’ in probability theory; it

in fact seems to conflict with probability theory in that it introduces structures

like trajectories and invariant surfaces on X that are foreign to probability

theory, where there is no dynamics on Ω. As a result, a major challenge for

SM is to ‘harmonise’ the way probabilities are introduced with the dynamics of

the system. As we will see, different approaches do this in different ways.

3 Boltzmannian Statistical Mechanics

In current debates about SM, ‘BSM’ denotes a family of positions that take

as their starting point the approach that was first introduced by Boltzmann

in his (1877) and then presented in a streamlined form by Ehrenfest and

Ehrenfest-Afanassjewa in their (1912/1959). In this section we discuss

different contemporary articulations of BSM along with the challenges

they face.

The section is structured as follows. We begin by introducing the basic

structure of BSM that all positions that identify as ‘Boltzmannian’ share

(Section 3.1). We then discuss Boltzmann’s combinatorial argument, which is

the canonical method to construct macro-states and to identify equilibrium

(Section 3.2). This method is often combined with an explanation of the

approach to equilibrium based on ergodicity (Section 3.3). Any explanation of

the approach to equilibrium faces two immediate objections: Loschmidt’s

objection based on time-reversal invariance and Zermelo’s objection based on

Poincaré recurrence (Section 3.4). The package of the combinatorial argument

and ergodicity faces a number of difficulties, which are resolved in the

Residence Time account (Section 3.5). An alternative account aims to explain

the approach to equilibrium in terms of typicality (Section 3.6). Probabilities

have played no role in the development of BSM up to this point, and we now

review different ways of introducing probabilities into the theory (Section 3.7).

The Mentaculus is a distinctive way of resolving some of the issues that arise in

BSM, which has at its core the use of conditional probabilities combined with

what has become known as the Past Hypothesis (Section 3.8). Despite its

appeal, the framework of BSM faces a number of problems and limitations

(Section 3.9).
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3.1 The Bare Bones of BSM

All positions that gather under the umbrella of BSM share a theoretical core, and

different versions of BSM vary in how they develop this core and in what they

add to it. In this section we introduce this core.22

Boltzmannian SM distinguishes between micro-states and macro-states. The

micro-state of a system specifies the exact mechanical state of every micro-

constituent of the system. As we have seen in Section 2.1, the system’s state

space X consists of all states that the system could assume. So the system’s

micro-state at time t is simply the state x 2 X in which the system is at time t.

Intuitively, the macro-state M of a system specifies the macro-constitution of

the system in terms of variables like volume, local pressure, local temperature,

and other properties that are observable, loosely speaking, at a human scale. The

configurations shown in Figure 1 are macro-states in this sense. It is not obvious

how to characterise macro-states precisely, and we will come back to this

problem in Section 3.9. For now, we operate with an intuitive notion of macro-

states.

The core posit of BSM is that macro-states supervene on micro-states.

Consider two sets of properties, A and B. A supervenes on B if and only if two

things cannot differ in their A-properties without also differing in their

B-properties.23 A paradigmatic example comes from the philosophy of mind,

where A is the set of mental properties and B is the set of brain properties.

Supervenience then says that two people cannot have different mental proper-

ties without also having different brain properties. Boltzmannian SM posits that

the relation between macro-states and micro-states is just like this: two systems

cannot be in different macro-states without also being in different micro-states.

Or, in other words, it cannot be that the position and momenta of all molecules

in two gases are identical while the macro-conditions of the two gases are

different. For this reason, every micro-state x has exactly one corresponding

macro-state, which we call MðxÞ.
The correspondence between micro-states and macro-states typically is not

one-to-one: several micro-states can correspond to the same macro-state, mean-

ing that macro-states are multiply realisable. If, for instance, we swap the

positions and momenta of two molecules, the macro-state of the gas does not

change. It is then natural to group together all micro-states x that correspond

to the same macro-state M: XM ¼ x 2 X such that MðxÞ ¼ Mgf . XM is the

22 For discussion, see, for instance, Albert (2000), Frigg (2008b), and Goldstein (2001).
23 This basic idea can be developed in different ways, but nothing in our discussion depends on

these differences. For a survey, see McLaughlin and Bennett (2021).
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macro-region of M, which, by definition, contains all and only those micro-

states that correspond to macro-state M.

Now consider a complete set of macro-states: a set that contains every macro-

state that the system can be in. To keep things simple, assume that there is

only a finite numberm of such states.24 Let this complete set be M1; . . . ; Mmgf .

It is then the case that the set of corresponding macro-regions,

XM1 ; . . . ; XMmgf , forms a partition of X, meaning that the elements of the set

do not overlap and jointly cover X. This is illustrated in Figure 6. As in Figure 2,

the large square symbolises the state space X, and the curved thin lines symbol-

ise the partition of the state space into different macro-regions. Figure 6 also

shows that if the system under study is a gas, then the macro-states correspond

to the different states of the gas we encountered in Section 1.1.

This raises two fundamental issues that occupy centre stage in discussions

about BSM. The first issue concerns the nature and origin of macro-states. In

the previous paragraph we simply postulated that there is a complete set

M1; . . . ; Mmgf of macro-states along with the corresponding set

XM1 ; . . . ; XMmgf of macro-regions. But what is the nature of these macro-

states and where do these come from? And there is also a question about the

structure of these sets. As we have seen earlier, systems, when prepared in

a non-equilibrium state and then left to themselves, approach equilibrium. This

means that one of the macro-states in our set must be the equilibrium state. How

is this state identified, and what are its characteristics? As we have seen in

Section 2.1, the state space X comes equipped with a measure μ that allows us to

say how large a part of X is. This measure can now be used to attribute a size to

Figure 6 The state space X with the partition of macro-regions.

24 This assumption holds true in the most common way to construct macro-states, which we discuss
in the next section. In general, this is an idealisation and systems can have an infinite number of
macro-states. Nothing in this section depends on the number of macro-states being finite.
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the macro-regions and, as we will see later, it turns out to be the case that

equilibrium is the macro-state with the largest macro-region. Hence, the evolu-

tion from non-equilibrium to equilibrium can be understood as the evolution

from a smaller to larger macro-region. This is indicated in Figure 6, where the

largest macro state, XMm , corresponds to the equilibrium state of the gas, and

the smallest to its initial state.

The second issue concerns the approach to equilibrium. In the framework we

have outlined so far, an approach to equilibrium takes place if the time evolution

of the system is such that a micro-state x in a non-equilibrium macro-region

evolves so that �tðxÞ comes to lie in the equilibriummacro-region at a later point

in time, as also illustrated in Figure 6. Ideally, one would want this to happen for

all x in any non-equilibrium macro-region, because this would mean that all

non-equilibrium states would eventually approach equilibrium. The question

now is under what conditions this would be the case, and indeed, whether this is

possible at all.

Before turning to these questions, let us introduce the Boltzmann entropy SB,

which is a property of macro-states defined through the measures of their

macro-regions: SBðMiÞ ¼ kBlog½μðXMiÞ� for all i ¼ 1; . . . ;m, where kB is the so-

called Boltzmann constant. Since a system is in exactly one macro-state at any

instant of time, the Boltzmann entropy can equally be regarded as a property of

a system itself. Let M(x(t)) be the macro-state of the system at time t. The

Boltzmann entropy of the system at time t then simply is the Boltzmann entropy

ofM(x(t)). Since the logarithm is a monotonic function, the larger the measure μ

of a macro-region, the larger the entropy of the corresponding macro-state. This

implies that if the equilibrium macro-state has the largest macro-region, then it

also has the highest Boltzmann entropy. The approach to equilibrium can then

be described as a transition from low to high Boltzmann entropy.

This framework is the backbone of positions that identify as ‘Boltzmannian’.

Differences appear in how the elements of this framework are articulated and in

what is added to them. Before moving on, we would like to draw attention to an

important issue, which has implications for how the theory is developed. As

introduced so far, macro-regions are subsets of the state space X. This is how

macro-regions are standardly introduced in the literature, and we follow the

convention in this section. However, as we have seen in Section 2.2, the motion

of an autonomous Hamiltonian system is confined to the hypersurface XE,

which is a 6n – 1-dimensional subset of the full 6n-dimensional state space X.

Often – for instance in the case discussed in the next section where the equilib-

rium is given by the Maxwell–Boltzmann distribution – the equilibrium state

depends on the energy of the system (and there also might be further conserved

quantities that the equilibrium depends on). This means that all macro-states
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that the system can potentially visit given a certain initial state are defined

relative to the energy of the system (and sometimes also relative to the invariant

surfaces corresponding to other conserved quantities). In such cases, when

trying to find the equilibrium state, one has to consider macro-regions that lie

in XE rather than in X and work with a measure μE on XE rather than with the

measure μ on X (or, again, if there are further invariant surfaces, one has to find

the equilibrium macro-state by considering macro-states relative to constant

values of all invariant surfaces).25

3.2 Defining Equilibrium: The Combinatorial Argument

In his (1877), Boltzmann presented an ingenious way to address the first

issue mentioned in the previous section, to construct macro-states and to

identify equilibrium. Boltzmann’s argument focuses on the state space of

one particle of the system, which in the case of a gas has six dimensions.

Since the gas is confined to a box, the particles cannot move beyond the box

and their energy is bounded (no particle can have more than the total energy

of the gas). This means that the particle can access only a finite region of its

state space. This is the accessible region. This is schematically represented

in Figure 7, where the large rectangle symbolises the accessible region (and

beware of the schematic character of this figure: we can only draw one p and

one q axis, but the space has three p and three q axes). The micro-state of

a system is a specification of the position and momenta of all particles. As we

Figure 7 Coarse-graining on the one-particle space.

25 For a more detailed discussion of the role of macro-regions and measures on subsets of
Xwhen determining the equilibrium state, see Werndl and Frigg (2015a). In this context, note
that the measure μ on X can be restricted to XE in a natural way; for technical details, see Frigg
(2008b, 180).
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have seen, in the ‘full’ 6n-dimensional state space X this state is given by one

point. But this is not the only way to specify the state. We can equally specify the

state with n points in the 6-dimensional one-particle space. This is also illustrated

in Figure 7, where the numbered circles indicate the state of the particles: the

centre of the circle with number 1 denotes the state of particle number 1, and

so on.

The crucial move now is to introduce a grid on the space – an operation

known as coarse-graining. This grid defines coarse-grained micro-states:

two particles have the same coarse-grained micro-state if they are in the

same grid cell. We label the grid cells γ1, γ2, . . .. The cells are such that they

all have the same size. A specification of the coarse-grained micro-state of

every particle in the system is called an arrangement. That is, an arrange-

ment is a list with n entries of the following form: particle number 1 is cell

γ56, particle number 2 is in cell γ21, and so on. Again, this is illustrated in

Figure 7. At this point there is a crucial realisation: if we are only interested

in the macro properties of the gas, then an arrangement contains too much

information. This is because it is irrelevant for the system’s macro features

which particle is in which state. Whether particle number 1 is in cell γ56 and
particle number 2 is in cell γ21, or vice versa, has no effect on quantities like

the local pressure of the gas. This means that the macro-state of the gas must

be unaffected by a permutation of the particles. This means that the macro-

state of the gas only depends on the distribution of particles, a specification

of how many particles there are in each grid cell.

The core idea of Boltzmann’s approach is to determine how many arrange-

ments are compatible with a given distribution, and to define the equilibrium

state as the one for which this number is maximal. To this end, let us introduce

ni, the number of particles in cell γi, for all cells. Hence, a distribution D is

a vector ðn1; . . . ; nkÞ, where k is the number of coarse-grained micro-states.

Some elementary combinatorics then shows that the number of arrangements

that are compatible with a given distribution D is

GðDÞ ¼ n!
n1!� . . .� nk!

;

where the exclamation mark denotes the factorial (i.e. n! ¼ 1� 2� . . .� n).

Making the strong (and, as we will see, unrealistic) assumption that the particles

in the gas are non-interacting and that the energy of the gas is preserved,

Boltzmann showed that the distribution that has the largest number of compat-

ible arrangements is the one for which the ni satisfy the so-called discrete

Maxwell–Boltzmann distribution:
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ni ¼ α exp �βEið Þ;

where Ei is the energy of particle in cell γi, and α and β are constants that depend
on the number of particles and the temperature of the system (Tolman 1938/

1979, ch. 4). This is the equilibrium distribution of the gas. From

a mathematical point of view, deriving this distribution is a problem in com-

binatorics, which is why the approach is now known as the combinatorial

argument (Uffink 2007, 974).

The view that the Maxwell–Boltzmann distribution is the equilibrium distri-

bution of the gas receives independent support from an argument due to

Maxwell. Indeed, Maxwell had already derived this distribution in his (1860/

1965), and, crucially, his derivation is entirely independent from considerations

of how many arrangements are compatible with a distribution, and indeed from

a choice of coarse-graining on the one-particle space. Maxwell’s derivation was

based solely on the posit that gas particles move in the same way in all spatial

directions and that therefore the distribution function must factorise into func-

tions of the orthogonal components of their velocities. Hence, the equilibrium

distribution that the combinatorial argument provides is known to be the

equilibrium distribution for reasons that are independent of the combinatorial

argument.

These considerations concern the state space of one particle. This is different

from our considerations so far, which have all been in terms of the 6n-dimen-

sional state space X of the entire system. So the question is: what does the

combinatorial argument tell us about macro-regions in X as introduced in the

previous section? The good news is that the results translate. It is obvious that

every point in X corresponds to a distribution in the one-particle space (because

both specify the position and momenta of all particles). One can then say that all

points in X that correspond to the same distribution constitute a macro-region.

This is plausible because, as we have seen, the macro properties of the gas only

depend on the distributionD. We now need a connection between the number of

arrangements compatible with a given distribution and the measure of macro-

regions. This connection is provided by the following result:

μðXDÞ ¼ GðDÞΔn;

where XD is the macro-region associated with distribution D and Δ is the size of

a cell of the coarse-graining (as shown in Figure 7). Hence, the size of a macro-

region is proportional to the number of arrangements compatible with the

distribution associated with the macro-region. This leads directly to the desired

result: since GðDÞ is maximal for the Maxwell–Boltzmann distribution, the
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largest macro-region is the one that consists of points that correspond to that

distribution.26 This justifies the posit that we should regard the largest macro-

region as the equilibrium macro-region.27

Its ingenuity notwithstanding, the combinatorial argument faces a number of

serious issues, both technical and conceptual. The first is a consequence of the

assumption, highlighted earlier, that the particles in the gas are non-interacting,

which also implies that particles never collide. So, strictly speaking, the argu-

ment only applies to a so-called ideal gas, a gas that, by definition, consists only

of non-interacting particles. There are no ideal gases in nature, and so the

macro-state structure that results from the argument is not a true description

of any real-world system. One may say that this does not detract from its

usefulness because the ideal gas is a reasonable approximation of a dilute gas,

a gas that has a low density and in which collisions are relatively infrequent.

Even if one grants this point, this is a serious limitation. While dilute gases are

paradigmatic examples of SM systems, the scope of the theory is much larger

than that. Important applications of SM are to interacting systems like liquids

and solids, and such systems are not like ideal gases, not even approximately.

The behaviour both of solids and liquids (and even of dense gases) essentially

depends on the interaction between their micro-constituents, and a theory that is

forced to idealise these interactions away is bound to miss out on what is

essential to how real systems behave.

But what about Maxwell’s derivation? Does it not show that the Maxwell–

Boltzmann distribution is the equilibrium distribution of a gas? Yes, it does. But

it does so under the same idealisation of non-interaction as Boltzmann’s argu-

ment. That Maxwell could derive the distribution from assumptions that are

different than Boltzmann’s is remarkable in many ways, but it does nothing to

broaden the scope of the theory, which remains confined to ideal (and near-

ideal) gases.

The next issue concerns coarse-graining. As we have seen, the argument

relies on putting a specific grid on the one-particle space. And the specific grid

is essential, because the distributions and the arrangements that drive the

argument are defined in terms of the grid cells that we have seen earlier.

Furthermore, one can show that the argument does not give the correct results

for another kind of grid, namely when one instead partitions the energy levels of

26 The notion of being ‘large’ is ambiguous between being the largest part of X and being larger
than any other macro-region. The former is known as ‘dominance’ and the latter as ‘prevalence’.
Both are relevant in BSM, but in different ways. For further discussion, see Werndl and Frigg
(2015a).

27 Further to the observation in the last paragraph of Section 3.1, if one defines macro-regions
relative to XE, then the macro-regions are the intersection of XE with the areas identified in the
combinatorial argument. For details, see Frigg (2008b, 112–13).
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the particles (Uffink 2007, 977). This raises two questions. Prima facie, it seems

to be rather arbitrary to cut up the one-particle state space into different cells and

engage in combinatorial thinking with these cells. So, the first question is: what

justifies the choice of a grid to begin with? As noted, not all coarse-grainings

yield the correct result. So the second question is: what justifies the choice of the

particular grid with a partition along the position and momentum axes with cells

of equal size?

As regards the first question, one could try to justify the use of coarse-

graining by appeal to limited knowledge. Since measurement instruments

invariably have a finite resolution, we can never observe the exact value of

a physical quantity. This means that we can never know the position and the

momentum of particles precisely; all we can assert is that the result lies

within a certain range. If we choose the grid so that the cell size reflects the

precision with which we can know the position and momentum of a particle,

then the coarse-graining can be interpreted as a natural reflection on our

epistemic limitations.28 We will discuss justifications based on epistemic

considerations in more detail in Section 4.5, but we want to flag here that

such justifications are ultimately unconvincing. The equilibrium properties

of a system are physical properties in the world and as such do not depend

on what we know (or even can possibly know) about the system. A system

would have an equilibrium state, and approach that state, even if there were

no sentient observers at all, and therefore its construction cannot be depend-

ent on epistemic considerations.

This suggests that one might try to regard coarse-graining as an expedient but

ultimately dispensable mathematical ploy. For this strategy to work, one would

have to be able to get rid of the coarse-graining by making the grid smaller and

smaller until it vanishes. From a mathematical point of view this means that one

would have to be able to take the limit Δ→ 0, and the Maxwell–Boltzmann

distribution would have to be stable under the limiting procedure. This is not the

case. In fact, the combinatorial argument tacitly assumes that the number n of

particles in the gas is much larger than the number k of coarse-grained micro-

states, which ensures that all nj are large. Once we get to the point where there

are more coarse-grained micro-states than particles (which unavoidably hap-

pens in the limit Δ→ 0), each state will be occupied either by only one particle

or by none. At this point distributions become trivial in that all nj are either zero

or one (and the number of arrangements compatible with a given distribution is

always n). This is not the Maxwell–Boltzmann distribution, and so one does not

28 One might even argue that the minimal size of a cell is given by the quantum mechanical
uncertainty relations.
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recover the correct equilibrium distribution for the limit Δ→ 0. This shows that

having a finite grid with a k that is much smaller than n is a necessary condition

for the argument to get off the ground, and so the grid is not a dispensable

expedient.

Hence, there is no convincing justification of the appeal to coarse-graining.

And things do not look better as regards the second question, the quest of

a justification of the particular coarse-graining in the combinatorial argument.

One might say that the justification lies in the fact that it provides the

correct result. But this would seem to be a bit too anaemic. Coarse-grainings

are conceptually foreign to Hamiltonian mechanics, which works with

a continuous state space. If a particular grid is put on that state space to provide

the crucial result, then one would want to have an explanation of why this and

not another grid provides the correct result. As far as we know, no such

explanation is currently available.

The combinatorial argument also faces a more conceptual quandary. In our

presentation of BSM in Section 3.1 we started with macro-states

M1;…; Mmgf and then used the postulate that macro-states supervene on

micro-states to determine the macro-regions XM1 ;…; XMmgf . The combina-

torial argument reverses this order by constructing macro-regions directly

without saying anything about what the macro-states and the macro-

properties themselves look like. This disconnect is particularly striking in

the case of equilibrium. A typical thermodynamics textbook definition of

equilibrium is that a ‘thermodynamic system is in equilibrium when none of

its thermodynamic properties are changing with time’ (Reiss 1965, 3), and this

is in line with our introductory example in Section 1.1, where we said that the

gas has reached equilibrium when the gas is evenly spread out and no further

change takes place. This has very little, if anything, in common with the kind

of considerations underlying the combinatorial argument, where the equilib-

rium macro-state is the one whose distribution is compatible with the largest

number of arrangements. What is the conceptual connection between these

two ways of framing equilibrium?

Finally, the combinatorial definition of equilibrium is completely discon-

nected from the dynamics of the system. This is out of sync both with our

introductory example and with thermodynamics, where, as we have just seen,

equilibrium is seen as the final state of the autonomous time evolution of the

system. Divorcing a definition of equilibrium from the dynamics of the system

has the odd consequence that the combinatorial argument would still provide an

equilibrium state even if the time evolution of the system was the identity

function (and hence nothing would ever change, and no approach to equilibrium

would take place).
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3.3 The Approach to Equilibrium: The Ergodic Account

As we have just seen, the notion of equilibrium provided by the combinatorial

argument remains silent about the temporal evolution of a system, and so we

need an additional dynamical assumption to ensure that the system behaves

thermodynamically. In their review of SM, Ehrenfest and Ehrenfest-

Afanassjewa (‘the Ehrenfests’ henceforth) highlight this problem: they note

that there is gap between the fact that the macro-region corresponding to the

Maxwell–Boltzmann distribution is the largest macro-region and the claim that

the system approaches equilibrium and spends most of its time in equilibrium

(1912/1959, 30–31). They then note that this gap can be bridged by assuming

that the system is ergodic.29 As we have seen in Section 2.5, if a system is

ergodic, then, for almost all initial conditions, the fraction of time the system

spends in a subset A of X is equal to the proportion of A in X. We are of course

free to take A to be the equilibrium macro-region. According to the combina-

torial argument, the equilibrium macro-region is the largest macro-region in X,

and so it follows immediately that if the system is ergodic, it will spend most of

its time in equilibrium for almost all initial conditions. This is the ergodic

account of the approach to equilibrium.

The ergodic account faces a number of problems. Some of them are rooted in

the general structure of Hamiltonian systems and we will discuss these in the

next section. At this point we want to mention two problems that stem directly

from the notion of ergodicity. The first problem is that being ergodic is

a stringent condition that many systems fail to meet. This is worrying because

among those systems are many to which SM is successfully applied. For

instance, in a solid the molecules oscillate around fixed positions in a lattice,

and as a result the phase point of the system can only access a small part of the

energy hypersurface (Uffink 2007, 1017). The Kac ring model and a system of

anharmonic oscillators behave thermodynamically but fail to be ergodic

(Bricmont 2001). And even the ideal gas – one of the paradigm systems of

SM – is not ergodic (Uffink 1996b, 381). But if core systems of SM are not

ergodic, then ergodicity cannot provide an explanation for the approach to

equilibrium, at least not one that is applicable across the board (Earman and

Rédei 1996; van Lith 2001).30

29 For a discussion of Boltzmann’s original hypothesis and its problems see Sklar (1993, 159–62).
30 Attempts have been made to improve the situation through the notion of epsilon-ergodicity.

A system is epsilon-ergodic if it is ergodic only on subset Y ⊂X where μ Yð Þ ≥ 1� ε, for a small
positive real number ε (Vranas 1998). While this approach deals successfully with some systems
(Frigg andWerndl 2011), it is still not universally applicable and hence remains silent about large
classes of SM systems.
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The second worry is of a more technical nature and is known as the measure

zero problem. As we have seen, ergodicity says that ‘almost all initial condi-

tions’ are such that the fraction of time spent in A is equal to the fraction

A occupies in X. This means that that there is a set of initial conditions for

which this need not be the case, and that this set has measure zero (with respect

to μ). Intuitively this would seem to suggest that these conditions are negligible.

However, as Sklar (1993, 182–88) points out, sets of measure zero can be rather

large (remember that the set of rational numbers has measure zero in the real

numbers), and the problem is to justify why a set of measure zero really is

negligible.

3.4 Two Objections: Loschmidt and Zermelo

Some readers may have noticed that a surreptitious shift in the aims of SM has

occurred at the beginning of the previous section. When introducing the notion

of equilibrium in Section 1.1, we said that the gas has reached equilibrium when

the spreading has come to an end and no further change takes place. In terms of

the macro-regions introduced in Section 3.1 this means that the system would

have to evolve into the equilibrium macro-region and then stay there forever. In

the previous section a different quality was presented as the desired result of the

investigation, namely that the system will spend most of its time in equilibrium

for almost all initial conditions. This is obviously a more modest aim because

spending most of the time in the equilibrium region is compatible with the

system moving out of equilibrium every now and then, which is impossible if

there must be no further change once the system has reached equilibrium. This

is not a slip. The shift is deliberate. In the first instance it is a concession to

ergodicity because the more modest result is what ergodicity provides. But the

reasons for adopting the shift cut deeper: the structure of Hamiltonian mechan-

ics (Section 2.2) prevents any account of SM (irrespective of whether it appeals

to ergodicity) from ever providing more. Spending most of the time in the

equilibrium region is the best that one can hope for in a Hamiltonian system.

This is for two reasons.

The first reason is time-reversal invariance. Hamiltonian mechanics is time-

reversal invariant, and, as we have seen in Section 2.3, this means that if

a process from an initial state ðqi; piÞ to a final state ðqf ; pf Þ during timespan

Δt is allowed, then a process starting in state ðqf ;�pf Þ and ending in state

ðqi;�piÞ during timespan Δt is allowed too. Now look at Figure 6. The initial

condition x in the bottom left is ðqi; piÞ and the tip of the arrow is ðqf ; pf Þ. The
trajectory indicates that the transition from ðqi; piÞ to ðqf ; pf Þ is allowed. This
means that the transition from ðqf ;�pf Þ to ðqi;�piÞ is allowed too. Let us now
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assume that macro-regions are invariant under time reversal: if a state ðq; pÞ is in
macro-region XM , the time-reversed state ðq;�pÞ also is in macro-region

XM .
31 It then follows that if the transition (shown in Figure 6) from a small non-

equilibrium macro-region to the equilibrium macro-region is allowed by the

theory, then the reverse evolution, from the equilibrium macro-region into the

small non-equilibrium macro-region, is allowed too. In other words: systems

are allowed to evolve out of equilibrium. This observation is known as

Loschmidt’s reversibility objection because it was first put forward by

Loschmidt (1876).32

The second reason is Poincaré recurrence. As we have seen in Section 2.4,

systems with a state space of finite measure and a dynamics that is measure

preserving show Poincaré recurrence, and Poincaré recurrence implies that for

almost all initial conditions, the system will return arbitrarily close to the initial

condition infinitely many times. SM systems satisfy the conditions of the

theorem. This implies that for almost all initial conditions in a non-

equilibrium macro-region like the one in Figure 6, the system will eventually

return arbitrarily close to it. This implies that the system will return to the initial

macro-state. This is known as Zermelo’s recurrence objection because it was

first put forward by Zermelo (1896).33

In Section 1.1 we said that a key characteristic of the approach to equilib-

rium was that it seems to be irreversible: systems move from non-equilibrium

to equilibrium, but not vice versa. Both objections cut against irreversibility.

Indeed, they show that the approach to equilibrium cannot possibly be irre-

versible (at least as long as the system is Hamiltonian).34 So, the structure of

Hamiltonian mechanics forces us to reject the requirement of irreversibility,

which turns out to be too stringent a requirement. But if not irreversibility,

what requirement should systems in SM satisfy? The next best to irreversibil-

ity would seem to be the requirement that systems, when prepared in a non-

equilibrium macro-state, approach equilibrium and then spend most of their

time in equilibrium (although fluctuations away from equilibrium are permit-

ted so long as they are brief). Hence, what SM should explain is not strict

irreversibility, but the fact that systems spend most of the time in equilibrium.

The ergodic approach does this by construction.

31 We note that it is not a general feature of macro-regions that they are time-reversal invariant. But
it seems to be an assumption in the literature on the subject that the macro-regions we are
interested in happen to be time-reversal invariant.

32 For a historical discussion of this objection, see Darrigol (2021).
33 For a historical discussion, see Uffink (2007).
34 Considerations of this kind led Krylov to argue that SM cannot be founded on Hamiltonian

mechanics. For a discussion, see Rédei (1992).
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3.5 The Residence Time Account

Let us take stock. We constructed macro-regions with the combinatorial argu-

ment and appealed to ergodicity to explain why systems are in equilibriummost

of the time in the long run. We were able to dispel concerns about the absence of

irreversibility, and we established the requirement that systems approach equi-

librium and then spend most of their time in equilibrium as the reasonable goal

of SM. These successes notwithstanding, the account that has emerged so far

suffers from serious difficulties. The definition of the equilibrium state through

the combinatorial argument relies on a physically unmotivated partition; its

scope is limited to non-interacting systems; and its notion of equilibrium is

disconnected from the thermodynamic notion of equilibrium and independent

of the dynamics (and hence also provides an equilibrium state in situations in

which it should not, for instance, when the dynamics is the identity function).

The approach to equilibrium relies on the condition that systems be ergodic,

which many important SM systems fail to meet.

This should give us pause. One cannot rule out that the proofs of the

arguments in Sections 3.2 and 3.3 can be altered and generalised in ways that

avoid these problems. But prospects look dim: not only are no such generalisa-

tions known; it is indeed unclear where one would look for them. For this

reason, it would certainly be better not to have these problems to begin with.

Avoiding these problems while – somehow – retaining the important tenets of

the approach that we have discussed so far is the aim of the residence time

account, or RT account, for short (Werndl and Frigg 2015a, 2015b).

The central result we get from the combinatorial argument combined with

ergodicity is that, in the long run, the system spends most of its time in equilib-

rium. The core idea of the RT account is to reverse the order of explanation and

take this as a point of departure rather than deriving it from the combinatorial

argument plus ergodicity. That is, the RT account takes the observation that

a system spends most of its time in equilibrium to be the definition of equilibrium

and aims to retrieve other results (for instance, that the equilibrium macro-region

is the largest macro-region and that ergodic systems behave thermodynamically)

as consequences of the approach.

To develop this idea, let us introduce some notation. Consider a macro-state

M and an initial condition x at time t0 (which are as we have seen in Figure 6).

Then let fM; x be the fraction of time that a system with initial condition x spends

in the macro-region XM in the long run (i.e. for t→ ∞), where the fraction of

time is understood in the same way as in the context of the ergodic account (see

Sections 2.5 and 3.3). In Section 2.5 we encountered the characteristic function

of a set A in X: the function assumes value 1 for x that are in A and 0 for x outside

31Foundations of Statistical Mechanics
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A. We can now choose A to be the macro-region XM , and so the function

assumes value 1 for x that are in XM and 0 for x outside XM . Let us call this

function χMðxÞ. Now recall Equation (2), which gives us the time average of

a function. Plugging χMðxÞ into that equation immediately yields

fM; x ¼ limτ→∞

ðt0þτ

t0

χMð�tðxÞÞdt:

All fM; x lie in the interval [0, 1]. The time a system spends inM is the residence

time of the system in M, and fM; x is the long-run fraction of the residence time.

This gives the approach its name.

Next, let us introduce a parameter α that quantifies what fraction of time the

system spends in equilibrium in the long run. As we have seen, a system is

expected to spend most of its time in equilibrium. So we would expect α to be

close to one. However, there is a vexed question about how close is close

enough. At this point we take a minimal stance on this and only say that it

must be more than 0.5. The RT account covers all values α 2 ð0:5; 1�, and
hence one can always choose a specific value for α that meets further

requirements.

A first attempt to implement the idea announced earlier would be to say that if

the system has a micro-stateM for which fM; x ≥ α for some α 2 ð0:5; 1� and for
all x, then this macro-state is the equilibrium state of the system. This is on the

right track, but a further refinement is needed. As we have seen in the discussion

of ergodicity, not all initial conditions lie on trajectories that behave ergodically.

In fact, there can be a set of measure zero consisting of initial conditions that

behave differently. It is reasonable to make similar allowances here and not

require that fM; x ≥ α for all x. Indeed, we want to be even more liberal than the

ergodic approach and not require that the set of ‘bad’ conditions has to be of

measure zero; instead, we allow for sets that have a finite albeit small measure ε
(i.e. 0 ≤ ε ≪ 1). This amounts to saying that we require the system to behave

‘correctly’ on a subset Y of X which is such that μðYÞ ≥ 1� ε.
We are now in the position to give a definition of equilibrium: an equilibrium

exists when there is a Y (with μðYÞ ≥ 1� ε) such that the system has a macro-

state M which satisfies the condition fM; x ≥ α for all x 2 Y . To make explicit

that equilibrium thus defined depends on the values of the two parameters α and
ε one can also call this an α-ε-equilibrium, but we will mostly just call it

‘equilibrium’ for brevity.35

35 As noted in footnote 26, ‘large’ is ambiguous. This definition is based on macro-regions being
large in the sense of dominance. For a definition of equilibrium based on large in the sense of
prevalence, see Werndl and Frigg (2015a).
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It is important to note that this definition is phrased in terms of the time

a system spends in the state we call equilibrium. This is at odds with the way in

which we introduced equilibrium in Section 3.1, where we said that equilibrium

was the state with the largest macro-region, which is a definition in terms of size.

Have we left the Boltzmannian framework? No. In fact, one can prove that if

M is an α-ε-equilibriummacro-state, then μðXMÞ ≥ αð1� εÞ. Since α is usually
close to one and ε close to zero, αð1� εÞ is close to one too (Werndl and Frigg

2015b). Recall that we assumed the state space to be normalised (i.e.

μðX Þ ¼ 1), and so this means that the equilibrium macro-region is large, as

BSM would have it. Hence, we have recovered, as a theorem, the posit of BSM

that the equilibrium state is large in X.

But, some will now ask, what is the advantage of this account over the

combinatorial argument, which also provides the result that the equilibrium

macro-region is large? The answer is that the RT account has managed to shed

the most important limitations and problems of the combinatorial argument.

First, the RT account is completely general in that no assumptions about

particles and their interactions are needed. Second, it does not require

a partition of the one-particle state space and so there is no question about

how to justify the choice of a grid. Third, as we have seen, it is a problem for the

combinatorial argument that its notion of equilibrium is completely discon-

nected from the dynamics (it provides us with an equilibrium state even if

nothing moves). The RT account solves this problem by building the approach

to equilibrium into the definition of an equilibrium: an equilibrium exists only if

the dynamics and the macro-state structure are such that there is a macro-state in

which the system spends most of its time for nearly all initial conditions.36

Finally, the RT account does not require dynamical conditions like ergodicity,

and hence avoids the difficulty that many systems may not be ergodic.

This makes the existence (and nature) of an equilibrium state dependent not

only on the size of the macro-region in the state space, but also on the behaviour

of the system over time. That is, whether a macro-state with a large macro-

region is also an equilibrium state not only depends on the intrinsic features of

the macro-state, but also on the dynamics of the system. This has the conse-

quence that the macro-state characterised by the Maxwell–Boltzmann distribu-

tion may not be the equilibrium state in certain systems. In our view, this is the

correct verdict. Consider again the example of a system whose dynamics is

given by the identity function. In such a system no state that is not initially in the

macro-region characterised by the Maxwell–Boltzmann distribution will ever

move into it. In such a case it seems bizarre to call this region the equilibrium

36 So the account incorporates the minus-first law of TD, which we mentioned in Section 1.1.
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region. In general, an equilibrium state that the system never assumes, or that it

assumes only for a short time, is an oxymoron.

Does this mean that the combinatorial argument and the ergodic approach

have become obsolete? No, but in the RT account they assume a different role.

The RT account merely states the general conditions for a system to have an

equilibrium. It does not identify specific systems that meet these conditions,

nor does it characterise their details. One can see the combinatorial argument

and the ergodic approach as doing that. If the dynamics is ergodic, the macro-

region defined by Maxwell–Boltzmann distribution, XMB, is an equilibrium

state in the sense of the RT account because the state meets the condition for

ε ¼ 0 and α ¼ μðXMBÞ. Hence such a system is a concrete instance of

a system with an equilibrium in the sense of the RT account. But, and this is

the crucial point, it is only an instance. There will be other systems that meet

the conditions, and these systems can be very different from the systems

defined through the combinatorial argument plus ergodicity. So what was

initially presented as the whole of SM turns out to be just a special case.

This solves the problem of the unrealistic nature of the idealising assumptions

in the combinatorial argument. If we do not expect all systems in SM to fall

under the scope of the combinatorial argument, there is no problem with

idealising assumptions that other systems do not meet.

As we have just seen, the RT account provides general conditions on an

equilibrium state. This raises the question of the circumstances under which an

equilibrium exists. The account answers this question by providing a general

existence theorem (Werndl and Frigg 2015a, 2023). As we have seen in

Section 2.5, the ergodic decomposition theorem says that every system of the

kind we are considering in SM – irrespective of whether it is ergodic onX – has a

unique ergodic decomposition, meaning that its state space can be divided into

different parts so that the dynamics is ergodic on each part. Intuitively, the

existence theorem then says that there is an equilibrium just in case the ergodic

decomposition of the system is such that the equilibrium macro-state is largest

in size on each part of the ergodic decomposition.37 The last clause is crucial.

A macro-region can be large but not correspond to an equilibrium state because

it is located entirely in one part of the decomposition, and if the initial condition

of the system lies in other parts of the decomposition, the system will never

move into that region, no matter how large it is. One can then show that standard

examples of SM systems such as the Kac ring and the Baker’s gas that are not

covered by the combinatorial argument do indeed meet this condition and hence

37 To be precise, this has to hold with the exception of those parts of the ergodic decomposition that
are contained in the set XnY of exceptional initial conditions which are not required to approach
equilibrium.
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have equilibria in the preceding sense (Werndl and Frigg 2015b). This theorem

re-orientates the discussion about equilibrium, which should focus on finding

combinations of macro-states and dynamical conditions that satisfy the condi-

tions of the existence theorem. Finding and describing at least some of them is

a new research programme in the foundation of statistical mechanics that will

shed light on why and how systems behave thermodynamically.

3.6 Typicality

An alternative account aims to explain the approach to equilibrium in terms of

typicality. Intuitively, something is typical if it happens in the vast majority of

cases: typical lottery tickets are blanks, typical members of an orchestra have

undergone extensive musical training, and in a typical series of a thousand coin

tosses the ratio of the number of heads and the number of tails is approximately

one. As we have seen in previous sections, the macro-region of the equilibrium

macro-state is much larger than the macro-region of non-equilibrium states.

Proponents of the typicality account note that numerical considerations show

that the measure of the equilibrium macro-region is 10n times larger than the

measure of a non-equilibrium state, and if we bear in mind that the number of

molecules of a standard gas is of the order of Avogadro’s number (i.e.

n ≈ 6� 1023), we realise the discrepancy is huge. The equilibrium macro-

region therefore takes up almost the entire state space.38 This means that

equilibrium micro-states are typical in X because most states in X are equilib-

rium micro-states.

The fact that the equilibrium macro-region is large plays an important role in

all accounts we have discussed so far, and so there is no disagreement on this

point. The typicality account parts ways with other accounts in its assessment of

the work that this fact is doing. The accounts previously discussed see the

largeness – or typicality – of the equilibrium macro-region as one component

of an explanation of the approach to equilibrium, which, however, must be

supplemented with a dynamical condition such as ergodicity. The typicality

account objects that such an addition is unnecessary because the typicality of

the equilibrium macro-region is by itself sufficient to explain why systems

38 This is the standard gloss in the typicality literature; see, for instance, Goldstein (2001, 43). We
note, however, that this claim is not universally true. The formalism only shows that the
equilibrium macro-region is larger than any other macro-region, but this does not imply that it
occupies the largest part of the phase space. In fact, Lavis (2008) showed that there are systems
in which the non-equilibrium macro-regions taken together are larger than the equilibrium
macro-region even though the equilibrium region is larger than any individual non-equilibrium
macro-region. In the remainder of this section, we set this issue aside and accept the standard
gloss.
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approach equilibrium. Goldstein offers the following account of the approach to

equilibrium:39

[The energy hypersurface] consists almost entirely of phase points in the
equilibrium microstate [. . .], with ridiculously few exceptions whose totality
has volume of order 10�1020 relative to that of [the energy hypersurface]. For
a non-equilibrium phase point [x] of energy E, the Hamiltonian dynamics
governing the motion [x(t)] would have to be ridiculously special to avoid
reasonably quickly carrying [�tðxÞ] into [the equilibrium macro-region] and
keeping it there for an extremely long time – unless, of course, [x] itself were
ridiculously special. (2001, 43–4)

This passage allows for two readings.40 On the first reading, the suggestion is

that a system approaches equilibrium simply because equilibrium micro-states

are typical. This interpretation is consonant with Goldstein’s insistance that

a reliance on dynamical conditions like the basic notions of ergodic theory, in

particular ergodicity and mixing, is ‘thoroughly misguided’ (Goldstein 2001,

45). It also seems to be Zanghì’s view when he insists that ‘reaching the

equilibrium distribution in the course of the temporal evolution of a system is

inevitable due to the fact that the overwhelming majority of micro-states in the

phase space have this distribution [i.e. the Maxwell–Boltzmann distribution]’

(2005, 196; our translation).

As Uffink notes (2007, 979–80), this position is untenable from the point of

view of modern dynamical systems theory. As we have seen in Section 2.2, the

time evolution of a system depends on two factors: its initial condition x and its

Hamiltonian H. The size of parts of the state space are immaterial to the time

evolution of the system, and initial conditions do not evolve into a certain region

of the state space just because it is large. Indeed, as we have also seen in

Section 2.2, if a system has a conserved quantity, then there is an invariant

hypersurface in the state space that no trajectory can ever cross. Looking at

Figure 6, it might well be that there exists such a hypersurface separating the

macro-region in which the initial condition lies and the equilibrium macro-

region, which would prevent the system from ever reaching equilibrium.

Whether there is such a hypersurface, and more generally whether the system

evolves in a way that carries it into equilibrium, depends not only on the nature

of the equilibrium state but also on the dynamics (i.e. the Hamiltonian) of the

39 We here follow Goldstein’s (2001) discussion. There is now a sizeable literature on the topic of
typicality. For a critical discussion, see Frigg (2009, 2011) and Frigg and Werndl (2012). For
recent replies and further discussions, see, for instance, Badino (2020), Bricmont (2022),
Maudlin (2020), and Wilhelm (2022).

40 In fact, there is a third version of the typicality account, due to Lebowitz (1993), which focuses
on the internal structure of macro-regions. Mutatis mutandis, this approach faces the same
challenges as Goldstein’s. For a discussion, see Frigg (2009, 2011).
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system. Systems do not evolve into equilibrium simply because the equilibrium

macro-region is overwhelmingly large.

The second reading takes this point into account. Indeed, in the preceding

quote Goldstein says that the Hamiltonian dynamics would have to be

‘ridiculously special’ to avoid carrying an initial condition x into the equi-

librium macro-region. This clearly is a condition on the dynamics of the

system, albeit not a very informative one because Goldstein does not tell us

what he means by ‘ridiculously special’. Could one just shrug one’s shoul-

ders and dismiss this as a technicality of little conceptual or philosophical

consequence? No. Indeed, understanding the dynamical conditions that lead

to an approach to equilibrium has been one of the core concerns of SM since

its inception. The way in which this issue has been discussed has changed

over the years: in the nineteenth century the focus was on the nature of

collisions, and discussions in the twentieth century have focused on ergodic

theory. Much can be said about the different approaches that have been tried,

but one cannot exorcise this discussion and pretend that dynamics does not

matter.

So the typicality account faces a catch-22: in its simple version (the first

reading) the account is in contradiction with Hamiltonian mechanics, and in its

more nuanced version (the second reading) it has to do what it was designed to

avoid, namely engage with dynamical conditions.

3.7 Where Have Probabilities Gone?

At the beginning of Section 2 we said that SM owes its name to the fact that it

aims to integrate mechanics and probability theory into a harmonious whole.

But so far probabilities have been notable primarily for their absence. In the

statement of the basic framework of BSM in Section 3.1 probabilities were not

mentioned at all, and they have not played a role in later sections either. So we

may wonder: where have probabilities gone? The absence of probabilities so far

is not an oversight. BSM is a theory that focuses on mechanical properties and

that sees probabilities as emerging from these. In this section we discuss how

probabilities arise from the mechanical properties of BSM systems, and how

they can be interpreted.

A first way of introducing probabilities was suggested by Boltzmann in

connection with the combinatorial argument. Boltzmann was concerned with

the probability of a certain distribution D ¼ ðn1; . . . ; nkÞ and stated:

The probability of this distribution is then given by the number of permuta-
tions of which the elements of this distribution are capable, that is by
the number [G(D)]. As the most probable distribution, i.e. as the one
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corresponding to thermal equilibrium, we again regard that distribution for
which this expression is maximal [. . .]. (1877, 187)41

In other words, Boltzmann posits that the probability of a certain distributionD,

p(D), is proportional to G(D). As we have seen in Section 3.2, distributions

determine macro-states, and the size of a macro-state is proportional to G(D)

(via the relation μðXDÞ ¼ GðDÞ Δn). So it follows immediately that the prob-

ability of a macro-state is proportional to its size: pðDÞ ¼ μðXDÞ.42 Let us call
this the proportionality postulate.

The question now is how these probabilities should be interpreted. As we

have seen in Section 2.6, there are three main options available: frequencies,

propensities, and credences. For a propensity interpretation one would need to

work out a specific account showing how propensities are compatible with the

deterministic dynamics of SM systems, and, as noted in Section 2.6, there is

a question as to whether this is possible. At any rate, we are not aware of

a worked-out account interpreting the probabilities given by the proportionality

postulate as propensities. Credences are a possible interpretation, but subjectiv-

ism is generally regarded as problematic in the context of SM because the

processes SM describes seem to be part of nature and hence would have to

unfold as they do irrespective of what someone happens to know about them.

We further discuss subjectivism in the context of GSM in Section 4.7.

This leaves frequentism. As we have seen in Section 2.5, if a system is

ergodic, the amount of time it spends in a certain region of the state space is

equal to the (normalised) measure of that region. Frequencies seem to be closely

related to time averages. So, under the assumptions that the system is ergodic

and that we can assimilate time averages to frequencies, the probability of

a distribution p(D) can be interpreted as the average time that the system spends

in D in the long run. The crucial question for this interpretation is whether it is

legitimate to regard time averages as a version of frequencies. At first blush,

infinite time averages seem to be the ‘continuum version’ of infinite relative

frequencies, which are the core of von Mises’ frequentism. However, on closer

inspection it turns out that time averages are rather different from relative

frequencies, and hence there is a question whether, once all the details are

spelled out, they really fit the mould of frequentism.43 The remaining question

then is whether finite frequentism, in particular in its Humean best systems

version, fits the bill. To the best of our knowledge, this is largely an open

question.

41 This and subsequent quotes from Boltzmann are our own translations. Square brackets indicate
that Bolzmann’s notation has been replaced by the notation used in this Element.

42 Recall that we assume the measure to be normalised.
43 For a discussion of this point, see von Plato (1988, 262–5; 1989, 434–7).
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Let us set interpretations aside and return to the issue of how to define

probabilities in BSM. The proportionality principle anchored probabilities in

the size of macro-regions. An entirely different approach is to locate probabil-

ities in the initial conditions. In processes like the spreading of a gas, the system

starts in a small macro-region like XM1 (shown in the bottom left corner of

Figure 6). Every trajectory has a particular initial condition, and the dynamics

specifies how initial conditions evolve in time. The dynamics is, however, silent

about where the initial conditions themselves come from. This allows us to say

that a system assumes a certain initial condition with a certain probability. Let us

call this probability distribution ξ. A common assumption is that the probability

of a system having a particular initial condition is simply the measure μ
restricted to the initial macro-region. Assuming this region is XM1 , this measure

is ξ ¼ μ=μ ðXM1Þ. If μ is the uniform measure over X, then this is the uniform

measure over XM1. An alternative proposal is to prepare the system in the same

initial macro-state many times and then fit a probability distribution δ through

the initial conditions in which the system happens to be. We then have ξ ¼ δ.

The distribution δ may or may not be identical to μ=μ ðXM1Þ.44 Once one has

a probability distribution over initial states, the probability of a system behaving

thermodynamically is ξðTÞ, where T is the subset of XM1 consisting of all initial

conditions that lie on trajectories that behave thermodynamically.

As in the preceding account, the next question is how to interpret these

probabilities. In principle, all options are on the table, and a propensity

interpretation enjoys the advantage that no conflict with determinism has to

be resolved because the selection of initial conditions is not governed by

the system’s deterministic laws. Furthermore, distributions of this kind

have been discussed widely in the literature on the Humean best systems

interpretation of probability, and they do lend themselves to an interpret-

ation in these terms.45

3.8 Conditional Probabilities and the Mentaculus

Let us now return to Boltzmann’s proportionality postulate. After spelling out

the postulate, Boltzmann then aims to explain the approach to equilibrium

through systems having a tendency to evolve from unlikely macro-states to

more likely macro-states and finally to the most likely macro-state: ‘In most

cases the initial state will be a very unlikely state. From this state the systemwill

44 For a discussion of producing probability distributions in this way, see Leeds (1989) and Werndl
(2013).

45 For an interpretation of these probabilities and Humean best systems probabilities, see Frigg and
Hoefer (2015).
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steadily evolve towards more likely states until it has finally reached the most

likely state, i.e. the state of thermal equilibrium’ (Boltzmann 1877, 165).

Where does this tendency come from? It does not follow from the probabil-

ities in the proportionality postulate themselves. The probabilities introduced in

the proportionality postulate are unconditional probabilities, and as such they

do not imply anything about the succession of macro-states, let alone that

macro-states of low probability are followed by macro-states of higher prob-

ability. To illustrate this problem, consider a loaded die which is such that

getting number 6 has probability 0.25 and all other numbers have probability

0.15. This reasoning would suggest that after throwing the number four, one

would expect to get the number six because it is the more likely number. But this

is not the case. In fact, we should expect not to get the number six because

getting six is less likely than getting another number. But, a critic might reply,

this example is misleading because it does not take into account that the

equilibrium state is overwhelmingly more likely than other states. So the die

would have to be loaded so that the probability for the number six is 0.99 and the

probabilities for the other numbers is 0.002. This does not help. It is now true

that we are overwhelmingly likely to get the number six at the next throw, but

this has nothing to do with the result of the previous throw. There is no

progression from less likely to more likely.

What we need to do to make sense of Boltzmann’s claims are conditional

probabilities. Specifically, we need temporal conditional probabilities, also

known as transition probabilities. Let us begin by introducing these at

a general level. Consider two blobs A and B in the state space X as shown in

Figure 8 and ask the question: assuming that the state of the system is in A at

time t, what is the probability of it being in B at later time t þ τ for some finite

time τ? To answer this question, let us introduce the set �-τðBÞ. Intuitively, this
is the set Bmoved backward in time for the period τ; formally it is the set of all

states in X that evolve into B during τ (i.e. ��τðBÞ ¼ x 2 X: �τðxÞ 2 Bgf ).

Figure 8 Conditional probabilities in the state space.
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Given that the time evolution �t of the system is deterministic, all states that

were in A at t and are in B at time t þ τ lie in ��τðBÞ∩A. This is the wavy area in

Figure 8. If we now assume that we have a probability measure η on X, one

finds that the probability of the system being in B at time t þ τ given that it was
in A at t is ηð��τðBÞ∩AÞ.

No assumption about the nature of A and B has been made, and so we can take

A to be a macro-region XMi and B to be another macro-region, XMj . The

preceding formula then gives us the conditional probability that a system is in

macro-state Mj at time t þ τ given that it was in Mi at t. This prescription is

completely general and can, in principle, be used in any version of BSM,

including the ergodic approach and the RT account.

For the prescription to yield results, we have to specify what the measure η is.
There are many options, but a particularly important one results from the

approach to probability that we discussed at the end of the previous section,

where we put a probability measure ξ over the initial macro-region of the

system. With this in mind, we can introduce a measure on X through the rule

ηðRÞ ¼ ξð��tðRÞÞ, for all subsets R in X, where t is the total time that has

elapsed since the process started at the initial time t0. This has the important

consequence that the measure of the area ηð��τðBÞ∩AÞ at time t is given by the

measure ξ over the initial macro-region. This allows us to state temporal

conditional probabilities and calculate their values based on the probability

distribution over the initial macro-region.

We can now return to Boltzmann’s statement (in the quotation at the beginning

of the section) that the systemwill steadily evolve towards more likely states until

it reaches equilibrium. Recall that for Boltzmann the likelihood of amacro-state is

proportional to the size of its macro-region and that the Boltzmann entropy is

a monotonic function of the size of macro-regions. Having temporal conditional

probabilities at hand, the statement can then be recast as the claim that for any

non-equilibrium macro-state, the system is highly likely to evolve toward

a higher-entropy macro-state in the future, until the system reaches equilibrium.

This gives us the tendency that Boltzmann was after.

In this reading, Boltzmann makes a claim about conditional probabilities,

specifically that the conditional probabilities for lower-to-higher entropy transi-

tions are high (ideally close to one), while the probabilities for ‘athermodynami-

cal’ transitions from higher-entropy to lower-entropy states are low (ideally close

to zero). This raises the question whether the probabilities indeed work out in this

way. We say more about it shortly. At this point we just note that this is in no way

a given. Just as it depends on the nature of its dynamics whether a system behaves

thermodynamically, it depends on its dynamics whether the conditional probabil-

ities are such that lower-to-higher entropy transitions are highly likely.
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If we now look back at the accounts we have discussed in this section, we

notice that a conceptual question has arisen: what does it take to justify

thermodynamic behaviour? There are different answers on the table. The

ergodic account, the RT account, and the typicality account remain silent

about the nature of the approach to equilibrium and only require that systems

do approach equilibrium and spend most of their time in it. This is compatible

with the approach to equilibrium exhibiting entropy fluctuations, and it does not

imply a uniform progression from lower- to higher-entropy macro-states. By

contrast, in the account that Boltzmann seems to endorse, the system is required

to exhibit a progression from lower- to higher-entropy macro-states, which

makes a monotonic increase of the Boltzmann entropy highly likely. This is

a more stringent requirement than the requirement that a system must approach

equilibrium and stay there most of the time.Which of these options is preferable

is an interesting question for future research.

The challenge of explicating why transition probabilities for macro-states are

such that a transition toward a higher-entropy macro-state is highly likely is

a problem that is taken up in Albert’s (2000) account of BSM. The key

ingredient to address this challange is what Albert calls the statistical postulate,

the posit that ‘the right probability distribution to use for making inferences

about the past and the future is the one that’s uniform, on the standard measure,

over those regions of phase space which are compatible with whatever other

information – either in the form of laws or in the form of contingent empirical

facts – we happen to have’ (Albert 2000, 96). In formal terms this means that if

we know that the state of a system is in set P and we want to know what the

probability is that it is also in set Q, which is a subset of P, then the right

probability is μðQÞ=μðPÞ, where μ is the uniform measure.

Now focus on a macro-state M. Since every point lies on exactly one

trajectory, we can separate the micro-states in XM into those that evolve

into a higher-entropy macro-state when they leave XM and those that move

into a lower-entropy macro-state when they leave XM . Let us call these sets

Xþ
M and X –

M respectively. The statistical postulate then says that the probabil-

ity of a system in M evolving toward a higher-entropy macro-state is

μðXþ
M Þ=μðXMÞ.

To make good on Boltzmann’s tendency law, it would have to be the case

that μðXþ
M Þ=μðXMÞ is high (ideally close to one) for all non-equilibrium

macro-states. But now a nasty problem turns up. Due to the time-reversal

invariance of the Hamiltonian dynamics, it is the case that whenever

μðXþ
M Þ=μðXMÞ is high – and it is highly likely that the system will evolve

into a higher-entropy macro-state in the future – it is also highly likely that

the system has evolved into the current macro-state M from a macro-state of
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higher entropy. In other words, if the entropy is highly likely to increase in

the future, it is also highly likely to have decreased in the past. This means

that entropy has most likely decreased when the system moved intoM, which

contradicts the idea that a system evolves from a low-entropy condition to

equilibrium.

Albert suggests solving this problem by taking the system under study to be

the entire universe and then conditionalising on the so-called past hypothesis,

the assumption ‘that the world first came into being in whatever particular low-

entropy highly condensed big-bang sort of macrocondition it is that the normal

inferential procedures of cosmology will eventually present to us’ (2000, 96).

Let us call this state the past state Mp. If you look back at Figure 6 and assume

that the system is the entire universe, then the past state would be XM1– the small

macro-state in the lower left corner of the figure where the system starts its

evolution.

To see how conditionalising on the past hypothesis solves the problem with

a high-energy past, let us return to our discussion about conditional probabil-

ities. As noted, we are free to pick A and B as we like. By assumption, the system

was in the past state Mp when the universe came into being and it is in macro-

state M now. So we know that the micro-state of the system at time t is in

It :¼ �tðXMpÞ∩XM . Let this be our set A. What we want is that at a later time the

system is in a macro-state of higher entropy. So let us define η ¼ μ=μðItÞ. Now
choose B to be Xþ

M , which we have introduced earlier. The conditional probabil-

ity of a higher-entropy future then is ηðXþ
M ∩ ItÞ.46 Albert argues that if we make

the further (strong) assumption that ‘abnormal’ states – states with low-entropy

futures – are scattered all over XM , then a high-entropy future is highly likely.

This is the desired result: as time evolves, transitions to states of higher entropy

are highly likely while the system has a low-entropy past, as it should.

This approach to SM is based on three core elements: the deterministic time

evolution of the system given by �t, the past hypothesis, and the statistical

postulate. Together they result in the assignment of a probability to propositions

about the history of a system. Albert (2015) calls this triad the Mentaculus. He

regards the Mentaculus not only as an account of thermodynamic phenomena,

but as the backbone of a complete scientific theory of the universe because the

Mentaculus assigns probabilities to propositions in all sciences (and recall that

the approach takes the system under investigation to be the entire universe).

46 For a discussion of the technical aspects of the postulate, see Frigg (2010).

43Foundations of Statistical Mechanics

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
02

27
98

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009022798


This raises all kind of issues about the nature of laws, reduction, and status of the

special sciences, which we cannot cover in this Element.47

It is important to note that it is not a general fact about Hamiltonian systems

that a high-entropy future is highly likely. As with other requirements concern-

ing the evolution of systems, it will depend on the dynamics of the systems

whether they hold. Albert’s discussion proceeds under the assumption that

systems of interest are such that they do provide the correct transition probabil-

ities, but, as in other accounts, one would like to gain a better understanding of

the dynamical conditions under which this is indeed the case. To the best of our

knowledge, this question is largely unexplored, but an answer to it would be

important to assess the merits of Albert’s account.

Let us now comment on some further issues related to the Mentaculus.

A crucial ingredient of the Mentaculus is the past hypothesis. The idea of

grounding thermodynamic behaviour in a cosmic low-entropy past can be

traced back to Boltzmann (Uffink 2007, 990) and has since been advocated by

prominent physicists like Feynman (1965, ch. 5) and Penrose (2006, ch. 27).

This raises two questions: first, can the past hypothesis be given a precise

formulation that serves the purpose of SM, and, second, does the fact that the

universe was created in this particular state require an explanation?

As regards the first question, Earman cast the damning verdict that the past

hypothesis is ‘not even false’ (2006) because in cosmologies described in

general relativity there is no well-defined sense in which the Boltzmann entropy

has a low value. A further problem is that in the Mentaculus the Boltzmann

entropy is a global quantity characterising the entire universe. But, as Winsberg

points out, the fact that this quantity is low does not imply that the entropy of

a particular small subsystem of interest is also low, and worse, just because the

overall entropy of the universe increases it need not be the case that the entropy

of a subsystem also increases (2004a). The source of these difficulties is that the

Mentaculus takes the entire universe to be the relevant system. So one might try

get around them by reverting to laboratory systems (like gases in a box) and then

take the past state simply to be the state in which such a system is prepared at the

beginning of a process. This leads to the so-called branch systems approach,

which owes its name to the fact that a system is seen as ‘branching off’ from the

rest of the universe when it is isolated from its environment and prepared in

a non-equilibrium state (Davies 1974; Sklar 1993, 318–32). Albert (2000)

dismisses this option for a number of reasons, chief among them that it is not

47 We refer the reader to Frisch (2011), Hemmo and Shenker (2022), and Myrvold et al. (2016) for
discussions.
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clear why one should regard the statistical postulate as valid for such a state (see

Winsberg (2004b) for a discussion).

As regards the second question, Chen (2023), Goldstein (2001), and Loewer

(2001) argue that past hypothesis has the status of a fundamental law of nature.

Albert seems to regard it as something like a Kantian regulative principle in that

its truth must be assumed in order to make knowledge of the past possible at all.

By contrast, Callender and Price regard the past hypothesis as a contingent

matter of fact, but they disagree on whether this fact stands in need of an

explanation. Price (2004) argues that it does because the crucial question in

SM is not why entropy increases but rather why it ever got to be low in the first

place. Callender (2004) disagrees: the past hypothesis simply specifies initial

conditions of a process, and initial conditions are not the kind of things that need

to be explained (see also Sklar (1993, 309–18)). Parker (2005) argues that

conditionalising on the initial state of the universe does not have the explanatory

power to explain irreversible behaviour. Baras and Shenker (2020) and Farr

(2022) analyse the notion of explanation that is involved in this debate and argue

that different questions are in play that require different answers.

Another question that still needs to be settled is how the probabilities given

by the formula μðXþ
M ∩ ItÞ=μðItÞ should be interpreted. As discussed in the

previous section, to get a propensity interpretation off the ground one would

need to work out a specific account showing how propensities can be consistent

with determinism. Loewer (2001) suggested interpreting such probabilities as

so-called Humean objective chances in Lewis’ (1986) sense. Frigg (2008a,

2010) identifies some problems with this interpretation, and Frigg and Hoefer

(2015) formulate an alternative Humean account that is designed to overcome

these problems.48

3.9 Open Problems

BSM enjoys great popularity in foundational debates due to its clear and

intuitive theoretical structure. Nevertheless, BSM faces a number of problems

and limitations.

The first problem is that BSM only deals with closed systems that evolve

under their own internal dynamics. As we will see in in the next section, GSM

successfully deals with systems that can exchange energy and even particles

with their environments, and systems of this kind play an important role in SM.

Those who think that SM only deals with the entire universe can set this

problem aside because the universe (arguably) is a closed system. However,

those who think that the objects of study in SM are laboratory-size systems like

48 For further discussion, see, for instance, Myrvold (2021).

45Foundations of Statistical Mechanics

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
02

27
98

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009022798


gases and crystals will have to address the issues of how BSM can accommo-

date interactions between systems and their environments, which is a largely

ignored problem.

A second problem is that even though macro-states are ubiquitous in discus-

sions about BSM, little attention has been paid to a precise articulation of

what these states are. There is loose talk about how a system looks from

a macroscopic perspective, or there is a vague appeal to thermodynamic vari-

ables. However, by the lights of thermodynamics, variables like pressure and

temperature are defined only in equilibrium and it remains unclear how non-

equilibrium states, and with them the approach to equilibrium, should be

characterised in terms of thermodynamic variables.49 Frigg and Werndl

(2023) suggest solving this problem by defining macro-states in terms of local

field variables, but the issue needs further attention.

A third problem is that current formulations of BSM are closely tied to

deterministic classical systems (Section 2). Some versions of BSM can be

formulated based on classical stochastic systems (Werndl and Frigg 2017a).

But the crucial question is whether, and if so how, a quantum version of BSM

can be formulated. Dizadji-Bahmani (2011) discusses how a result due to

Linden et al. (2009) can be used to construct an argument for the conclusion

that an arbitrary small subsystem of a large quantum system typically tends

towards equilibrium. Chen (2020) formulates a quantum version of the

Mentaculus, which he calls the Wentaculus. These early steps have not yet

resulted in a comprehensive and widely accepted formulation of a quantum

version of BSM, and the formulation of such a version remains an understudied

topic. Goldstein, Lebowitz, Tumulka, and Zanghì (2020) describe a quantum

analogue of the Boltzmann entropy and argue that the Boltzmannian conception

of equilibrium is vindicated also in quantum mechanics by recent work on the

thermalisation of closed quantum systems. Albert (2000, ch. 7) suggested that

the spontaneous collapses in the so-called GRW theory, a particular approach to

quantum mechanics, could be responsible for the emergence of thermodynamic

irreversibility. Te Vrug, Tóth, and Wittkowski (2021) put this proposal to test in

computer simulations and found that GRW collapses do not always lead to

thermodynamic behaviour and that therefore the GRW theory does not provide

an explanation of irreversible behaviour.

A further question concerns phase transitions. As a matter of fact, phase

transitions are usually discussed within GSM, and there is a question about how

they can be understood and discussed in BSM. A natural definition would be

49 A related issue is that temperature is always defined as kinetic energy, and this definition is stated
for the ideal gas. There is a question as to whether this definition is cogent also for systems other
than ideal gases.
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that a phase transition occurs if an equilibrium value changes very rapidly in

response to a change in an external parameter (or discontinuously if we consider

an infinite limit). However, there is an interesting and underexplored question

whether all important results about phase transitions that can be derived in the

Gibbsian framework can be recovered from this definition.

Finally, there is no way around recognising that BSM is mostly used in

foundational debates, but it is GSM that is the practitioner’s workhorse.

When physicists have to carry out calculations and solve problems, they

usually turn to GSM, which offers user-friendly strategies that are often

absent in BSM. So either BSM has to be extended with practical prescrip-

tions, or it has to be connected to GSM so that it can benefit from its

computational methods (for a brief discussion of the latter option see

Section 4.8).

4 Gibbsian Statistical Mechanics

‘Gibbsian Statistical Mechanics’ is an umbrella term covering a number of

positions that take Gibbs’ (1902/1981) as their point of departure. In this

section, we introduce the framework and discuss different versions and articu-

lations of it, along with the issues they face.

The section is structured as follows.We begin by introducing the formalism of

GSM and its most common interpretation, the ensemble interpretation

(Section 4.1). The Averaging Principle plays an important role in GSM. Yet

there are questions about how exactly this principle should be articulated.

A classical albeit unsuccessful articulation is based on ergodicity (Section 4.2).

Probabilism offers an alternative interpretation of the formalism of GSM

(Section 4.3). Assuming probabilism, an articulation of the Averaging

Principle in terms of fluctuations being small can be given (Section 4.4).

Understanding the approach to equilibrium in GSM faces two main obstacles:

that the entropy is a constant of motion and that equilibrium is defined in terms of

stationarity (Section 4.5). A traditional way to get around these difficulties is to

introduce a coarse-graining on the state space (Section 4.6). An alternative

solution is to give up the assumption that systems are isolated and see the

approach to equilibrium as the result of outside influences on the system

(Section 4.7). The epistemic account interprets SM not as a description of mind-

independent systems but as an account of our state of knowledge about them

(Section 4.8). There is an important question about how to understand the

relation between GSM and BSM, and different proposals have been made

(Section 4.9). We end by summarising open problems for GSM (Section 4.10).
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4.1 A Primer on GSM

Like BSM, GSM starts with the dynamical system ðX ; �t; μÞ introduced in

Section 2.1. But this is where the commonalities end. Rather than partitioning

the phase space into macro-regions, GSM starts by introducing probabilities. In

Section 2.6 we introduced the formal apparatus of probability theory, and in

Section 2.7 we saw that one of the points of contact between probability theory

and mechanics is that the mechanical state space X can serve as the event space

Ω of probability theory. This is exactly what happens in GSM, which puts

a probability density function, often referred to as a ‘distribution’, on X. In

principle the probability density function can depend on time, and to make this

dependence explicit we write ρtðxÞ.
Since ρtðxÞ is a probability on X, it follows immediately that the probability at

time t of a region R in X is

ptðRÞ ¼
ð
R
ρtðxÞ dx; ð5Þ

where the ‘R’ below the integration sign indicates that we are integrating over R.

The distribution evolves under the dynamics of the system through the law

ρtðxÞ ¼ ρ0ð��tðxÞÞwhere ρ0 is the distribution at the initial time t0 and ��tðxÞ is
the micro-state that evolves into x after time t. If we trace R’s time evolution,

Rt :¼ �tðRÞ, then ptðRtÞ is the same for all t: dptðRtÞ=dt ¼ 0.50

At the macro-level, a system is characterised by macro-variables, which are

functions f : X → ℝ, where ℝ are the real numbers. With the exception of

entropy and temperature (to which we turn in the following discussion), GSM

takes all physical quantities to be represented by such functions. The so-called

phase average of f is

〈f 〉¼
ð
X
f ðxÞρtðxÞdx; ð6Þ

where the integration is over the entire state space X.51

GSM also introduces a notion of entropy, now known as the Gibbs entropy:

SG ¼ – kB

ð
X
ρtðxÞlog½ρtðxÞ�dx; ð7Þ

which is a property of the probability density function ρtðxÞ.

50 It can be proven that this is the case if and only if the so-called Liouville equation is satisfied.
51 The term ‘phase average’ is owed to the fact that, as noted in Section 2.2, the state space of

a Hamiltonian system is also known as the ‘phase space’. ‘State space average’would be a better
term, but since ‘phase average’ is common in the literature, we stick with it.
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A distribution is called stationary if it does not change over time, that is,

ρtðxÞ ¼ ρ0ðxÞ for all t. If the distribution is stationary, Gibbs says that the

system is in ‘statistical equilibrium’ (1902/1981, 6). If a system is in statistical

equilibrium, then 〈 f 〉 does not depend on time. Stationarity is therefore what

defines equilibrium in GSM. In this case we simplify notation and only write

ρðxÞ. We note, and this will be important later on, that Gibbs’ statistical

equilibrium is a condition on a probability distribution and not on a physical

system per se.

It is a simple result in Hamiltonian dynamics that a distribution that is

a function only of the HamiltonianH is stationary and therefore an equilibrium

distribution. That is, all distributions of the form ρðxÞ ¼ ρðHðxÞÞ are equi-

librium distributions. This is a very large class of distributions, and there is

a question about which of these characterise physically relevant situations.

Gibbs discusses this problem at length and formulates three distributions

which are still used today: the microcanonical distribution for isolated sys-

tems, the canonical distribution for systems with fluctuating energy, and the

grand-canonical distribution for systems with both fluctuating energy and

fluctuating particle number. Since nothing in what follows depends on the

exact form of these distributions, we will not state them here. For formal

definitions of these distributions, see, for instance, Tolman (1938/1979) and

Lavis (2015), and for philosophical discussions, see Davey (2008, 2009) and

Myrvold (2016).

So far, our discussion has been couched in purely formal terms. But if GSM

is to be a theory of physical systems rather than a piece of mathematics, it must

be interpreted in physical terms. This requires, first, that we interpret ρtðxÞ in
one of the ways outlined in Section 2.6 and, second, that we say what the

empirical predictions of the theory are. As we will see, these problems are

closely related, and a response to one has implications for a response to the

other.

Let us start with ρtðxÞ. As we have seen in Section 2.6, once probabilities

are introduced mathematically through the axioms of probability, they must

be interpreted in terms of something non-mathematical to connect the formal

apparatus to a domain of scientific investigation, with relative frequencies,

propensities, and the codification of ignorance being the most common

interpretations. In the context of GSM, the question of interpretation is

fraught with difficulties. We will discuss these difficulties at length in later

sections, but before doing so it is worth introducing Gibbs’ own answer in

some detail because it still is the preferred interpretation in many textbooks,

and it provides the backdrop against which contemporary discussions are

conducted.
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Gibbs answers the question of interpretation in terms of an ensemble, which

he introduces thus: ‘Let us imagine a great number of independent systems,

identical in nature, but differing in phase, that is, in their condition with respect

to configuration and velocity. The forces are supposed to be determined for

every system by the same law, being functions of the coördinates of the system’

(1902/1981, 5).

Hence, an ensemble is an imaginary collection of systems of the kind we are

interested in, or, as Schrödinger puts it, a collection of ‘mental copies of the one

system under consideration’ (1952/1989, 3). It is crucial not to conflate an

ensemble with a collection of micro constituents of a system. Of course, one

could say that a gas is an ensemble of molecules. But that is not the intended

meaning of ‘ensemble’ in GSM. An ensemble, as introduced by Gibbs, is

a collection of imaginary copies of the entire gas, not a collection of molecules.

Hence, ensembles are not physical objects: ensembles have no spatiotemporal

existence, and there is no physical interaction between members of an

ensemble.

The systems in the ensemble have the same state space X and the same

time evolution �t, but they can differ in their state x at a given time t. Since

an ensemble is a collection of systems, one can ask ‘how many’ systems

there are in a certain part of X. The distribution ρtðxÞ can be seen as

providing an answer to this question because it can be interpreted as

encoding what proportion of systems in the ensemble are in states that

are located in a certain subset of X. In formal terms, we can then interpret

the integral in the right-hand side of Equation (5) as the fraction of systems

in the ensemble whose state is in R at time t. If, for instance, the value of

the integral is 0.6 at time t, this means that at that time 60 per cent of the

systems in the ensemble are in a state that lies in R. In this way ρtðxÞ can be

seen as describing the ensemble, and for this reason the averages defined in

Equation (6) are then referred to as ‘ensemble averages’.

If, as a next step, one also adopts some sort of frequency interpretation of

probability, this fraction translates into a probability: if the fraction of

systems in R is y, then the probability of finding a randomly chosen system

in R is y. The idea here is that an ensemble is like an urn with balls of

different colours. If, say, 35 per cent of the balls in the urn are red, then in

a long sequence of random draws from the urn we will find that the relative

frequency of red balls is 0.35, and therefore the probability of drawing a red

ball is 0.35. Gibbs explicitly endorses such an interpretation when he

comments that ‘[w]hat we know about a body can generally be described

most accurately and most simply by saying that it is one taken at random
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from a great number (ensemble) of bodies which are completely described’

(Gibbs 1902/1981, 163).52

Gibbs’ condition of ‘statistical equilibrium’ is then a condition on the state of

the ensemble which says that the ensemble is in equilibrium if the probabilities

for certain events do not change. Hence, equilibrium now appears as a property

of an ensemble rather than of an individual system. This is a curious shift. We

set out to understand how systems – physical objects like gases in containers –

behave, and we end up talking about ensembles – imaginary collections of

mental copies of such systems. These are obviously different things and so at the

very least, there is a question about how the study of ensembles bears on the

study of systems. In particular, what do calculations performed on an ensemble

tell us about the properties of a system? Or, put in terms of experiments, what do

ensemble calculations tell us about experimental results?

This brings us to the second question for GSM, namely what the empirical

predictions of the theory are. A standard answer appeals to averaging. In their

textbook on SM, Pathria and Beale formulate the position as follows: ‘the

ensemble average of any physical quantity f is identical to the value one expects

to obtain on making an appropriate measurement on the given system’ (Pathria

and Beale 2011, 31, original italics), and they call this the ‘most important

result’ in SM (ibid.). The practice of calculating averages and associating them

with measurement outcomes is also called phase averaging. Prescriptions like

Pathria and Beale’s are common in the literature on GSM, although different

authors give different formulations of the prescription, and they add different

qualifications and restrictions.53 We will discuss some of these in later sections.

Such a discussion is aided by having a general formulation of the prescription.

This formulation is what we call the Averaging Principle (AP): under condition

C, when measuring the physical quantity represented by function f on a system

in thermal equilibrium, the observed equilibrium value of the property is

expected to be the average 〈 f 〉 of an ensemble in ensemble-equilibrium.

The content of this principle is underdetermined in three ways. First, ‘condi-

tion C’ is a placeholder and a full specification of C will have to be given.

Second, since the principle appeals to measurements, a theory of measurement

will have to be supplied. Third, what does it mean for results to be ‘expected’?

Resolving these underdeterminations amounts to offering an articulation of the

principle. As we will see, different schools of thought offer different articula-

tions, and as of yet there is no universally accepted version of AP.

52 Gibbs is no exception. This interpretation is repeated in many textbooks. For references, see
Frigg and Werndl (2021, 121–2).

53 For extensive references to textbooks on this matter, see Frigg and Werndl (2021, 109–10).
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Filling these gaps is a significant task, but notice that they add up to only half

of the issues that GSM faces. In Section 1.1 we said that the core task for SM is

to characterise the state of equilibrium and to account for why, and how,

a system approaches equilibrium. So far we have only dealt with equilibrium,

and how to conceptualise non-equilibrium in GSM is still an open question. We

turn to this issue in Sections 4.5 to 4.8.

At the end of Section 3 we noted that the lack of a quantum version of BSM is

a significant lacuna. GSM does not face this problem. In fact, there is a well-

developed quantum version of GSM that is a cornerstone of the practice of the

discipline. Space constraints prevent us from discussing it in this introduction,

but we emphasise that GSM is successful in the quantum domain.54

4.2 Articulating AP: Ergodicity

The averaging principle says that under condition C the outcome of a measure-

ment of a property f on a system in equilibrium is expected to be 〈 f 〉. What are

the conditions, what does it mean to measure property f, and in what sense

exactly should we expect the measured value to be 〈 f 〉? The standard textbook

answer invokes ergodicity (which we have introduced in Section 2.5) and runs

as follows.55 Carrying out a measurement of f takes time, and hence what the

measurement device registers is the time average of f over the duration of the

measurement. So the measurement outcome is a finite time average. However,

the time that it takes to perform a measurement is long compared to the time

scale on which typical molecular processes take place, and for this reason the

finite time average of the measurement is approximately equal to the infinite

time average of the measured function. As we have seen, in an ergodic system

infinite time averages are equal to phase averages (for almost all initial condi-

tions). If one now assumes that the system is ergodic, one can equate the time

average and the ensemble average. This provides the sought-after articulation of

AP: C is being ergodic; to perform a measurement of property f means to keep

a device that is set up to measure f in contact with the system for long enough to

register a time average of f ; and the expectation is universal because the

measured value is always equal to 〈 f 〉.

In this articulation, the principle fails for a number of reasons. First, as

Malament and Zabell (1980, 342–3) and Sklar (1993, 176–9) point out, from

the fact that measurements take time it does not follow that what is measured are

time averages. So the association of measurement results with time averages is

54 For an exposition of the theory, see, for instance, Tolman (1938/1979); for a philosophical
discussion of quantum SM, see Emch (2007).

55 See, for instance, Chandler (1987, 57–9), and for further references, see Frigg andWerndl (2021,
111).
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unjustified. And even if one could somehow argue that measurement devices

output time averages, equating these finite averages with infinite time averages

is problematic because finite and infinite averages can assume very different

values even if the duration of the finite measurement is long compared to the

time scale on which molecular processes take place. Second, this account makes

a mystery of why we observe change. As we have seen in Section 1.1, we do

observe systems approaching equilibrium, and in doing so we observe macro-

variables changing their values. In the example with the gas, we will observe the

volume and the pressure of the gas change. If measurements produced infinite

time averages, then no change would ever be observed because infinite averages

are constant by definition. Third, as we already noted in Section 3.3, ergodicity

is a stringent condition and many systems to which SM is successfully applied

are not ergodic. But if a system is not ergodic, time averages do not have to be

equal to phase averages, which pulls the rug from underneath the proposed

justification of AP.

A number of approaches have been developed to either solve or circumvent

these problems.56 Malament and Zabell (1980) suggest a method of justifying

phase averaging that still invokes ergodicity but avoids an appeal to time

averages. Vranas (1998) offers a reformulation of this argument for systems

that are epsilon-ergodic (see Section 3.3). This accounts for systems that are

‘almost’ ergodic, but it remains silent about systems that are far from ergodic.

Khinchin (1949/1960) restricts attention to systems with a large number of

degrees of freedom and so-called sum functions (i.e. functions that are a sum

over one-particle functions), and he shows that for such systems f � ¼ 〈 f 〉 holds

on the largest part of X . However, as Khinchin himself notes, the focus on sum-

functions is too restrictive to cover realistic systems, and the approach also

reverts to the implausible posit that observations yield infinite time averages.

4.3 Probabilism

Probabilism submits that the discussion has taken a wrong turn right at the start.

Gibbsian SM, so the argument goes, is not a theory about phase averages but

about probabilities. The core of GSM is the normalised measure ρtðxÞ, which
gives the probabilities for events to occur, and so this measure must be the

centrepiece of any analysis of GSM.57

56 For want of space, we cannot discuss these approaches in any detail. For a more extensive
discussion, see Frigg (2008b, 146–55) and references therein.

57 Probabilism has an odd status. On the one hand it seems to be a widely held view in the
foundations of physics community, and it has been suggested to us as the correct interpretation
of GSM on numerous occasions. On the other hand, explicit statements of it in the literature are
few and far between.
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Probabilism is based on two core assumptions. The first assumption is that

ρtðxÞ gives the correct probabilities for all events to occur at all times. This is

a natural assumption in GSM because it effectively means that Equation (5) is

valid without restrictions, which has been tacitly assumed in Section 4.1.

The second assumption concerns the nature of measurements. In a radical

break with the ergodic approach in the previous section, probabilism adopts

the notion of an instantaneous measurement, which sees a measurement as

happening at a particular instant of time. Penrose describes a measurement of

that kind as ‘an instantaneous act, like taking a snapshot’ (1970, 17–18). This

amounts to saying that if a measurement of a physical quantity represented by

f is performed on a system at time t and the micro-state of the system at time t is

x, then the measurement outcome will be f ðxÞ. An obvious consequence of this
definition is that measurements at different times can have different outcomes,

and the values of macro-variables can change over time.

FollowingWallace (2015), one can then insist that the quantitative content of

statistical mechanics is exhausted by the statistics of observables (their expect-

ation values, variances, etc.), which follow from ρtðxÞ. GSM is a probabilistic

theory that characterises a system’s statistical equilibrium and specifies how

likely a system will be found in certain micro-states – and that is all that there is

to GSM.58

While the posit that measurements are snapshots of the kind described seems

plausible (or at least a good approximation to what happens in actual measure-

ments), the assumption that Equation (5) is universally valid cannot be quite

right. Assume that ρtðxÞ is one of the standard stationary equilibrium distribu-

tions such as the microcanonical distribution, which is uniform on the energy

hypersurface.59 Now track the behaviour of the system over time (one considers

the limit as time goes to infinity), when the system starts in a particular initial

condition x at time t0 and its state evolves under �t. Under this interpretation

probabilism then asserts that for all R⊂X and all times t, Equation (5) gives the

58 McCoy (2020) provides an explicit articulation of this view in which ρtðxÞ is interpreted as the
system’s state rather than as a probability distribution over states. For a discussion, see Frigg and
Werndl (2021, sec. 5).

59 An anonymous referee has drawn our attention to an alternative approach. The approach begins
with ρ0 and interprets it as the measurement uncertainty of the initial state. Accordingly, ρtðxÞ is
the initial uncertainty moved forward in time. Equation (5) is then universally valid with respect
to the uncertainty about the system’s initial condition. With this ρtðxÞ, one can calculate averages
which are correct in that sense. This is an interesting suggestion that deserves further attention.
The view is not without problems, though. While one can write down an equation of motion for
ρtðxÞ, one cannot in general solve this equation and hence one does not know the precise shape of
ρtðxÞ. But without an explicit statement of ρtðxÞ, this view is useless in practice. Furthermore, the
view lacks a connection to the standard practice in GSM of calculating phase averages w.r.t. the
stationary measure, and hence, under this view, this standard practice remains mysterious.
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correct values of the long-run fraction of time that x tð Þ is in R as time goes to

infinity. Under this interpretation, without further qualification, it cannot be

right that (5) holds.

To see why, consider the situation shown in Figure 3 and assume that what

you see in the figure is the energy hypersurface (and so the distribution is

uniform over the surface). In Section 2.2 we have seen that trajectories cannot

cross invariant surfaces. But the invariant surface divides X roughly in the

middle and so according to Equation (5) the probability of finding the system

to the left of the invariant surface is about ½, and ditto for the probability of

finding the system to the right of the invariant surface. But this is wrong. If the

initial condition of the system lies, say, in the part of X that is to the right of the

invariant surface, then the system will never cross over to the part to the left of

the invariant surface. So the probability of finding the system in the left half

should be zero, not ½.

One way of avoiding these difficulties is to require that the dynamics of the

system be such that it can access all parts of X. In deterministic systems this is

tantamount to requiring that the system be ergodic. Some systems are of this

kind: for all we know the hard ball gas is ergodic. But as we have already noted

on several occasions, many SM systems are not ergodic, and so this is not

a general solution to the problem.

But maybe requiring systems to be ergodic is asking for too much. All

that is needed is that a system being trapped in a certain invariant subset of

X (like the set on the left of the invariant surface in Figure 3) does not

influence the probabilities of measurements of macroscopic quantities given

by a function f. This happens if the proportion of states (relative to ρtðxÞ)
for which f assumes a particular value is the same in each invariant subset

as it is in the entire state space. In this case, the probabilities one would get

if one calculated them in the invariant subset of X in which the system is

trapped are identical to the probabilities one would get if one calculated

them for the entire X. In other words, what we need is that invariant sets of

the dynamics (if any) and the function f harmonise with each other so as to

‘mask’ the fact that the system is trapped in certain invariant sets. We call

this the masking condition.

Under what circumstances does the masking condition hold? As far as we can

see, there are no general criteria to decide whether a system has this property. In

fact, whether a trapping will be masked in this way depends on both the time

evolution �tðxÞ and the function f, and so one will have to look at each f –�tðxÞ
pair to come to a verdict. A positive result cannot be taken for granted. If

a system is not ergodic, there will always be functions f for which the masking

condition fails.
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Have we got carried away by dynamical systems theory? To see whether

we have, let us consider yet another interpretation of the probabilities in

Equation (5). In Section 4.1 we introduced ensembles, and if we think about

GSM probabilities as ensemble probabilities (which, recall, are like drawing

balls from of an urn), then none of these problems arise because subsequent

draws are independent and hence are not constrained by invariant surfaces in the

state space. Indeed, Gibbs seems to reject a dynamical systems way of thinking

explicitly when he introduces ensemble methods by observing that ‘[w]e may

imagine a great number of systems of the same nature [. . .] And here we may set

the problem, not to follow a particular system through its succession of config-

urations, but to determine how the whole number of systems will be distributed

among the various conceivable configurations and velocities at any required

time [. . .]’ (Gibbs 1902/1981, p. vii).

When put forward without further qualifications, it is difficult to see how this

captures a realistic physical situation. What we have in front of us in a labora-

tory situation is a particular system, and this system has an initial condition x

which evolves under the time evolution of the system and thereby traces the

trajectory �tðxÞ. This means that states at different times are highly correlated.

Hence, as long as one maintains that, at bottom, an SM system is a triple

ðX ; �t; μÞ, one cannot also maintain that a system behaves like balls randomly

drawn from an urn.

‘Without further qualifications’ is crucial. One could argue that while subsequent

observations on the same system are in general not independent, SM systems fall

into a special class of system for which (at least approximate) independence holds.

In this vein, Kittel argues that ‘the complex systems with which we are dealing

appear to randomise themselves between observations, provided only that the

observations follow each other by a time interval longer than a certain characteristic

time called the relaxation time’ (Kittel 1958/2004, 7). This is too strong because

randomisation in a finite time span between observations is typically impossible.60

So one might try to relax the requirement and only demand that correlations relax

below a level where they become negligible. One can show that in general

approximate re-randomisation after a sufficiently long time requires a system to

have a property calledmixing (we discuss mixing briefly in Section 4.6). But since

mixing is strictly stronger than ergodicity (i.e. mixing implies ergodicity but not

vice versa), this is a non-starter for all the reasons we have already seen.

Yet, requiring approximate re-randomisation may well be too much because

all we really need is that subsequent f-measurements are independent. If this is

60 Indeed, complete independence can only ever be reached for certain partitions and only for
Bernoulli systems.
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the case, we say that a system exhibits f-independence. The question then is:

when do systems exhibit f-independence? As with the masking condition, the

answer is that it depends and that one has to look at each triple consisting of

f ; �tðxÞ, and the elapsed time period t, to come to a verdict.

The conclusion is that if measurements are ‘snapshots’ in the sense described

at the beginning of this section, then the probability for certain outcomes is

given by ρtðxÞ through Equation (5) only if additional conditions like the

masking condition or f-independence hold. Neither condition is trivial,61 and

so there is a question of the circumstances under which they apply. We expect

that these conditions hold in some but not all situations in which one would like

to apply GSM. More has to be said about the circumstances under which the

conditions hold.

4.4 Articulating AP: Fluctuations

Probabilism does not include AP. But probabilism can be used to provide an

articulation of AP by appealing to fluctuations.62 Let us assume, with probabil-

ism, that measurements are snapshots and that we are in a situation in which

Equation (5) gives the correct probabilities. The probability of obtaining

a certain value F when performing a measurement of a quantity represented

by function f is then equal to the probability of the micro-state of the system

being in region RF , the region of all x for which f ðxÞ ¼ F. This probability is

given by Equation (5) if we integrate over RF. We can now choose F ¼ 〈 f 〉, and

the probability of the measurement outcome being the phase average is then the

integral over R 〈 f 〉. What is more, we can also calculate the probabilities of

fluctuations away from 〈 f 〉. By definition, a fluctuation ΔðtÞ is the difference

between 〈 f 〉 and the instantaneous value of f at time t:

ΔðtÞ ¼ f ðxðtÞÞ–〈 f 〉;

and we call the absolute value of ΔðtÞ, | ΔðtÞ|, the magnitude of the fluctuation.
We can now again use Equation (5) to calculate the probability of a fluctuation

of a certain magnitude. Specifically, let us consider a fluctuation whose magni-

tude lies between two values δ1 and δ2 (where 0 ≤ δ1 ≤ δ2). The probability of

such a fluctuation is, again, given by Equation (5) if we integrate over RD, where

D ¼ x 2 X ∣ δ1 ≤ jΔ tð Þj≤ δ2gf .

61 For examples of systems in which the conditions fail, see Frigg and Werndl (2021, 124–5).
62 Fluctuations are occasionally mentioned in SM books in connection with AP (see, for instance,

Hill (1956/1987) and Schrödinger (1952/1989)), and it has often been proposed to us in
conversation as the correct justification of AP. This section is an attempt to give an explicit
statement of a fluctuation interpretation of GSM based on Frigg and Werndl (2021).
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Intuitively one expects the probability of finding 〈 f 〉 as the measurement

outcome to be very high, and the fluctuations to be such that only small

fluctuations are likely while medium and large fluctuations are highly unlikely.

A system that exhibits this pattern approximately mimics thermodynamic

behaviour, so we refer to fluctuations that have these characteristics as thermo-

dynamic fluctuations. 〈 f 〉 is then the expected measurement outcome in the

sense that the probability of R〈 f 〉 is very high (indeed, very close to one) and

hence the probability of R:〈 f 〉 is low (where ‘:’ is the negation). In this vein,

Hill submits that the validity of the identification of observed values with

ensemble averages is legitimate only when the fluctuations of f away from

〈 f 〉 are small (Hill 1956/1987, 9–10) and Schrödinger declares ‘[m]ean value,

most probable value, any values that occur with non-vanishing probability – all

become the same thing’ (1952/1989, 35).

As we have seen, AP says that under condition C the outcome of

a measurement of a property f on a system in equilibrium is expected to be

〈 f 〉. The fluctuation account articulates the blanks in the principle as follows:

measurements are snapshots (in the sense introduced in Section 4.3); we expect

a measurement outcome to be 〈 f 〉 in the sense that the probability of R〈 f 〉 is

high; and C is the condition that fluctuations in the system are thermodynamic.

That fluctuations are thermodynamic cannot be taken for granted. While the

fluctuations in many GSM systems turn out to be thermodynamic as expected,

there are important systems studied in SM in which this is not the case.63

Ultimately, whether fluctuations are thermodynamic depends on the choice of

ρtðxÞ, the dynamics of the system, and the function f. At this point, we would

like to have a theorem that states under what conditions a system has thermo-

dynamic fluctuations. To the best of our knowledge, no general theorem of this

kind is currently available.64

4.5 GSM and the Approach to Equilibrium

So far, we have focused on the characterisation of equilibrium in GSM, and in

practice GSM is mostly used as an equilibrium theory. However, to be

a comprehensive theory, GSM must also account for the approach to equilib-

rium. The approach to equilibrium is often characterised through an increase of

63 For instance, fluctuations in the Kac ring with the standard macro-state structure of the number of
black and white balls as discussed by Lavis (2008) are not thermodynamic, and neither are
fluctuations in the baker’s gas with a function f that takes integer values on cells of the standard
Boltzmannian partition (Werndl and Frigg 2017b).

64 There is, however, a powerful result that applies to a large class of cases: if the probability of
finding the system in R is given through Equation (5) and if the so-called Khinchin Condition
holds, then the system exhibits thermodynamic fluctuations. For a discussion of the Khinchin
Condition, see Section 4.9 and Werndl and Frigg (2020b, sec. 4).
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entropy. So, one might say that GSM can help itself to this characterisation and

posit that in an approach to equilibrium the Gibbs entropy SG (introduced in

Section 4.1) increases until it reaches its maximum.

Unfortunately, this idea is undercut immediately by a mathematical theorem

saying that SG is a constant of motion: SG½ρtðxÞ�¼SG½ρ0 xð Þ� for all time t. Hence,

not only does SG fail to increase monotonically; it does not change at all! This

precludes a characterisation of the approach to equilibrium in terms of increas-

ing Gibbs entropy. Hence, either such a characterisation must be abandoned, or

the formalism has to be modified to allow SG to increase.

A second problem is a consequence of the Gibbsian definition of statistical

equilibrium. As we have seen in Section 4.1, a system is in statistical equilib-

rium if ρtðxÞ is stationary. A system away from equilibrium would then have to

be associated with a non-stationary distribution and eventually evolve into the

stationary equilibrium distribution. But this is mathematically impossible. It is

a consequence of the formalism of the theory of GSM that a distribution that is

stationary at some point in time has to be stationary at all times (past and future),

and that a distribution that is non-stationary at some point in time will always be

non-stationary. Hence ρtðxÞ cannot evolve from a non-stationary distribution to

a stationary distribution. This requires either a change in the definition of

equilibrium, or a change in the formalism that would allow distributions to

change in the requisite way.65 In what follows we discuss the main attempts to

address these problems.66

4.6 Coarse-Graining

Gibbs was aware of the problems with the approach to equilibrium and pro-

posed coarse-graining as a solution (Gibbs 1902/1981, ch. 12). This notion has

since been endorsed by many practitioners.67 We have already encountered

coarse-graining in Section 4.2. The use of it here is slightly different, though,

because we are now putting a grid on the full state space X and not just on the

one-particle space. One can then define a coarse-grained density ρtðxÞ by saying
that at every point x in X the value of ρtðxÞ is the average of ρtðxÞ over the grid
cell in which x lies. The advantage of coarse-graining is that the coarse-grained

distribution is not subject to the same limitations as the original distribution.

Specifically, let us call the Gibbs entropy that is calculated with the coarse-

grained distribution the coarse-grained Gibbs entropy. It turns out that the

65 An interesting change would be to replace being stationarity by being forward stationary, the
requirement that a distribution does not change any more from a certain instant of time onward.

66 For a brief discussion of alternative approaches that we cannot cover here, see Frigg (2008b,
166–8) and references therein.

67 See, for instance, Farquhar (1964) and Penrose (1970).
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coarse-grained Gibbs entropy is not a constant of motion, and it is possible for

the entropy to increase. This re-opens the avenue of understanding the approach

to equilibrium in terms of an increase of entropy. It is also possible for the

coarse-grained distribution to evolve so that it spreads out evenly over the entire

available space and thereby comes to look like a micro-canonical equilibrium

distribution. Such a distribution is also known as the quasi-equilibrium distri-

bution (Blatt 1959; Ridderbos 2002).

Coarse-graining raises two questions. First, the coarse-grained entropy can

increase and the system can approach a coarse-grained equilibrium, but under

what circumstances will they actually do so? Second, is it legitimate to replace

standard equilibrium by quasi-equilibrium?

As regards the first question, the standard answer (which also goes back to

Gibbs) is that the system has to be mixing. Intuitively speaking, a system is

mixing if every subset of X ends up being spread out evenly over the entire

state space in the long run.68 The problem with this is that, as we have already

noted in Section 4.3, mixing is a demanding condition because mixing

implies ergodicity. And even if a system is mixing, the mixed state is only

achieved in the limit for t → ∞, but real physical systems reach equilibrium in

finite time.

As regards the second question, the motivation for adopting quasi-

equilibrium is that ρtðxÞ and ρtðxÞ are taken to be empirically indistinguishable.

If the size of the grid is below the measurement precision, then no measurement

will be able to tell the difference between the two. Hence, there is no reason to

prefer ρtðxÞ to ρtðxÞ. This premise has been challenged. Blatt (1959) and

Ridderbos and Redhead (1998) argue that this is wrong because the spin-echo

experiment (Hahn 1950) makes it possible to empirically discern between ρtðxÞ
and ρtðxÞ. The weight of this experiment continues to be discussed controver-

sially, with some authors insisting that it invalidates the coarse-graining

approach (Ridderbos 2002) and others insisting that coarse-graining can still

be defended (Ainsworth 2005; Lavis 2004; Robertson 2020).69

4.7 Interventionism

The approaches we discussed so far assume that systems are isolated. This is

an idealising assumption because real physical systems are not perfectly

isolated from their environments. This is the starting point for interventionism,

68 For an introductory characterisation of mixing, see Berkovitz, Frigg, and Kronz (2011).
69 We also note that a silent conceptual shift has occurred when introducing the coarse-grained

distribution: Gibbs defined equilibrium through stationarity, while the coarse-graining approach
defines it through uniformity. This needs further justification, but in principle there would seem
to be nothing to stop us from redefining equilibrium in this way.
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which is based on the idea that real systems are constantly subject to outside

perturbations, and that the system is Driven to equilibrium through these

perturbations. This position has been formulated by Blatt (1959) and further

developed by Ridderbos and Redhead (1998). The key insight behind the

approach is that the two challenges introduced in Section 4.3 vanish once the

system is not assumed to be isolated: the entropy can increase, and a non-

stationary distribution can be pushed towards a distribution that is stationary

in the future.

This approach accepts that isolated systems do not approach equilibrium,

and one may wonder why this would be the case. If one places a gas of the

kind that we discussed in Section 1 somewhere in interstellar space where it is

isolated from outside influences, would it really not approach equilibrium?

And even if this were the case, would adding just any environment resolve the

issue? Environments can be of very different kinds and there is no general

theorem that says that any environment drives a system to equilibrium.

Indeed, there are reasons to assume that there is no such theorem because

while environments do drive systems, they need not drive them to equilib-

rium. It remains an unresolved question under what conditions environments

drive systems to equilibrium.

Another challenge for interventionism is that one is always free to consider

a larger system consisting of the original system plus its environment. For

instance, we can consider the ‘gas + box’ system. This system would then

also approach equilibrium because of outside influences, and we can then

again form an even larger system, for instance the ‘gas + box + laboratory’

system. So, we get into a regress that only ends once the system under study is

the entire universe. But the universe has no environment that could serve as

a source of perturbations, which, so the criticism goes, shows that the pro-

gramme fails.

Whether one sees this criticism as decisive depends on one’s views of laws

of nature. The argument relies on the premise that the underlying theory

is a universal theory, namely one that applies to everything that there is

without restrictions. But while universality is widely held, some have argued

against it because laws are always tested in highly artificial situations.

Claiming that they equally apply outside these settings involves a problem-

atic inductive leap; see, for instance, Cartwright (1999) for a discussion of

such a view. This, if true, might undercut the preceding argument against

interventionism, but a lot will depend on how exactly the scope of laws is

understood.

These are serious issues, and we take it that the burden of proof lies on

interventionists to show that these issues can be resolved.
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4.8 The Epistemic Account

The epistemic account urges a radical reconceptualisation of SM. The account

goes back to Tolman (1938/1979) and has been brought to prominence by

Jaynes in a string of publications between 1955 and 1980, most of which are

gathered in Jaynes (1983). In Section 2.6 we have seen that there are three major

interpretations of probability: frequencies, propensities, and credences. In

Sections 4.1 and 4.3 we encountered frequency interpretations of ρtðxÞ; the
epistemic account is based on an ignorance interpretation of ρtðxÞ.70 On this

approach, SM is about our knowledge of the world and not about the world

itself, and the probability distributions in GSM represent our state of knowledge

rather than mind-independent matters of fact. The centrepiece of this interpret-

ation is the fact that the Gibbs entropy is formally identical to the Shannon

entropy in information theory, which is a measure for the lack of information

about a system: the higher the entropy, the less we know.71 The Gibbs entropy

can therefore be seen as quantifying our lack of information about a system.

This has the advantage that ensembles are no longer needed in the statement of

GSM. On the epistemic account, there is only one system, the one on which we

are performing our experiments, and ρtðxÞ codifies what we know about it. This

also offers a natural criterion for identifying equilibrium distributions: they

are the distributions with the highest entropy consistent with the external

constraints on the system because such distributions are the least committal

distributions. This is known as Jaynes’ maximum entropy principle.

The maximum entropy principle has been discussed controversially, and, to

date, there is no consensus on its significance, or even cogency.72 A further

concern is that the dynamics of the system plays no role in the epistemic

approach. This is problematic for the reasons we have seen in Section 4.3: if

the dynamics has invariant quantities, a system cannot access certain parts of the

state space even though ρtðxÞ may assign a non-zero probability to it (Sklar

1993, 193–4).

The explanation of the epistemic account of the approach to equilibrium

relies on making repeated measurements and conditionalising on each meas-

urement result; for a discussion, see Sklar (1993, 255–7). This successfully gets

70 Propensity interpretations have been less prominent in the discussion of GSM, but they do exist.
McCoy (2020) presents an interpretation of GSM according to which ρtðxÞ is the state of the
system, where this state specifies the ‘potentialities’ of the system. Space constraints prevent us
from getting deeper into this here. For a discussion of McCoy’s approach, see Frigg and Werndl
(2021, 112–16).

71 For an introductory discussion of information theory and Shannon’s entropy, see Adriaans
(2020).

72 For discussion, see, for instance, Howson and Urbach (2006), Uffink (1995, 1996a), and
Williamson (2010).
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around the problem that the Gibbs entropy is constant because the value

assignments now depend not only on the system’s internal dynamics but also

on the action of an experimenter. The problem with this solution is that

depending on how exactly the calculations are done, either the entropy increase

fails to be monotonic (indeed entropy decreases are possible) or the entropy

curve will become dependent on the sequence of instants of time chosen to carry

out measurements (Lavis and Milligan 1985).

However, the most fundamental worry about the epistemic approach is that it

fails to realise the fundamental aim of SM, namely to explain how and why

processes in nature take place because these processes cannot possibly depend

on what we know about them. Surely, so the argument goes, the boiling of

kettles or the spreading of gases has something to do with how the molecules

constituting these systems behave and not with what we happen (or fail) to

know about them (Redhead 1995; Albert 2000; Loewer 2001).73

4.9 The Relation between GSM and BSM

We began by saying that SM was the third pillar of modern physics. We then

divided theoretical approaches in SM into two broad families, BSM and GSM.

But is this not curious? How can it be that a fundamental theory in physics is

divided into two approaches? The copresence of two different approaches

would not by itself be a cause for concern if it were the case that the two

formalisms were equivalent, or at least somehow inter-translatable (as, for

instance, the Schrödinger and the Heisenberg picture in quantum mechanics).

Unfortunately, they are not. As we have seen, the theoretical machineries of the

two approaches are fundamentally different: they offer distinct descriptions of

the same physical system and there is no obvious way to translate one into the

other.

The situation is made worse by the fact that the theories usually serve

different purposes. GSM is the workhorse of the practitioner. It provides the

tools and methods to carry out a wide range of equilibrium calculations, which

is why physicists often regard it as the formalism of statistical mechanics. Two

examples illustrate this. In his textbook on SM, Isihara (1971) introduces the

Gibbs formalism in a chapter called ‘principles of statistical mechanics’ and

the first chapter of Landau and Lifshitz’s (1980) canonical introduction,

entitled ‘the fundamental principles of statistical physics’, is dedicated

entirely to a discussion of the Gibbs formalism. However, as Lavis (2005,

246) notes, when confronted with the question of ‘what is actually going on’ in

73 For further discussions of the epistemic approach, see Anta (2021), Shenker (2020), and Uffink
(2011).
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a physical system, physicists are often quick to desert GSM and offer an

account of ‘why SM works’ in terms of BSM because, as we have seen,

GSM has a number of features that jar with foundational accounts. And

discrepancies are not restricted to foundational issues. In non-equilibrium

situations, BSM is usually the theory of choice because, despite many

attempts to extend GSM to non-equilibrium, no workable Gibbsian non-

equilibrium theory has emerged yet.74 But how can one use one formalism

to explain the non-equilibrium behaviour of physical systems and to give

a foundational account of SM, while continuing to use the other formalism

for everyday equilibrium calculations?

There have been attempts to downplay the tension between BSM and GSM

by arguing that the two formalisms end up producing the same predictions, at

least as far as equilibrium calculations are concerned, and that discrepancies

concerning foundational issues is something that we can live with.75 While it

is true that Boltzmannian and Gibbsian calculations agree in some cases, this

agreement is not universal. There are cases in which GSM and BSM either

make conflicting predictions about properties of a system or GSM remains

silent.76 Hence, the two formalisms not only differ in their theoretical charac-

terisation of physical situations; they are also not empirically equivalent. This

forecloses the escape route of non-committal pluralism, and any attempt to

understand how SM works has to offer an account of the relation between

BSM and GSM.

Somewhat surprisingly, the problem of the status of one theory vis-à-vis the

other is a rather understudied issue, and among the few authors who discuss

the issue there is no agreement on the matter. Lavis (2005) proposes

a reconciliation of the two frameworks through giving up on the binary

property of the system being or not being in equilibrium, which he replaces

by the continuous property of commonness. Wallace (2020) argues that GSM

is a more general framework in which the Boltzmannian approach may be

understood as a special case.

Our own preferred suggestion is to regard BSM as a fundamental theory and

GSM as an effective theory that offers a means to calculate values defined in

BSM (Frigg and Werndl 2019; Werndl and Frigg 2020a). As Wells points out

(2012), effective theories are ones that describe phenomena in a way that lends

itself to effective computation. Effective theories can do this because they

74 See Frigg (2008b), Sklar (1993), and Uffink (2007) for reviews.
75 See, for instance, Davey (2009), Goldstein (2019), Goldstein, Lebowitz, Tumulka, and Zanghì

(2020), and Wallace (2015).
76 See Werndl and Frigg (2017b, 2020b).
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are incomplete and leave out what is irrelevant for the purpose at hand. As

a consequence, effective theories have a certain domain of application, and

ideally it is known what this domain is. Understanding a theory as an effective

theory has the advantage that foundational questions need not be asked about it

because they pertain to the fundamental theory. In GSM, equilibrium is an

ensemble property, and (as we note in the next section) the central notions of

entropy and temperature are not definable in terms of functions on the state

space X of a system. If we also take into account that there is no uncontroversial

non-equilibrium theory, then the suggestion to regard GSM as an effective

theory to calculate equilibrium values that are defined in GSM seems worth

exploring. To this end we regard equilibrium values to be defined in BSM and

show that these values are reproduced by GSM under certain conditions.

We have identified three conditions (which are subjects of three theorems),

which all provide sufficient (but not necessary) conditions for phase averages,

as calculated in GSM, to agree with the equilibrium values that come from

BSM. Let us briefly state these three conditions.77 The Khinchin Condition

ensures that the fluctuations of the macro-variable f away from the phase

average 〈f 〉 are very small. In this case nearly all of the state space is taken up

by a Boltzmannian equilibrium macro-region in which the Boltzmannian equi-

libriummacro-value is approximately equal to 〈f 〉, and hence it is not surprising

that the phase average is approximately equal to the Boltzmannian equilibrium

value. The second condition is the Average Equivalence Condition. Here the

crucial assumptions are that the macro-variable is a sum of a variable on the

one-component space, that the macro-variable on the one-component space

corresponds to a partition with cells of equal probability, and that the measure

on state space is the product measure of the measure on the one-component

space. If these conditions are satisfied, the Gibbsian phase averages agree with

the Boltzmannian equilibrium values. The third condition is the Cancelling Out

Condition: If the state space is divided up in such a way that next to the largest

macro-region (which corresponds to the Boltzmannian equilibrium) there are

always two macro-states of equal size whose average equals the Boltzmannian

equilibrium value, then the Boltzmannian equilibrium value is equal to the

value obtained by Gibbsian phase averaging. These three conditions are not

always satisfied, and phase averages can differ from the Boltzmannian equilib-

rium values. There is an interesting open question about further characterisa-

tions of situations in which they agree, and about recognising situations in

which they fail to do so.

77 The Khinchin Condition is widely discussed; see, for instance, Lavis (2005). The other two
conditions originate in Werndl and Frigg (2020b).

65Foundations of Statistical Mechanics

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
02

27
98

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009022798


4.10 Open Questions for GSM

As has become clear in our discussion, GSM faces challenges as regards the

interpretation of the theory once the reliance on the ensembles is renounced, and

there remains a question of how to understand the approach to equilibrium from

the perspective of GSM. A further question concerns the idea that SM ought to

provide a reductive explanation of thermodynamics. As we have seen, equilib-

rium is a property of a probability distribution (and in Gibbs’ interpretation, of

an ensemble), which stands in an uneasy relation with an understanding of SM

as a theory of individual systems. While this could be dismissed as a problem of

interpretation, the same cannot be said about other issues. Chief among them is

GSM’s treatment of entropy and temperature. As we have seen in Section 4.1,

the Gibbs entropy SG is defined through the integral over ρtðxÞlog½ρtðxÞ�, and
there is no function s on X such that SG ¼ 〈sðxÞ〉. This means that the Gibbs

entropy is undefinable in terms of the mechanical state of system. And the same

goes for temperature, which is introduced by associating it with a term that plays

the same functional role in a fundamental equation of GSM as temperature plays

in a fundamental equation of thermodynamics (for a discussion, see Uffink

2007–96). What implications does this have for a putative reduction of TD to

SM? Gibbs himself circumvents this issue by making no claim about reduction

and instead discussing the relation between GSM and thermodynamics in terms

of what he calls ‘thermodynamic analogies’ (Gibbs 1902/1981, ch. XIV).

Hence, what a reduction of thermodynamics to GSM would look like is

a question that deserves further exploration.
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