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ABSTRACT

Two approaches used to model interest randomness are presented. They are the
modeling of the force of interest accumulation function and the modeling of the
force of interest. The expected value, standard deviation and coefficient of skewness
of the present value of annuities-immediate are presented as illustrations. The
implicit behavior of the force of interest under the two approaches is investigated by
looking at a particular conditional expectation of the force of interest accumulation
function.
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1. INTRODUCTION

A wide variety of stochastic processes have been used to model interest randomness
in the present value function and other actuarial functions. Not only are different
processes used but they are also used in different ways. Two approaches that are
used in existing literature are, firstly, the modeling of the force of interest
accumulation function (see, for example, DEVOLDER (1986), BEEKMAN and FUEL-

LING (1990, 1991, 1993), DE SCHEPPER et al. (1992a, 1992b), DE SCHEPPER and
GOOVAERTS (1992)), and secondly, the modeling of the force of interest (see, for
example, PANJER and BELLHOUSE (1980), DHAENE (1989), FREES (1990), PARKER

(1992, 1993a, 1993b, 1994), NORBERG (1993)). The particular assumption that the
forces of interest are independent and identically distributed (i.e. a White Noise
process) will be seen to have an equivalent process for the force of interest
accumulation function. IID interest notes have been used by WATERS (1978, 1990),
DUFRESNE (1990) and PAPACHRISTOU and WATERS (1991) among others.

Although in the deterministic situation the two approaches are equivalent, they
are truly different in the stochastic situation.

In this paper, we compare these two approaches for some simple Gaussian
processes (see PARKER (1993c) for an earlier version presented at the XXIV ASTIN
Colloquium). In Section 2, we define the random present value function and give an
expression for its moments about the origin.
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In Section 3, we present two stochastic processes, namely, the Wiener process
and the Ornstein-Uhlenbeck process, for the force of interest accumulation function.
The following section presents three stochastic processes, the White Noise, Wiener
and Ornstein-Uhlenbeck processes, for modeling the force of interest.

In Section 5, we find the first three moments about the origin of the random
present value of a «-year annuity-immediate of equal payments of 1. Some
illustrations are presented in Section 6. Section 7 takes a closer look at an implicit
difference between the two approaches. Finally, Section 8 summarizes the find-
ings.

2. PRESENT VALUE FUNCTION

Let ds denote the force of interest at time s and let y(t) denote the force of interest
accumulation function at time /. We then have

(1) y{t) = dsds.
Jo

The random present value at time 0 of a payment of 1 at time / is given by

Assuming that y{t) is Gaussian, then the present value function is log-normally
distributed with parameters E[-y(t)] and V[y(f)l, and its wth moment about the
origin is:

(2) E[(e-y(n)m]=E[e-m y(n] 2

(see, for example, AITCHISON and BROWN (1963, p. 8)).
In the next section we will use two Gaussian stochastic processes to model the

force of interest accumulation function. And, in the following section, Section 4, we
will look at three Gaussian stochastic processes to model the force of interest.

3 . MODELING THE FORCE OF INTEREST ACCUMULATION FUNCTION

A first approach to consider interest randomness is to model y(t), the force of
interest accumulation function. Here we present a Wiener process with deterministic
drift d and an Ornstein-Uhlenbeck process also with deterministic drift d.

3.1. Wiener process

Let y (t) be the sum of a deterministic drift of slope d and a perturbation modeled
by a Wiener process. That is

(3) y(t) = d-t + o-Wn

where o S: 0 and Wt is the standardized Wiener process.
It can be shown that the expected value and autocovariance function of y(t) are

given by

(4) E [ y ( t ) ] = d - t ,
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and

(5) cov [y(s),y(t)] = o2 • m i n (s, t ) .

(see ARNOLD (1974, Section 3.2)).

3.2. Ornstein-Uhlenbeck process

Let y(t) be the sum of a deterministic drift of slope d and a perturbation modeled
by an Ornstein-Uhlenbeck process. That is

(6) y(t) = d • t + X(t),

where X(t) is an Ornstein-Uhlenbeck process with parameters a > 0 and o > 0 and
with an initial condition X(0) = 0. Therefore,

(7) dX(t)= -a-X(t)dt + odWt.

Using the results of ARNOLD (1974, p. 134), one can obtain the expected value
and autocovariance function of y(t) as defined in (6) and they are given by

(8) E[y(t)] = d-t,

and

(9) c o v [ y ( . v ) , v ( f ) l = — • ( e - a ( ' - " ) - e - a U + s ) ) , s < t

2 a

o r

( 1 0 ) cov \ y(s), y(t)] = p 2 • (e-aU-s) - --ail + sh

where
2

(11) P 2 =
la

4. MODELING THE FORCE OF INTEREST

A second approach to model interest randomness is to model ds, the force of
interest. Here we present a White Noise process, a Wiener process and an
Ornstein-Uhlenbeck process. Note that the three processes will be defined so that
they start at d, not at the origin.

4.1. White Noise process

Let the force of interest be a White Noise process with mean 6 and variance o2.
That is, for t > 0,

(12) 6, ~ JV(<5, cr2).

The forces of interest are therefore modeled by Gaussian, independent and
identically distributed random variables. Note that, in continuous time, White Noise
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is not a physical process but a mathematical abstraction (see KARLIN and TAYLOR

(1981, p. 343)).
One may consider, in some sense, that the White Noise process is the derivative

of the Wiener process (see, for example, ARNOLD (1974, p. 53) of KARLIN and
TAYLOR (1981, p. 342)). (This indicates that assuming a stochastic process for>>(/)
does not necessarily imply that a meaningful physical process for d, exist).

Then, y(t), as defined in (1), is a Wiener process with expected value

(13) E [ y ( t ) ] = d t ,

and autocovariance function

(14) c o v [ y ( s ) , y ( t ) ] = o 2 • m i n (.v, t ) .

(see, for example, ARNOLD (1974, Section 3.2)).
Therefore, the model presented above is merely an alternative description of the

Wiener process for the force of interest accumulation function presented in 3.1.

4.2. Wiener process

A second model for the force of interest is the Wiener process. Let the force of
interest be defined as

(15) d, = d + o-W,, CT>0.

Adapting the results in Section 3.1 we find that the expected value and
autocovariance function of this process are

(16) E[d,]=d,

and

(17) cov [ds, d,] = a2 • min (s, t).

Then, from the definition of y(t) (see (1)), it follows that y(t) is normally
distributed with expected value

(18) E [ y ( t ) ] = d-t,

and autocovariance function

(19) cov [y(s),y(t)]= cov [du, d,} dudv,

which gives

(20) cov [y(s),y(t)] = o2 -(s2t/2-s?76), . v < f .

4.3. Ornstein-Uhlenbeck process

As a third model for the force of interest we consider an Ornstein-Uhlenbeck
process. Let the force of interest be defined by the following stochastic differential
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equation

(21) dd,= -a(d,- d) • dt + o- dWt a > 0, c r>0 ,

with initial value d() = d (see, for example, ARNOLD (1974, p. 134)).
Then, it can be shown that the expected value of 6, is

(22) E[d,]-d,

and that its autocovariance function is

a2

(23) cov[ds.,<5,|= • ( e ~ a { ' ~ s ) - e ~ a ( ' + s ) ) , s < t .
2 a

Again, we will denote o2/2a by p2.
The force of interest accumulation function, y(t), is therefore a Gaussian process

with expected value

(24) E [ y ( t ) ] = d-t,

and autocovariance function
2

(25) cov[y(s),y(t)]=—min(s, t) +
a

2 a3

(see, for example, PARKER (1994, Section 6)).
Note that the two models considered in Section 3 and the three models

considered in this section have all been defined such that their expected values of
the force of interest accumulation function are the same (i.e. E[y(t)] = d • t). What
varies over the models is the variance of y(t) and the expected response in a given
situation. This will be discussed further in Section 7.

5. ANNUITY-IMMEDIATE

We now consider a rc-year annuity-immediate contract. Let a^\ be the present value
of n equal payments of 1 made at the end of each of the next n years. Then, we
have

n

(26) a^= X *->'<".
t= I

We now consider the first three moments of a^\ using its assumed true probability
distribution so that all moments have their usual interpretations. Note however that
the expected value will be different than the market price of the annuity which
requires that such price be in equilibrium for any purchasing strategy (see
BUHLMANN (1992)).
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The expected value of aj\ may be obtained in the following way:

(27) E[ari=E\Z e-y{l)]= £ E[e^U)],
L J

where from equation (2),

(28) E [ e - y U ) ] = e x p { - E [ y ( t ) ] + . 5 - V [ y ( t ) ] } .

The particular values for E\y(t)] and Vfy(f)] were given in Sections 3 and 4 for
different modeling approaches and different stochastic processes.

The second moment about the origin of a^\ may be shown to be equal to

(29) I I
t=\ s=\

Similarly, the third moment about the origin of ar^\ is given by

(30) E[(a^]= £ £ £ £[*->•">-•*•"->•">].
1=1 , s= l r = 1

In order to evaluate the expected values to be summed in (29) and (30), one
simply notes that the exponential random variables involved are log-normally
distributed. For example,

(31) e-y<t}-y(s)-y(r)~A(fii,p),

where

(32) fi= -E[y(t)]-E[y(s)]-E\y(r)],

and
(33) j3 = V[y(t)] + V[y(s)] + V[y(r)] + 2 c o v [y(t),y(s)\ +

+ 2 c o v [ y ( t ) , y ( r ) \ + 2 c o v [y(s),y(r)].

Therefore, from (2), we have:
(34) E [ e - y ( n - ^ s ) - y ( r ) ] = e x p {fl+5. 0 }

6. ILLUSTRATIONS

As a way to illustrate the different approaches and the different stochastic processes
considered in this paper, we will evaluate their expected values, standard deviations
and coefficients of skewness (see, for example, MOOD, GRAYBILL and BOBS (1974,
pp. 68, 76)) of aj\, for certain values of the parameters.

Some expected values are found in Table 1. Results are presented for values of
the parameters d set at .06 and .1 in each process. For the White Noise and Wiener
processes, we let the parameter a take the values .01 and .02. For the Ornstein-
Uhlenbeck process, the parameter a is chosen to be .17 (this is the value obtained
by BEEKMAN and FUELLING (1990, p. 186) from certain U.S. Treasury bill returns).
We let the parameter p take the values .01 and .02 which correspond to a equal
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.01 • (.34)5 and .02 • (.34)5 respectively. This is consistent with some of the values
used by BEEKMAN and FUELLING (1990, Tables 1 and 2).

It should be pointed out that an estimation procedure for finding the values of the
different parameters from a data set of past interest rates would generally produce
different values of the estimates of the parameters o, a or p depending on the
modeling approach used and on the stochastic process chosen. The estimators of the
parameter d, however, are likely to be roughly the same in all cases considered
here. Using the same parameters under both approaches is believed to be
appropriate to illustrate certain differences between these two approaches.

TABLE 1

EXPECTED VALUE OF o;n

Wiener:

O-U:

Wiener:

O-U:

d
.06
.06
.10
.10

/)

.06

.06

.10

.10

Modeling

d
.06
.06
.10
.10

a
.17
.17
.17
.17

d
.06
.06
.10
.10

(X

.17

.17

.17

.17

o
.01
.02
.01
.02

P
.01
.02
.01
.02

a
.01
.02
.01
.02

P
.01
.02
.01
.02

the force of interest accumulation function

5

4.1920
4.1938
3.7418
3.7433

4.1915
4.1919
3.7413
3.7417

Modeling the

5

4.1943
4.2030
3.7437
3.7510

4.1920
4.1938
3.7417
3.7432

10

7.2983
7.3038
6.0118
6.0161

7.2967
7.2975
6.0106
6.0113

n

20

11.3057
11.3202
8.2246
8.2337

11.3013
11.3027
8.2218
8.2228

force of interest

10

7.3273
7.4217
6.0327
6.1008

7.3007
7.3135
6.0135
6.0229

n

20

11.5925
12.6140
8.3788
8.9232

11.3221
11.3862
8.2336
8.2703

30

13.5061
13.5289
9.0390
9.0511

13.4991
13.5008
9.0353
9.0364

30

14.4863
19.5880
9.4388

11.3948

13.5410
13.6702
9.0548
9.1151

40

14.7143
14.7435
9.3387
9.3524

14.7052
14.7071
9.3346
9.3357

40

17.0285
48.6888
10.0567
18.0414

14.7658
14.9531
9.3586
9.4331

O-U: Ornstein-Uhlenbeck

From Table 1, one can see that the expected value of a^\ does not depend very
much on the modeling approach used nor does it depend on the parameters of the
process, except for the parameter d, of course. The Wiener process, for n larger than
say 20, when used to model the force of interest, is another exception.
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Table 2 presents some standard deviations of a~^\. It indicates that for a given
stochastic process and a given modeling approach, the standard deviation is more or
less proportional to the parameter o (or p). It would appear that adjusting the
parameters of a model cannot produce similar standard deviations to those of a
different model for all n since the standard deviation exhibits significantly different
patterns depending on the modeling approach and/or stochastic process selected.

TABLE 2

STANDARD DEVIATION OF a^\

Wiener:

O-U:

Wiener:

O-U:

6
.06
.06
.10
.10

d
.06
.06
.10
.10

Modeling the

d
.06
.06
.10
.10

a
.17
.17
.17
.17

d
.06
.06
.10
.10

a
.17
.17
.17
.17

a
.01
.02
.01
.02

P
.01
.02
.01
.02

force of interest accumulation function

5

.0605

.1211

.0530

.1061

.0258

.0517

.0228

.0456

Modeling the

a
.01
.02
.01
.02

P
.01
.02
.01
.02

5

.1251

.2515

.1073

.2157

.0576

.1152

.0495

.0991

10

.1342

.2687

.1058

.2118

.0457

.0913

.0368

.0736

n

20

.2623

.5258

.1734

.3476

.0645

.1291

.0463

.0926

force of interest

10

.5171
1.0710
.3880
.8019

.1968

.3952

.1495

.3001

n

20

1.9640
5.1457
1.1483
2.8968

.5294
1.0736
.3263
.6604

30

.3503

.7028

.2037

.4085

.0705

.1411

.0479

.0959

30

4.2762
27.4239
1.9504

10.1266

.7975
1.6334
.4202
.8563

40

.4053

.8137

.2160

.4332

.0724

.1448

.0482

.0964

40

8.6273
1111.8356

2.9114
240.2379

.9767
2.0169
.4610
.9433

O-U: Ornstein-Uhlenbeck

For example, we can compare the standard deviations of a-^\ produced by the
Ornstein-Uhlenbeck model with parameters d = .06, a = . 17 and p - .02 for the
force of interest accumulation function, with those produced by the Ornstein-
Uhlenbeck model with parameters d = .06, a = . 17 and p = .01 for the force of
interest. Then the standard deviations presented for n = 5 are roughly the same
(.0517 compared to .0576) while for « = 40, the latter (.9767) is almost 7 times
larger than the former (.1448). Multiplying the value of p in the former by 7 would
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produce similar standard deviations for n - 40 but then the standard deviation in the
former model would be about 7 times larger than in the latter model for n = 5.

Similar comparisons can be made between different processes under the same
approach or different approaches.

This suggests that it is not possible to select different models that would be
equivalent in the sense of producing similar standard deviations for all n.

The coefficient of skewness of aj\ for the same four models are contained in
Table 3.

TABLE 3

COEFFICIENT OF SKEWNESS OF a-^\

Wiener:

O-U:

Wiener:

O-U:

b
.06
.06
.10
.10

,)
.06
.06
.10
.10

Modeling

6
.06
.06
.10
.10

a
.17
.17
.17
.17

d
.06
.06
.10
.10

(X

M
.17
.17
.17

17

.01

.02

.01

.02

P
.01
.02
.01
.02

a
.01
.02
.01
.02

P
.0\
.02
.01
.02

the force of interest accumulation function

5

.0481

.0963

.0530

.0946

.0197

.0394

.0194

.0389

Modeling the

5

.1338

.2690

.1311

.2636

.0585

.1172

.0573

.1148

10

.0640

.1282

.0616

.1233

.0202

.0404

.0198

.0395

force of interest

10

.3488

.7266

.3336

.6940

.1205

.2421

.1154

.2318

n

20

.0841

.1686

.0772

.1547

.0185

.0370

.0183

.0366

n

20

.9732
2.8689
.8718
2.5013

2\51
.4379
.1961
.3977

30

.0963

.1932

.0844

.1693

.0171

.0343

.0176

.0353

30

2.1347
56.9320
1.7175

41.5591

.2773

.5693

.2383

.4874

40

.1040

.2087

.0876

.1757

.0165

.0330

.0175

.0349

40

6.5145
1.3 x 105

4.0382
1.2 x 105

3\66
.6564
.2580
.5311

O-U: Ornstein-Uhlenbeck

The coefficient of skewness also exhibits significantly different patterns depend-
ing on the model considered. This supports the observation made earlier that no two
models can be seen as equivalent.
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7. IMPLICIT BEHAVIOR OF THE FORCE OF INTEREST

Clearly, modeling the force of interest accumulation function has quite different
implications on the random present value function and other actuarial functions than
modeling the force of interest. Basically, when modeling the force of interest, it is
ds that varies according to the chosen stochastic process. When modeling y(t), then
ds varies so that y{t) follows the chosen stochastic process. Those differences have
already been illustrated by the standard deviation and coefficient of skewness of
a;p. Another useful way of illustrating the differences between the two approaches
is to look at the conditional expected value of y(t) given y(s) and dx for .v < t. This
conditional expectation will provide some insight into the implicit behavior of each
process.

7.1. Modeling the force of interest accumulation function

The conditional expected value of y(t) given y(s) and dx for ,s- < t when y(t)
follows an Ornstein-Uhlenbeck process may be obtained in the following way.

Using (6), we have

(35) E [ y ( t ) I y ( s ) = x , dx = e] = E [ d - t + X ( t ) \ d - s + X ( s ) = x , dx = t |

(36) = d - t + E \ X ( t ) \ X ( x ) = x - d - s , d x = e ] ,

since X(t)\X(s) is independent of ds for s < t from the Markovian property of X(t),
then

(37) E[y(t)\y(s) =x, dx = el = dt + E\X(t)\X{s) = x- 6 • s\,

which is [see, for example, BEEKMAN and FUELLING (1990, Section 2)]

(38) E [ y ( t ) \ y ( s ) = x , d s = e] = d - t + { x - d • s ) • e ~ " u ' s ) , s < t .

One can proceed in a similar way to find the corresponding result when the force
of interest accumulation function is modeled by a Wiener process.

7.2. Modeling the force of interest

The conditional expected value of y(t) given y(s) and d, for .v < / when d, follows
an Ornstein-Uhlenbeck process may be obtained in the following way.

Using (1), we have

(39) E[y(t)\y(s)=x,ds = e]= dr I brdr = x , ds = e

(40)
r p /•/ j..v

= E\\ drdr + 6rdr | drdr = x,dx = ,
L Jo J v J o
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and conditioning on y(s) = x, (40) becomes

( 4 1 ) E\y(t)\y(s) = x , 6S = E ] = X + E f drdr\\ dudu= x,ds = e\

I" f (s 1
E\dr\\ Sudu = x,ds = e\dr.

J.t L Jo J

(42)

From the Markovian property of the process, dr I 6S with r > s is independent of all
values of du for u < s, we then have

( 4 3 ) E \ y ( t ) \ y ( s ) = x , d x = e ] = x + I E [ d r I <5, = £ ] d r .f £ [ < 5 r l ^ = -

Finally, adapting the result for the conditional expectation of an Ornstein-
Uhlenbeck process found in ARNOLD (1974, p. 134), we may write (43) as

i:(44) E [ y ( t ) \ y ( s ) = x , d x = e \ = x + \ d + (e - d) • e-
a(r~s) d r .

(45) - l "
a

We can proceed similarly to find the corresponding conditional expectations
when the force of interest is modeled by a White Noise or a Wiener process.

Table 4 summarizes these results and those obtained earlier in this paper.

TABLE 4

SUMMARY OH RESULTS ABOUT y(t)

Process

Wiener

O-U

E [ y ( t ) \

dt

dt

V\y(t)\

Modeling

a 2 • (

p 2 ( l -e'

the force of interest

Modeling the force

E[y(t)\y(s) = x,d! = e]

accumulation function

x + d{t-s)

d-t + (x-ds)-e-ail's>

of interest

Wiener dt a2 • t}B x + e(t-s)

2p2t p2 f\-e'""
O-U dt

a 2a
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We note from Table 4, as mentioned earlier, that the expected value of y(t) is the
same for all four models presented. Also, as noted earlier, the variances are quite
different from one model to another. The salient feature of Table 4, however, is the
fact that when modeling the force of interest accumulation function, the conditional
expectation of y(t) given y(s) and ds does not depend on the values of ds. But
when modeling the force of interest, this conditional expectation does depend on the
value of ds.

In order to illustrate the possible implications of the conditional expected values
of y{t) presented in Table 4, we now consider the Consumer Price Index (CPI) for
Canada for the 1960-1992 period (see Canadian Institute of Actuaries (1993,
Table 1A)). Here, the CPI plays the role of the force of interest.

The results presented in Sections 2.2 and 6.4 of PANDIT and Wu (1983) were
used to estimate the parameters of the different models. The estimator for d is
.05335. The estimator of the parameter a when modeling the force of interest
accumulation function is .01955, and when modeling the force of interest, it is
.05389.

Using these values, the expected values of y(t), t > 10, given .y(10) = .2771 and
dlo = .O131 were computed. The results are presented in Figure 1 where t-0
corresponds to 1960. It is difficult to determine from this figure whether the fact
that some models do not use the value of dw makes a significant difference.
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Figure 2 presents the expected values of d,, t> 10, given y (10) = .2771 and
<5io = .0131. This last figure clearly indicates a possible implication resulting from
modeling the force of interest accumulation function instead of the force of interest.
That is, an expected value of the force of interest, in the immediate future, which
can be significantly different from its current value.
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8. REMARKS AND SUMMARY

It should be noted that the numerical values presented in Tables 1 and 2 of this
paper are not entirely comparable with those in BEEKMAN and FUELLING (1990,
1991). BEEKMAN and FUELLING (1990, 1991) study the continuous annuity, a^, and
we chose to study the annuity-immediate, a^i. The choice of a discrete annuity was
made in order to avoid errors involved in doing numerical integrations that would
have been needed for the continuous annuity for some of the models considered.

In this paper, we have studied different models under two approaches to model
the interest randomness. An annuity-immediate was used to present some illustra-
tions.

As measured by the agreement of the expected values, standard deviations and
coefficients of skewness, no two models can be seen as equivalent, even if one
would try to select particular values of the parameters. The one exception to this is
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that a White Noise process for the force of interest is equivalent to a Wiener process
for the force of interest accumulation function.

Further, when modeling the force of interest accumulation function, defined as
y(t), the conditional expected value of y(t) given y{s) and ds, s < t, does not
depend on the value of the force of interest at time s. However, when modeling the
force of interest, the expected value of y(t) given y(s) and d,, s < t, does depend
on the value of the force of interest at time s.

Finally, another advantage to using one of the models presented for the force of
interest is that they are special cases of one-factor interest rate term structure
models. This means that the work that has already been done in finance could be
used by actuaries interested in arbitrage-free pricing.
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