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Summary

Here, we describe a randomization testing strategy for mapping interacting quantitative trait loci

(QTLs). In a forward selection strategy, non-interacting QTLs and simultaneously mapped

interacting QTL pairs are added to a total genetic model. Simultaneous mapping of epistatic QTLs

increases the power of the mapping strategy by allowing detection of interacting QTL pairs where

none of the QTL can be detected by their marginal additive and dominance effects. Randomization

testing is used to derive empirical significance thresholds for every model selection step in the

procedure. A simulation study was used to evaluate the statistical properties of the proposed

randomization tests and for which types of epistasis simultaneous mapping of epistatic QTLs adds

power. Least squares regression was used for QTL parameter estimation but any other QTL

mapping method can be used. A genetic algorithm was used to search for interacting QTL pairs,

which makes the proposed strategy feasible for single processor computers. We believe that this

method will facilitate the evaluation of the importance at epistatic interaction among QTLs

controlling multifactorial traits and disorders.

1. Introduction

Efficient methods for detecting epistatic quantitative

trait loci (QTLs) are needed to gain a better

understanding of the genetics underlying complex

traits. Several lines of evidence indicate the importance

of epistasis. For instance, C 40% of the genes in yeast

do not yield an aberrant phenotype when ablated

(Wolfe, 2000) and the same alleles can cause a strain-

specific autoimmune disease in mice (Bolland &

Ravetch, 2000). Epistasis has been reported in QTL

mapping studies (Fijneman et al., 1996; Long et al.,

1996; Li et al., 1997; Shook & Johnson, 1999; Lieps

& Mackay, 2000; Mackay, 2001) and in various basic

biological processes that are expected to affect the

expression of most traits. Biological processes in

which epistasis has been shown to be important

include signaling pathways in both plants (Beaudoin

et al., 2000) and animals (Araujo & Bier, 2000; Scanga

et al., 2000; Luschnig et al., 2000), and differential

crossing-over and segregation (Khazanehdari & Borts,

2000).
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Several methods for mapping quantitative trait loci

have been proposed in the literature. The first interval

mapping methods were aimed at detecting marginal

additive and dominance effects of individual QTLs

(e.g. Lander & Botstein, 1989; Haley & Knott, 1992;

Martinez & Curnow, 1992), and several authors have

developed methods for mapping multiple non-

interacting QTLs (e.g. Jansen, 1992, 1993; Jansen &

Stam, 1994; Zeng, 1993a, b). Strategies have been

proposed for mapping multiple interacting QTLs

using a non-orthogonal two-locus linear epistatic

model (Jansen, 1992; Haley & Knott, 1992). Recently,

Zeng and co-workers described Multiple Interval

Mapping (MIM) for mapping multiple interacting

QTLs using Cockerham’s genetic model (Kao &

Zeng, 1997; Kao et al., 1999; Zeng et al., 1999; Zeng

et al., 2000).

Churchill & Doerge (1994) proposed the use of

randomization testing to derive empirical significance

thresholds for detection of single QTL and then

expanded this approach to multiple non-interacting

QTLs (Doerge & Churchill, 1996). These methods are

based on forward selection of one QTL at a time. This

approach fails to detect epistatic QTLs unless at least

one of the epistatic QTLs has significant marginal
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effects. We have previously shown that a simultaneous

search for epistatic QTL pairs is more efficient than

forward selection to find epistatic QTL pairs for all

epistaticmodels tested (Carlborg et al., 2000).Residual

randomization or residual bootstrap testing have been

suggested by Zeng et al. (1999) as a means for final

model selection when mapping multiple epistatic

QTLs by MIM, but no integrated use of randomiz-

ation testing in the search procedure has yet been

described.

This report describes a forward selection strategy in

which non-interacting QTLs and subsequently sim-

ultaneously mapped interacting QTL pairs are added

to a total genetic model. Randomization testing is

used to test for marginal QTL effects, for epistasis

between all pairs of QTL with significant marginal

effects and for pairs of epistatic QTLs in which at least

one did not have significant marginal effects. The

strategy is designed to use the increased efficiency of a

simultaneous search in detecting interacting QTL

pairs (Carlborg et al., 2000). Simulations were used to

evaluate how much statistical power can be gained by

simultaneously mapping two epistatic QTLs for

different types of epistasis and to evaluate the

statistical properties of the proposed randomization

tests.

2. Methods

(i) Moti�ation

Detection of QTLs is normally based on the marginal

additive and dominance effects of individual QTLs.

The strategies to search for the QTLs vary from a one-

dimensional genome scan (e.g. Churchill & Doerge,

1994) to forward selection and stratification pro-

cedures (e.g. Doerge & Churchill, 1996). The reasons

for type I (falsely detecting nonexistentQTLs) and type

II (not detecting real QTLs) errors in these studies are

thoroughly discussed by Doerge & Churchill (1996).

Epistasis can increase the type II error in the forward

selection procedure of Doerge & Churchill (1996) by

decreasing marginal QTL effects and thereby causing

premature convergence of the search procedure. By

simultaneously mapping QTLs using an epistatic

QTL model, the type II error can be decreased. To

address this, we suggest an alternate forward selection

testing procedure with additional step in which pairs

of QTLs are mapped simultaneously using an epistatic

QTL model. In the forward selection strategies based

on randomization tests, the type I error for the

inclusion of one (or two) additional QTL in the total

genetic model is controlled by setting a desired

significance threshold based on the empirical dis-

tribution obtained in the randomization test. One of

the difficulties when using a forward selection strategy

is to control the total experimental type I error of the

entire search procedure. The correct way to correct

the significance threshold to obtain the desired type I

error level still needs to be explored further.

We will describe the randomization testing strategy

by first describing the search strategies used for

detection of marginal and interaction effects of QTLs

and the genetic models used in the mapping procedure,

and then introducing the principle of model selection

strategy and of our proposed randomization tests.

(ii) Genomic search strategies

A one-dimensional (1D) exhaustive enumerative

search for QTLs using a 1 cM step size was used to

detect marginal QTL effects. A genetic algorithm, as

implemented by Carlborg et al. (2000), was used to

search for pairs of epistatic QTLs. In the randomiz-

ation testing procedure, a conditional QTL search

has also been used. This is a 1D, forward selection

strategy that is used when one of the QTLs in the

epistatic QTL pair proposed by the genetic algorithm

has already been declared significant and included in

the genetic model. During this search, a 1D genome

scan for an epistatic QTL pair is performed where the

location of the already significant QTL in the pair is

held fixed.

(iii) Genetic modelling

A full genetic model including marginal additive and

dominance effects of all QTL as well as all possible

pairwise interaction effects can be written as
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where a and d are the single-locus marginal additive

and dominance effects, aa, ad, da and dd are the

interaction terms for a specific QTL pair, and n is the

number of QTLs in the model.

In linear regression form, this model becomes
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where y
i

is the phenotype of an individual i ;

ε
i
CN(0, σ #) (where σ # is the environmental variance

independent of the expected value of the mean); A
j

and D
j

are regression indicator variables for the

marginal additive and dominance effect of the jth

QTL as given by Haley & Knott (1992) ; AA
kl
, AD

kl
,

AD
lk

and DD
kl

are regression indicator variables for
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Fig. 1. Flow chart for the randomization testing strategy used to detect multiple QTLs.

the combinations of the additive and dominance

effects for QTLs k and l in the model, which are

obtained by multiplying the respective additive and

dominance regression variables for QTL k and l

(Haley & Knott, 1992) ; and the β values are the

partial regression coefficients for the genetic par-

ameters corresponding to the indicator regression

variables.

The proposed mapping strategy is a model selection

strategy in which the QTLs to be included in the

model are initially proposed by a standard interval

mapping procedure (Haley & Knott, 1992) and the

model parameters for marginal effects of the proposed

QTLs are included in the model based on a randomiz-

ation test. Inclusion of epistasis parameters for all

pairs of QTLs that have marginal effects in the model

is based on a randomization test performed for each

pair. Subsequently, marginal and epistasis parameters

for pairs of QTLs, indicated by a genetic-algorithm-

driven simultaneous search for interacting QTL pairs

(Carlborg et al., 2000), are included based on a

randomization test. The final model thus includes

parameters for the marginal effects of all selected

QTLs and epistatic parameters for a number of all the

possible pairs of QTLs with marginal effects in the

model. A more thorough description of the decision

rule for selecting the genetic parameters to be included

in the model is given below.

(iv) Model selection strategy

We propose that simultaneous mapping of epistatic

QTL pairs is included in the following model selection

strategy, based on randomization testing (Fig. 1). The

first step aims to find the QTLs that can be detected by

their marginal effects, and the second step then tries to

select the best pairwise model (that is, to evaluate

whether epistasis is important for any pairs that exist

among the detected QTLs). The third step in the

procedure is to search simultaneously for pairs of

QTLs using an epistatic QTL model. This step is

included to detect QTLs without significant marginal

effects but for which, instead, marginal effects together

with interaction effects are sufficient to indicate QTL

activity. In step 1, QTLs are mapped, without regard

for epistatic interactions, by a standard interval

mapping method using Model I from Table 1 (Haley

& Knott, 1992). Putative QTL locations are evaluated

using a randomization test (Churchill & Doerge,

1994). Additive and dominance parameters for the

detected QTLs are added to a total genetic model. In

step 2, all pairs of QTLs are tested for digenic epistasis

by comparing the total genetic model with an updated

total genetic model that also contains the four

interaction parameters for the QTL pair (Table 1,

Model II). Model selection is based on a randomiz-

ation test described below. For QTL pairs for which
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Table 1. Genetic models used for QTL detection by stepwise model selection and randomization testing

Search strategy Genetic model

I n QTLs without epistatic interactions
y
i
¯β

!
­3

n

j="

(β
"j
A

j
­β

#j
D

j
)

II Epistatic interaction for QTLs x and y
detected using model I y

i
¯β

!
­3

n

j="

(β
"j

A
j
­β

#j
D

j
)

­ 3
(k, l)ZQep

(β
"kl

A
k
A

l
­β

#kl
A

k
D

l
­β

$kl
A

l
D

k
­β

%kl
D

k
D

l
)

­(β
"xy

A
x
A

y
­β

#kl
A

x
D

y
­β

$xy
A

y
D

x
­β

%lxy
D

x
D

y
)

III Simultaneous search for QTL (n­1) and
(n­2) not detected by their marginal effects y

i
¯β

!
­3

n

j="

(β
"j

A
j
­β

#j
D

j
)

­ 3
(k, l)ZQep

(β
"kl

A
k
A

l
­β

#kl
A

k
D

l
­β

$kl
A

l
D

k
­β

%kl
D

k
D

l
)

­

E

F

3
n+#

j=n+"

(β
"j

A
j
­β

#j
D

j
)­

3
n+"

k=n+"

3
n+#

l=k+"

(β
"kl

A
k
A

l
­β

#kl
A

k
D

l
­β

$kl
A

l
D

k
­β

%kl
D

k
)

A
j
and D

j
are regression indicator variables for the marginal additive and dominance effect of the jth QTL, and AA

kl
, AD

kl
,

AD
lk

and DD
kl

are regression indicator variables for the combinations of the additive and dominance effects for all pairs of
the n QTLs in the model (Haley & Knott, 1992). The β values are the partial regression coefficients for the genetic parameters
corresponding to the indicator regression variables ; n is the number of already significant QTLs in the model, (k, l )ZQ

ep

are all QTL pairs with significant interactions that are contained in the set Q
ep

and 1%x% n, y"x.

the epistatic model is selected, their interaction

parameters are added to the total genetic model.

Testing for digenic epistasis is repeated until all QTL

pairs have been evaluated using a genetic model

including all selected interaction terms.

In step 3, a simultaneous search is performed for an

epistatic QTL pair, in the same or in different linkage

groups. QTLs in the same marker bracket are not

tested for because their detection is based on the same

genetic and phenotypic information. The total genetic

model is used with additional parameters for the

epistatic QTL pair (Table 1, Model III). During the

search, a QTL is defined as a ³10 cM interval

surrounding the best map position. Based on this, a

QTL mapped within 10 cM of a previously mapped

QTL is considered to reflect the same QTL. Thus, the

indicated locations for an epistatic QTL pair include

no or one already detected QTLs. If a less dense

genetic map used is used, the region covered by the

QTL might have to be expanded in order to avoid

dependencies in the QTL analysis. Inclusion of a

second interacting QTL or an interacting QTL pair in

the total genetic model is based on randomization

testing. Additional pairs of epistatic QTL are sought

until the last pair indicated by the genetic algorithm is

non-significant, which terminates the search pro-

cedure.

(v) Randomization testing for detecting epistatic

QTLs

The randomization test used to select between an

additive-dominance and an epistatic QTL model for

QTLs detected by their marginal effects is based on

the following principle. Many data permutations are

generated in which the interaction regression variables

(AA12, AD12, AD21 and DD12) for the QTL pair are

permuted with regard to the phenotypes and the

variables in the total genetic model (Fig. 2). In each

permuted sample, the model fit evaluation is calculated

(we used the residual sum of squared errors) and

retained. The number of permutations needed is

determined by calculation of the efficient sample size

(Nettleton & Doerge, 2000). When all permuted data

sets have been evaluated, an empirical model selection

criterion can be calculated.

Two alternate randomization tests have been

developed to handle model selection for the QTL

pairs indicated in the simultaneous search. If one of

the QTLs in a QTL pair has already been detected in

step 1 or by its interaction with another QTL, its

marginal genetic effects are already in the total genetic

model. A conditional randomization test is then used

to test whether the second QTL and the interaction

parameters should be added to the model (Fig. 1). For

this test, data permutations are generated until an

efficient sample size has been obtained.

E The location of the already-significant QTL is held

as a fixed parameter in the model and a 1D

genome scan is performed to propose locations for

the second QTL in the model. For each proposed

location, the regression variables for the second

QTL (A2 and D2) and the interaction regression
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dominance model ; 3, a second QTL interacting with a QTL already in the model ; 4, two additional interacting QTLs.
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variables (AA12, AD12, AD21 and DD12), are

calculated and permuted with regard to the

phenotypes and the variables in the total genetic

model (Fig. 2).
E The best model fit evaluation from the genome

scan for the second QTL is retained.

After all permutations have been obtained, the

model fit evaluations are used to calculate an empirical

significance threshold for model selection. If the QTL

pair proposed by the genetic algorithm is significant,

the marginal genetic parameters for the second QTL

and the interaction parameters of the QTL pair are

added to the total genetic model. If the second

proposed QTL is not significant, the testing strategy

has converged. This test is used to obtain a test for a

second interacting QTL that is conditional on the

marginal effects of an already selected QTL.

If neither of the QTLs in the detected pair has

previously been included in the total genetic model, a

randomization test is used to test whether the

interacting QTL pair should be added to the total

genetic model. Principally, the randomization test is

performed as above but with the following exceptions.

A simultaneous search for an epistatic QTL pair is

performed in each permuted sample and, for each pair

of proposed genomic locations, the regression vari-

ables for both QTLs to be added to the model (A1, D1,

A2, D2, AA12, AD12, AD21 and DD12) are calculated.

These are then permuted with regard to the phenotypes

and the already selected effects in the model (Fig. 2).

The model fit evaluations are retained and an empirical

significance threshold is calculated.

(vi) Simulation study

Complementary epistasis has an expected mendelian

segregation ratio of 9:7 and is observed when

homozygosity for a recessive allele in either of two

genes gives the same mutant phenotype. Duplicate

epistasis is observed when homozygosity for two

recessive alleles is required to give a mutant phenotype,

and the expected segregation ratio is 15:1. Dominant

and inhibitory epistasis occur when one gene blocks
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the phenotypic expression of a second gene. For

dominant epistasis, the dominant allele at the first

locus is also dominant over the alleles at the second

locus. The phenotypic effects of the second locus are

therefore only expressed when the individual is

homozygous recessive at the first locus. This gives an

expected segregation ratio of 12:3:1. Inhibitory

epistasis works in the same way as dominant epistasis

and is the special case when the two genes have effects

of equal size but opposite sign. The expected seg-

regation ratio is here 13:3. All of these segregation

ratios are relevant for unlinked loci in an F
#
cross and

for the case where both parents are heterozygous at

both loci.

A simulation study was performed to evaluate

whether simultaneous mapping of pairs of QTLs

using an epistatic model is more powerful than

mapping single QTLs by their marginal effects. The

aim was to find out for which types of epistasis the

increase in statistical power is most pronounced and

how the method performs when mapping non-

interacting QTL pairs or single QTL. In the simu-

lations, 100 replicates of 520 F
#

individuals from a

cross between two inbred lines were simulated for six

genetic models ; 100 replicates were also simulated for

a smaller population size of 260 F
#
individuals for one

genetic model. The simulated genome consisted of 20

chromosomes, each 100 cM in length, carrying fully

informative marker loci at the ends and at 10 cM

intervals. Crossovers were generated using Haldane’s

mapping function without interference (Haldane,

1919).

The individual phenotypes were simulated as

y
i
¯E(G

i
)­ε

i
,

where E(G
i
) values are given for all two-locus

genotypes in Table 2 and ε
i
EN(0, σ #) ; σ# is de-

termined by holding the heritability, h#, fixed and

calculating the variance of phenotypes caused by

additive genetic effects, V
A
, for each dataset. Then, σ#

is computed using the equation

V
A

(1®h#)|h#.

In total, six different combinations of non-interac-

ting and interacting QTLs were evaluated. Four

contained two epistatically interacting QTLs, one

contained two fully additive QTLs and one a single

fully dominant QTL (Table 2). All QTLs were fixed in

the parental lines and simulated at random locations

in the genome. Only one QTL was allowed on each

chromosome. The narrow-sense heritability was set to

0±01 for the evaluation of the randomization testing

procedure and heritabilities for the evaluation of the

model selection randomization test were 0±01, 0±05

and 0±10. The simulated effects of the QTLs and the

heritability were chosen such that the standard interval

mapping method of Haley & Knott (1992) would
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detect at least one QTL in at least 75% of cases. The

QTL effects and the variances explained by the QTL

are given in Table 2.

(vii) Computational techniques

Randomization testing is a computer-intensive

method to derive empirical significance thresholds for

detection of QTLs. We have developed QTL mapping

software that has been performance tuned and written

for parallel computing. The simulation study was

performed using 24,000 CPU hours on a Cray T3E

computer at the National Supercomputing Center in

Linko$ ping, Sweden.

3. Results

(i) Power of QTL mapping

The statistical power when mapping one or two QTL

using standard interval mapping and our proposed

Table 3. Empirical power and type I errors (*) for mapping QTLs simulated under different genetic models

using the proposed randomization testing strategy (Fig. 1). The significant QTLs are reported for the

randomization test used to detect them. The total power of the proposed testing strategy is gi�en as well as the

gain in power of mapping epistatic QTL pairs compared with mapping single QTLs using a standard least

squares inter�al mapping method

Significant QTLs from
standard interval mapping

Gain in power by
forward selection of: Two QTLs:

Genetic model
Population
size At least one Two

Additional
QTL

Additional
QTL pair

Total
power

Total gain
in power

Non-epistatic
One dominant 520 82% 3%(*) 6%(*) 1%(*) – –
Two additive 520 96% 54% 5% 2% 61% 7%

Epistatic
Complementary 520 94% 56% 14% 1% 71% 15%
Dominant 520 93% 10% 49% 3% 62% 52%
Duplicate 520 60% 25% 35% 36% 96% 71%

260 31% 3% 14% 22% 39% 36%
Inhibitory 520 97% 14% 27% 1% 42% 28%

Table 4. A comparison of the type I error and power of the randomization test proposed for model selection.

A type I error is for this test defined as selecting an epistatic model when a two-QTL additi�e model was

simulated, and power is defined as the ability to select an epistatic model when an epistatic genetic model was

simulated. The results are based on " 500 simulations for each combination of model and heritability

h #¯ 0±01 h #¯ 0±05 h #¯ 0±10

Simulated genetic model Type I error Power Type I error Power Type I error Power

Non-epistatic
Two additive 4±6% – 6±7% – 7±4% –

Epistatic
Dominant – 86±6% – 98±9% – 99±6%
Duplicate – 94±8% – 99±3% – 99±6%

randomization testing strategy is presented in Table 3.

The simultaneous mapping step increased the ability

to map the simulated QTL pairs whether epistasis was

present or not. In most of the simulated populations,

at least one of the QTLs was detected using standard

interval mapping for the dominant, inhibitory and

complementary epistatic QTL models. Both QTLs are

more rarely detected using standard interval mapping,

and the simultaneous mapping step and the test for a

second QTL conditional on the significant QTL adds

substantial power, with the largest increase for the

dominant epistatic QTL model (49%). The largest

increase in power from the test for an additional QTL

pair is obtained for the duplicate epistatic model, with

substantial increases for both the large (36%) and the

small (22%) population sizes. When the population

size is decreased for the duplicate epistatic model, the

total power to detect QTL decreases from 96% to

39%.
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(ii) Randomization test for model selection

The results from the study of the randomization test

for model selection are presented in Table 4. The three

different genetic models evaluated represent three

different proportions of the genetic variance that

cannot be accounted for using an additive or a

dominance model (Table 2) : none for the additive,

low for the dominant epistatic and high for the

duplicate epistatic genetic models. The type I error

when testing for epistasis using an additive genetic

model was constant around the selected threshold

(5%) for all heritabilities tested. The power to detect

epistasis was higher for the duplicate epistatic than for

the dominant epistatic model and increased with the

heritability for both models.

4. Discussion

Here, we have described and evaluated the properties

of a stepwise randomization testing strategy based on

three novel randomization tests to be used for mapping

of epistatic QTLs. A simulation study showed that the

ability to detect interacting QTLs is increased sub-

stantially by searching simultaneously for epistatic

QTL pairs in a forward selection procedure. The

method is applicable to other genetic models and

other QTL mapping methods. It is currently limited to

mapping pairs of QTLs but could easily be expanded

to include epistasis of higher order, for instance

triplets of QTLs instead of only pairs.

By simulation, we show that the power is greater for

all epistatic models tested than standard least squares

interval mapping of single QTLs. No explicit compari-

sons have been made with other multiple QTL

mapping methods but, implicitly, the following com-

parison can be made. We have previously shown that

a simultaneous search for QTL pairs is superior to a

forward selection procedure for detecting the locations

in the genome, which explains most variation. There-

fore, the number of QTLs detected in the conditional

test is the highest that can be detected using a forward

selection strategy to map epistatic QTLs using an

epistatic model. The power of a forward selection

strategy based on an additive}dominance model has

not been evaluated but we do not expect that the

ability to map epistatic QTLs is higher using this

model. The most important point with regard to

power comparisons with other multiple QTL mapping

methods is that an additional step tomap an additional

pair of QTLs (i.e. step 3) will, once included, add

power to any forward selection procedure for mapping

QTLs.

We propose a forward selection, randomization

testing strategy including a simultaneous mapping

step for epistatic QTL pairs. There are three major

issues that need to be addressed for this procedure to

be applicable in practice. The first is the selection of a

genetic model that is appropriate for the aims of the

study. When a genetic model has been selected, the

statistical properties of the model need to be addressed.

Secondly, a QTL search and significance testing

strategy must be designed to make statistical inferences

about the number of QTLs that exist and the types of

interaction among the detected loci. Finally, the

computational performance for real experimental data

need to be addressed. The first two points are

addressed in this report, and the computational issues

will be discussed elsewhere.

In the mapping procedure, we used a non-or-

thogonal, two-locus linear epistatic model for map-

ping QTLs. This model was chosen because the aim of

our investigations is to achieve a physiological and

biochemical interpretation of dominance and epistasis.

The parameter estimates for this model have more

relevant genetic interpretations than the orthogonal

models suggested by Cockerham (1954), for example,

which have recently been used for mapping interacting

QTLs (Kao et al., 1999). The advantage with the

Cockerham model is that it is possible to test all

parameters in the model independently. If this is done,

however, it is not possible to transform the data to get

the estimates of the model we propose. We have on

this basis decided not to use the Cockerham model for

our testing procedure. The use of a non-orthogonal

model for analyses aimed at understanding the genetics

in finite locus models has been suggested by Jana

(1971) and others. A difficulty when using this model

in QTL mapping is that residual randomization or

residual bootstrap tests cannot be used for significance

testing or model selection because the genetic par-

ameters in the model are not orthogonal. For model

selection and significance testing, we therefore suggest

a different randomization testing procedure (as de-

scribed). The simulation study shows that the pro-

cedure has high power for all epistatic models tested

and that it produces a correct type I error.

The randomization testing strategy is a hybrid

between a standard interval mapping of single QTLs

and simultaneous mapping of epistatic QTLs (Fig. 1).

This strategy was chosen to obtain the highest

statistical power by using a statistical model that is

most appropriate for the data. It has been shown in

numerous studies that there are genes that are fully

additive, that are dominant to varying degree and that

interact. In our testing procedure, we first use an

additive-dominance model (Table 1, Model I), to map

QTLs that have sufficiently large marginal additive

and}or dominance effects to be identified by a standard

interval mapping method for single QTLs. For this

step, any QTL mapping method could be used to

indicate individual QTLs. We have chosen to start

(Step 1) with a 1D genome scan mainly for two

reasons. In a previous study (Carlborg et al., 2000), we

https://doi.org/10.1017/S001667230200558X Published online by Cambridge University Press

https://doi.org/10.1017/S001667230200558X


Simultaneous mapping of epistatic QTLs 183

have shown that a simultaneous search for pairs of

QTLs is superior to a forward selection mapping

procedure in mapping multiple QTLs. In the proposed

randomization testing procedure, we first perform a

single QTL scan and subsequently perform a sim-

ultaneous mapping step for multiple QTLs. These two

strategies combined will find QTLs that could be

detected in a forward selection procedure. The use of

a single genome scan for marginal QTL effects also

decrease the computational demand by limiting the

number of randomization tests to be performed. For

some epistatic models (e.g. dominant epistasis), the

additive and dominance effects of one QTL can inflate

the marginal effects of another QTL, if they are not

mapped using an epistatic model. This could lead to

the detection of these QTLs as individual QTLs with

biased estimates of their genetic effects. The use of the

two-locus model is expected to provide more ap-

propriate estimates of the genetic effects of the two

interacting QTLs, which led us to test for epistasis

among all pairs of individually detected QTLs.

Further, to detect interacting QTLs with smaller

marginal effects, the mapping procedure also includes

a step to search simultaneously for pairs of interacting

QTLs. This mapping step uses digenic epistatic

variance to map QTLs and thus has a higher power

than a conditional search for detecting the most likely

genomic locations of interacting QTLs (Carlborg et

al., 2000).

Owing to the large computational demand involved

in evaluating the randomization testing strategy, in

which several hundred of each of the described

randomization tests are performed, we had to limit

the number of genetic models to evaluate. We have

chosen only to evaluate various one- and two-QTL

models because these models are sufficient to show

whether the simultaneous mapping step for an

interacting QTL pair adds power and, if it does, for

which types of epistatic interactions. They are also

sufficient to evaluate the statistical properties of the

randomization tests proposed. We also believe that

mapping interacting QTL pairs might be of practical

importance for traits in which no significant QTL was

detected using standard interval mapping methods,

despite considerable phenotypic differences between

the lines used in the study.

The randomization testing strategy was evaluated

using simulations for various one- and two-QTL

genetic models with different sizes of genetic effect and

two population sizes. The results clearly show that

simultaneous mapping of an epistatic QTL pair

increases the ability to identify epistatic QTL pairs up

to tenfold compared with a standard interval mapping

method, depending on the geneticmodel. The mapping

of additional pairs of epistatic QTLs adds power for

all genetic models simulated. It is worth noting that

the power to identify two non-interacting QTLs also

increases. This is probably due to the better ability of

the simultaneous search to identify the highest two-

dimensional peak. The increase in power is most

pronounced for the duplicate epistatic QTL model

and is fairly low for the other genetic models.

The model selection randomization test measures

whether an epistatic genetic model is preferable to an

additive}dominance model for a detected pair of

QTLs. The simulations showed that the power to

detect epistasis is high and that it increases with the

heritability. When an additive model was simulated,

there is a weak trend towards increasing type I error

at higher heritabilities. Similar results were reported

by Goffinet & Mangin (1998) and Visscher et al.

(2000), who compared methods for multiple QTL

mapping. Further simulations need to be performed

to evaluate whether this is due to the limited number

of simulations or to other factors such as segregation

distortion in the simulation.

A one-QTL model was simulated to evaluate the

type I error for this multiple testing procedure. The

use of a nominal 5% significance threshold for each

test, leads to a total type I error of C10%. This is

likely to result from the multiple testing performed

but, because the number of simulated populations is

small, further investigations are needed to investigate

whether this result is general or occurred by chance.

There is a need for future research on how to handle

the multiple testing carried out when evaluating

models containing different numbers of QTLs. When

this issue has been addressed, a simultaneous search

strategy for the full genetic model can be developed.

The problem of multiple testing has also been

discussed by Zeng et al. (1999). One issue that also

needs to be investigated further is the statistical

implication of using an epistatic or an additive}
dominance genetic model in statistical testing for

QTLs in various true genetic models. This is in order

to evaluate how alternate proposed QTL mapping

strategies should be combined to obtain maximum

total QTL detection power.
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