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ON COMMUTATIVITY OF RINGS WITH SOME
POLYNOMIAL CONSTRAINTS

MOHD. ASHRAF AND MURTAZA A. QUADRI

Let A be an associative ring with unity 1, N(R) the set of nilpotents, J(R)
the Jacobson radical of R and n > 1 be a fixed integer. We prove that R is
commutative if and only if it satisfies (xj/)n = ynxn for all x,y e R \ N(R) and
commutators in R are n(n + l)-torsion free. Moreover, we extend the same result
in the case when x,y € R \ J(R).

1. INTRODUCTION

Throughout R will denote an associative ring with unity 1. Let us denote the
centre of ring R by Z(R), the commutator ideal by C(R), the Jacobson radical by
J(R), the set of nilpotents by N(R) and for any x, y in R, [x,y] = xy—yx. Let n > 1
be a fixed integer. We consider the following properties:

(I) (a!j/)n = a;nyn,forall x,y in R.
(II) (xy)n = xnyn,ioT all x,y in R\N{R).

(III) (xy)n = xnyn, for all x,y in R \ J(R).

(IV) (xy)n = ynxn, for all x,y in R.
(V) (xy)n ^ ynxn, for ah x,y in R\N(R).

(VI) [xy)n = ynxn, for all x,y in R\J(R).
(VII) For all x,y in #n (n + l)[x,y] - 0 implies [x,y] = 0.

A well-known theorem of Herstein [6] asserting that a ring R, which satisfies (I),
must have nil commutator ideal, has recently been generalised by Bell [4] as follows:
"If R is an n-torsion free ring and satisfies (I) for two consecutive integers n, n + 1,
then R is commutative". Abu-Khuzam [1] proved that if R is an n(n — l)-torsion free
ring satisfying (I), then R is commutative. Further, Bell and Yaqub [5] established
commutativity of the ring R for the case when condition (I) is replaced by either of
conditions (II) or (III) in the hypotheses of the last result. In [11] the authors proved
that if R satisfies (IV) for two consecutive integers n ,n + l together with the condition
(x + y)n = xn + yn, then R is commutative. In this direction we prove the following:

THEOREM 1. A ring R is commutative if and only it it satisfies (V) and (VII).

THEOREM 2 . A ring R is commutative if and only if it satisfies (VI) and (VU).
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2. MAIN RESULTS

The following results axe pertinent for developing the proofs of the above theorems.
Proofs of Lemma 1 and Lemma 2 can be found in [3] and [8] respectively. Moreover,
they hold even for rings without unity. Lemma 3 has also been proved in [9], but here
we are supplying an independent and elementary proof.

LEMMA 1 . Let R be a ring satisfying an identity q(X) = 0, where q(X) is a
polynomial in n on commuting indeterminates, its coefficients being integers with highest
common factor one. If there exists no prime p for which the ring of 2 x 2 matrices
over GF(p) satisSes q(X) = 0, then R has a nil commutator ideal and the nilpotent
elements of R form an ideal

LEMMA 2 . If x,y e R and [x,[x,y]] = 0, then [xm,y] = mxm-1[x,y\ for all
positive integers m.

LEMMA 3 . Let R be a ring and f : R —> R be a function such that f(x + 1) =
f(x) holds for all x in R. If for some positive integer m, xmf(x) = 0 for all x in R,

then necessarily f(x) = 0.

PROOF: We have f(x) = {(1 + x) - x}2m+1f(x). On expanding the right hand
side expression by the binomial theorem and using the fact that xmf(x) = 0 and
(1 + x)mf(x) = 0, we immediately get f(x) = 0. D

PROOF OF THEOREM 1: Let u , v be units in R. On replacing x by u~1v and y
by u in the given condition, we get

which implies that

(1) [un+1, vn] = 0 for all units u, v in R.

This readily yields that [un+1, (vn)n+1] = 0, [un, (vn+1)n] = 0 and hence

(2) [it, wn(n+1>] = 0 for all units u, v in R.

Let a G N(R). Then there exists a minimal positive integer p such that

(3) [u, ak] = 0 for all integers k ^ p.

Suppose p > 1, then (l + a p - 1 ) is a unit in R and hence by (2) and (3) we have,

0 = [«, (1 + aP- 1 ) n ( n + 1 ) ] = n(n + l jfu.a*-1], which implies that [«, a?"1] = 0. This
contradicts the minimality of p. Hence p = 1 and (3) implies that

(4) [u, a] = 0 for all units u in R and all nilpotents a in R.
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Now suppose x G R and again u is a unit in R. If ux £ N(R), then by (4), [u,ux] = 0
and hence [u, x] = 0. Next, suppose that ux £ N(R), then uxnu~1 = ((ux)u"1) =
u ~ n x n u n and hence [u n + 1 ,x n ] = 0. Using the same arguments as used to get (4) from
(2), we have

(5) [a, xn] = 0 for all x in R and all nilpotents a in R.

Let 5 = (xn : x 6 R) be the subring generated by all n t h powers of elements of R.
Thus (5) implies that N(S) C Z(S). Clearly 5 satisfies the hypotheses placed on R.
In fact, all nilpotent elements of 5 are central and hence 5 satisfies (xy)n = ynxn for
all x,y in 5 , which is a polynomial identity with coprime integral coefficients. But if
we consider x = ei2, y = e2i, we find that no 2 x 2 matrices over GF(j>), p a prime
satisfies this identity. Hence by Lemma 1, the commutator ideal C(S) of 5 is nil. Thus
in view of the above arguments we get

(6) C(S) C N(S) C Z(S).

For all x,y in 5 , (xy)nx = x{yx)n, which implies that [xn+1, yn] = 0.

Now using (6) and Lemma 2, we have (n + l)xn[x,yn] = 0 and hence
xn[x,(n + l)yn] = 0. Replacing x by (x + 1) we see that (x + l)"[x,(n + l)yn] = 0,
and hence, by Lemma 3, (n + l)[x, yn] — 0. Using hypothesis (VII), we get [x,yn] = 0.
Again using (6), Lemma 2, Lemma 3 and hypothesis (VIII), we conclude that [x,y] = 0
for all x,y in 5 . Therefore

(7) [xn, yn] = 0 for all x, y in R.

Now we observe that xn + 1yn + 1 = x(xnyn)y = x(yx)ny, that is

(8) xn + 1yn + 1 = (xy)n+1 for all x,y in R \ N(R).

If u, v are units in R, then we find that

(9) [un+1, vn] = 0 for all units u, v in R.

Similar arguments to those used in getting (5) from (1) yield the following from (6) (use

(8) in place of {V)).

(10) [a, xn+1] = 0 for all x in R and all nilpotents o in R.

Thus (5) and (10) yield, [a, x] = 0 for all x in R that is N(R) C Z(R), But by [7],

(7) yields that the commutator ideal C(R) of R is nil. Hence we have

(11) C(R) C N(R) C Z(R).
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To complete the proof of our theorem, let x,y € R. By (7), [z",i/n] = 0. Using
(11) and Lemma 2, we find that nxn~1[x, yn] = 0. Replace x by (z + 1) to get
(x + l)n[x, nyn] = 0. Hence by Lemma 3, n[x, yn] = 0 and using hypothesis (VII) we
get [a;, yn] — 0. Applying the same argument to [a;, yn] = 0, we see that yn~1[x,ny) =
0 — (y + l ) n ~ [x, ny] and hence by Lemma 3 and (VII), [x,y] — 0. This completes the
proof. D

As a consequence of the above theroem, we can derive the following:

COROLLARY . Let R be a ring satisfying (IV) and (VII). Then R is commutative.

PROOF OF THEOREM 2: The arguments used in the proof of Theorem 1 are still
valid in the present situation. Hence, we get

(1) [u, v
n(-n+1)] = 0 for all units u, v in R.

(2) [u, a] = 0 for all a G N(R) and all units u in R.

Now if x, y G J(R), then (1) yields

(3) [(1 + x), (1 + j / ) n ( n + 1 ) ] = 0 for all x, y in J(R).

Using the structure theory of rings, it can easily be verified that if R is a semisimple
ring satisfying (xy)n = ynxn, then R is commutative. Thus by (VI), R/J(R) is
commutative and hence

(4) C(R) C J(R).

Now if C\ = [xi, yi], C2 = [x2, 1/2], 3̂ = [23, 2/3] be any commutators then by (3) and
(4), we get

(5) [(1 + c3), (1 + Cl + c2 + clC2)n(n+1)] = 0.

This is a polynomial identity satisfied by all elements of R. Now consideration
of Ci = C3 = [en, en + ei2], c2 = [en + e12, e2i] shows that no 2 x 2 matrices over
GF(p), p a prime, satisfies (5) and hence by Lemma 1, the commutator ideal of R is
nil and the set of nilpotents form an ideal. Combining this with (2), we find that

(6) [(! + *), [(! + *), ( l + y ) ] ] = 0 f o r a l l * , y e J{R).

Using (3), (6) and Lemma 2, we get n(n+ 1)(1 + y)n'+n~1[l + x, 1 + y] = 0 that is

(1 + y)71**"'^! + x, n(n + 1)(1 +y))=0. Hence by (VII), [x,y] = 0 for all x,y in
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J(R). Thus J(R) is commutative and (J(R)) is central. An easy induction shows

that

(7) {xy)k =ykxk for all fc ̂  2; x,y £ J(R).

Combining (7) together with (VI), we find that R satisfies (IV). Hence the commuta-

tivity of R follows by the Corollary to Theorem 1. U

The noncommutative ring of 3 x 3 strictly upper triangular matrices over the ring Z

of integers shows that the existence of unity 1 in both the theorems is essential. Further,

we provide the following example to show that condition (VII), where commutators are

n(n + l)-torsion free cannot be replaced by "n-torsion free" or "(n + l)-torsion free"

even if the given condition (xy)n = ynxn holds for all x,y in R.

EXAMPLE. Let

( o b c\ / I o

o o d \ , I = l o 1 o \ ,a,b,c,d£GF(3)}.

o o o) \o o

It can easily be verified that (xy) = y2x2 and (xy) = y3x3 . Thus with n = 2,

n[a;,2/] = 0 implies [x,y] = 0 and (xy)™ = ynxn. Also with n = 3 , (n + l)[x,y] = 0

implies that [x,y] — 0 and {xy)n = ynxn for all x,y in R. However, R is not

commutative.
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