b-GENERALIZED DERIVATIONS OF SEMIPRIME RINGS HAVING NILPOTENT VALUES

M. TAMER KOŞAN and TSIU-KWEN LEE

(Received 30 April 2013; accepted 29 November 2013; first published online 31 March 2014)

Communicated by B. Gardner

Abstract

Let R be a semiprime ring with extended centroid C and with maximal right ring of quotients $Q_{mr}(R)$. Let $d: R \rightarrow Q_{mr}(R)$ be an additive map and $b \in Q_{mr}(R)$. An additive map $\delta: R \rightarrow Q_{mr}(R)$ is called a (left) b-generalized derivation with associated map d if $\delta(xy) = \delta(x)y + bxd(y)$ for all $x, y \in R$. This gives a unified viewpoint of derivations, generalized derivations and generalized σ-derivations with an X-inner automorphism σ. We give a complete characterization of b-generalized derivations of R having nilpotent values of bounded index. This extends several known results in the literature.

2010 Mathematics subject classification: primary 16N60; secondary 16R50, 16W25.

Keywords and phrases: prime ring, semiprime ring, GPI, (generalized) σ-derivation, b-generalized derivation, orthogonal completion.

1. Results

Throughout the paper, unless specially stated, R is always a semiprime ring with Martindale symmetric ring of quotients $Q_s(R)$. We let $Q_{mr}(R)$ (respectively $Q_{ml}(R)$) denote the maximal right (respectively left) ring of quotients of R. It is known that $R \subseteq Q_s(R) \subseteq Q_{mr}(R)$. The overrings $Q_s(R)$ and $Q_{mr}(R)$ of R are semiprime rings with the same center C, which is a regular self-injective ring. The ring C is called the extended centroid of R. Also, R is a prime ring if and only if C is a field. We refer the reader to the book [1] for details.

An additive map $d: R \rightarrow R$ is called a derivation if $d(xy) = d(x)y + xd(y)$ for all $x, y \in R$. For $b \in R$, we let $ad(b)$ denote the map $x \mapsto [b, x] := bx - xb$ for $x \in R$. Clearly, $ad(b)$ is a derivation of R, which is called the inner derivation of R induced...
by the element b. It is known that any derivation d of R can be uniquely extended to a derivation of $Q_{mr}(R)$. A derivation $d: R \to R$ is called X-inner if its extension to $Q_{mr}(R)$ is inner. In this case, it is easy to check that $d = \text{ad}(q)$ for some $q \in Q_1(R)$. An additive map $\delta: R \to R$ is called a generalized derivation if there exists a derivation d of R such that $\delta(xy) = \delta(x)y + xd(y)$ for all $x, y \in R$ (see [2, 14, 18]). The derivation d is uniquely determined by δ, and is called the associated derivation of δ.

Let σ be an automorphism of R. An additive map $\delta: R \to R$ is called a (right) σ-derivation if $\delta(xy) = x\delta(y) + \delta(x)\sigma(y)$ for $x, y \in R$. Basic examples of σ-derivations are derivations and $\sigma - 1$. Given $b \in R$, the map $x \mapsto xb - b\sigma(x)$ for $x \in R$ obviously defines a σ-derivation, which is called the inner σ-derivation induced by b. It is clear that any σ-derivation of R can be uniquely extended to a σ-derivation of $Q_{mr}(R)$. In [21], Lee and Liu gave a common generalization of both generalized derivations and σ-derivations. An additive map $g: R \to R$ is called a right generalized σ-derivation if there exists an additive map $\delta: R \to R$ such that $g(xy) = xg(y) + \delta(x)\sigma(y)$ for all $x, y \in R$. It is clear that δ is uniquely determined by the map g. The additive map δ is called the associated map of g. Our present study is motivated by the following results.

Let $d: R \to R$ be a derivation, $\delta: R \to R$ a generalized derivation, $g: R \to R$ a right generalized σ-derivation, and n a fixed positive integer. Also, the rings R in (4)–(6) are prime.

1. Suppose that $d(x)^n = 0$ for all $x \in R$. Then $d = 0$ (see [10, 12, 13]).

2. Let λ be a left ideal of R. Suppose that $d(x)^n = 0$ for all $x \in \lambda$. Then $\lambda d(\lambda) = 0$ (see [16, Theorem 6]).

3. Suppose that $\delta(x)^n = 0$ for all $x \in R$. Then $\delta = 0$ (see [18, Theorem 5]).

4. Suppose that $\delta(x)^n = 0$ for all $x \in \rho$, a right ideal of R. Then there exist $b, c \in Q_{mr}(R)$ and $\beta \in C$ such that $\delta(x) = bx - xc$ for all $x \in R$ and $(b - \beta)\rho = 0 = (c - \beta)\rho$ (see [18, Theorem 6]).

5. Suppose that $g(x)^n = 0$ for all $x \in R$. Then $g = 0$ (see [21, Theorem 2.7]).

6. Let $a, b, q \in Q_{mr}(R)$. Suppose that $(a\delta(qx) - bx)^n = 0$ for all $x \in R$. Then either $a\delta(q) - b = 0 = aq$ or there exist $a_0, b_0 \in Q_{mr}(R)$ and $\mu \in C$ such that $\delta(x) = a_0x + xb_0$ for $x \in R$ and $aa_0q - b = -b_0aq = \mu aq$.

Let us consider a special case of (5). Suppose that the extension of σ to $Q_{ml}(R)$ is inner; that is, there exists a unit $u \in Q_{ml}(R)$ such that $\sigma(x) = uxu^{-1}$ for $x \in R$. Let δ be the associated map of g. Then $g(xy) = xg(y) + d(x)y^{-1}$ for all $x, y \in R$, where $d(x) := \delta(x)u$ for $x \in R$. Notice that $d: R \to Q_{ml}(R)$. See [3, 4] for the Lie ideal case.

In (6), let $d: R \to R$ be the associated derivation of δ; that is, $\delta(xy) = \delta(x)y + xd(y)$ for $x, y \in R$. We let $\tilde{\delta}(x) := a\delta(qx) - bx$ for $x \in R$. Then $\tilde{\delta}(x) = aqd(x) + (a\delta(q) - b)x$ for $x \in R$. A direct computation shows that $\tilde{\delta}(xy) = \tilde{\delta}(x)y + (aq)x$ for all $x, y \in R$. Since d can be uniquely extended to $Q_{mr}(R)$, so can $\tilde{\delta}$. In view of [17, Theorem 3] (or see Fact 1.5 below), R and $Q_{mr}(R)$ satisfy the same differential identities. Thus, $\tilde{\delta}(x)^n = 0$ for all $x \in Q_{mr}(R)$.
Motivated by the results (1)–(6) above, we give the following definition.

Definition 1.1. (1) Let \(d : R \to Q_{mr}(R) \) be an additive map and \(b \in Q_{mr}(R) \). An additive map \(\delta : R \to Q_{mr}(R) \) is called a (left) \(b \)-generalized derivation with associated map \(d \) if \(\delta(xy) = \delta(x)y + bx\delta(y) \) for all \(x, y \in R \).

(2) Let \(d : R \to Q_{ml}(R) \) be an additive map and \(b \in Q_{ml}(R) \). An additive map \(\delta : R \to Q_{ml}(R) \) is called a right \(b \)-generalized derivation with associated map \(d \) if \(\delta(xy) = x\delta(y) + d(x)yb \) for all \(x, y \in R \).

Clearly, a generalized derivation is a 1-generalized derivation and a right generalized \(\sigma \)-derivation is a right \(u^{-1} \)-generalized derivation if \(\sigma(x) = uuxu^{-1} \) for \(x \in R \), where \(u \) is a unit in \(Q_{ml}(R) \). For \(a, b, c \in Q_{mr}(R) \), the map \(x \mapsto ax + bxc \) for \(x \in R \) is a left \(b \)-generalized derivation. Analogously, for \(a, b, c \in Q_{ml}(R) \), the map \(x \mapsto xa + bxc \) for \(x \in R \) is a right \(c \)-generalized derivation. We note that left or right \(b \)-generalized derivations appear canonically in [7, Theorems 1.1 and 1.3]. The goal of the paper is to give a complete characterization of \(b \)-generalized derivations having nilpotent values of bounded index. By symmetry, it suffices to deal with one of left and right \(b \)-generalized derivations. For simplicity of notation, a \(b \)-generalized derivation always means a left \(b \)-generalized derivation.

To state the main theorem of the paper, we have to recall some basic properties of idempotents of \(C \). We write \(B \) for the set of all idempotents of \(C \). The set \(B \) forms a Boolean algebra with respect to the operations \(e + h := e + h - 2eh \) and \(e \cdot h := eh \) for all \(e, h \in B \). It is complete with respect to the partial order \(e \leq h \) (defined by \(eh = e \)) in the sense that any subset \(S \) of \(B \) has a supremum \(\bigvee S \) and an infimum \(\bigwedge S \). Given a subset \(S \) of \(Q_{mr}(R) \), we define \(E[S] \) to be the infimum of \(e \in B \) such that \(ex = x \) for all \(x \in S \). If \(S = \{b\} \), we write \(E[b] \) instead of \(E[S] \) for simplicity. Note that, for \(a, b \in Q_{mr}(R), \) \(aRb = 0 \) if and only if \(E[a]E[b] = 0 \). By the characterization, it is easy to see that if a \(b \)-generalized derivation \(\delta \) has associated maps \(d \) and \(d' \), then \(E[b]d(x) = E[b]d'(x) \) for all \(x \in R \). We refer the reader to the book [1] for details.

We are now in a position to state the main theorems of the paper.

Theorem 1.2. Let \(R \) be a semiprime ring, \(b \in Q_{mr}(R) \), and let \(\delta : R \to Q_{mr}(R) \) be a \(b \)-generalized derivation with associated map \(d \). Suppose that \(\delta(x)^n = 0 \) for all \(x \in R \), where \(n \) is a positive integer. Then there exists \(q \in Q_{mr}(R) \) such that \(E[b]d(x) = [q, x] \) for \(x \in R, \) \(\delta(x) = -bxq \) for \(x \in R \), and \(qb = 0 \).

By symmetry, we also have the following result whose proof parallels that of Theorem 1.2.

Theorem 1.3. Let \(R \) be a semiprime ring, \(b \in Q_{ml}(R) \), and let \(\delta : R \to Q_{ml}(R) \) be a right \(b \)-generalized derivation with associated map \(d \). Suppose that \(\delta(x)^n = 0 \) for all \(x \in R \), where \(n \) is a positive integer. Then there exists \(q \in Q_{ml}(R) \) such that \(E[b]d(x) = [q, x] \) for \(x \in R, \) \(\delta(x) = qxb \) for \(x \in R \), and \(bq = 0 \).

Let \(I \) be an ideal of \(R \). By the semiprimeness of \(R \), the left annihilator of \(I \) in \(R \) coincides with the right annihilator of \(I \) in \(R \). The ideal \(I \) is called dense if
its left annihilator in R is zero. We write $C[X_1, X_2, \ldots]$ for the free algebra over C in noncommutative indeterminates X_1, X_2, \ldots and $Q_{mr}(R) * C [X_1, X_2, \ldots]$ for the free product of the C-algebras $Q_{mr}(R)$ and $C[X_1, X_2, \ldots]$. Let $f(X_i) \in Q_{mr}(R) * C C [X_1, X_2, \ldots]$ and T be a subring of $Q_{mr}(R)$. We say that f is a GPI (that is, a generalized polynomial identity) of T if $f(x_i) = 0$ for all $x_i \in T$. By a derivation word Δ, we mean that Δ is of the form $d_1 d_2 \cdots d_s$, where each d_i is either a derivation of $Q_{mr}(R)$ or the identity map of $Q_{mr}(R)$. By a differential polynomial $f(X_i^{\Delta})$, we mean that all Δ_j are derivation words and $f(Z_{ij})$ is a generalized polynomial in noncommutative indeterminates Z_{ij}. The differential polynomial $f(X_i^{\Delta})$ is called a differential identity of T if $f(x_i^{\Delta}) = 0$ for all $x_i \in T$. We will use the following facts in the proofs below.

Fact 1.4. Let I be a dense ideal of R. Then I and $Q_{mr}(R)$ satisfy the same GPIs with coefficients in $Q_{mr}(R)$ (see [1, Theorem 6.4.1] for a semiprime ring R and [6, Theorem 2] for a prime ring R).

Fact 1.5. Let I be a dense ideal of R. Then I and $Q_{mr}(R)$ satisfy the same differential identities with coefficients in $Q_{mr}(R)$ (see [17, Theorem 3]).

Fact 1.6. Let ρ be a right ideal of R and $a \in Q_{mr}(R)$. Suppose that $(ax)^n = 0$ for all $x \in \rho$. Then $a \rho = 0$ (see Fact 1.4 and [11, Lemma 1.1]).

Fact 1.7. Let $\phi: I \rightarrow Q_{mr}(R)$ be a right R-module map, where I is a dense ideal of R. Then there exists $a \in Q_{mr}(R)$ such that $\phi(x) = ax$ for all $x \in I$ (see [19, Lemma 2.1] with the same proof by replacing ‘a nonzero ideal in a prime ring’ with ‘a dense ideal in a semiprime ring’).

Fact 1.8. Let $d: R \rightarrow Q_{mr}(R)$ be a derivation. Then d can be uniquely extended to a derivation from $Q_{mr}(R)$ to itself (see, for instance, [17, Lemma 2]).

2. The prime case

We begin with the following key result.

Proposition 2.1. Let R be a prime ring, $a, b, c \in R$, and n a positive integer. Suppose that $(ax + bxc)^n = 0$ for all $x \in R$. Then there exists $\beta \in C$ such that $a = \beta b$ and $(c + \beta)b = 0$.

A prime ring R is called a GPI-ring if it satisfies a nontrivial (that is, nonzero) generalized polynomial with coefficients in $Q_{mr}(R)$. The prime ring R is called centrally closed if $R = RC$. In particular, the prime ring $Q_{mr}(R)$ is centrally closed. The following lemma is a special case of [24, Theorem 1]. Since the proof below is neat and self-contained, we give its proof here for the convenience of the reader. We also remark that Chang proved the following lemma with the extra assumption that b is invertible in R (see [5, Lemma 2.1]).
Lemma 2.2. Let R be a prime ring, $a, b, c \in R$, and n a positive integer. Suppose that $(b(ax + xc))^n = 0$ for all $x \in R$. Then there exists $\beta \in C$ such that $b(a - \beta) = 0$ and $(c + \beta)b = 0$.

Proof. Suppose first that R is not a GPI-ring. This implies that $(bAX + Xc)^n$ is a trivial generalized polynomial. In particular, ba and b are dependent over C. That is, $b(a - \beta) = 0$ for some $\beta \in C$. Thus,

$$0 = (c + \beta)(b(ax + xc))^n bx = (c + \beta)(b((a - \beta)x + x(c + \beta)))^n bx = ((c + \beta)bx)^{n+1} \quad (2.1)$$

for all $x \in R$. In view of Fact 1.6, $(c + \beta)b = 0$.

Suppose next that R is a GPI-ring. It follows from Fact 1.4 that

$$(b(ax + xc))^n = 0 \quad (2.2)$$

for all $x \in RC$. Let F denote the algebraic closure of C if C is an infinite field and let $F = C$ if C is a finite field. Then (2.2) holds for all $x \in \bar{R}$ (see [22, Lemma 2.3]), where $\bar{R} := RC \otimes_C F$. In view of [8, Theorem 3.5], \bar{R} is a centrally closed prime F-algebra. By [23, Theorem 3], \bar{R} is a primitive ring with a minimal idempotent e such that $eRe = F e$. Hence, there exists a left vector space V over F such that \bar{R} acts densely on $F V$.

Given $v \in V$, we claim that $v(ba)$ and vb are dependent over F. Suppose not; then there exists $x \in \bar{R}$ such that $v(ba)x = v$ and $vbx = 0$. Then $0 = v(b(ax + xc))^n = v$, which is a contradiction. This proves the claim.

If $\dim_F Vb \geq 2$, it is routine to prove that there exists $\beta \in C$ such that $ba = \bar{\beta}b$; that is, $b(a - \beta) = 0$. Thus, by (2.1) we have $(c + \bar{\beta})b = 0$. Suppose next that $\dim_F Vb = 1$. Choose $v_0 \in V$ such that $Vb = Fv_0b$. Write $v_0ba = \gamma v_0b$ for some $\gamma \in F$. Let $v \in V$. Then $vb = \overline{\alpha}v_0b$ for some $\overline{\alpha} \in F$. Then $vba = \overline{\alpha}v_0ba = \overline{\alpha}\gamma v_0b = \gamma vb$.

In either case, there exists $\beta \in F$ such that $ba = \bar{\beta}b$. Choose a basis μ_0, μ_1, \ldots for F over C, where $\mu_0 = 1$, and write $\bar{\beta} = \beta \mu_0 + \beta_1 \mu_1 + \cdots$, where $\beta, \beta_1, \ldots \in C$. Then $ba = \beta a$. That is, $b(a - \beta) = 0$. It follows from (2.1) that $(c + \beta)b = 0$. \qed

Proof of Proposition 2.1. It follows from Fact 1.4 that

$$(ax + bxc)^n = 0 \quad (2.3)$$

for all $x \in Q_{mr}(R)$. We claim that $a \in bQ_{mr}(R)$. Clearly, we may assume $a \neq 0$.

Suppose that R is not a GPI-ring. Then a and b are dependent over C. In particular, $a \in bQ_{mr}(R)$, as asserted. Suppose next that R is a GPI-ring. In this case, $Q_{mr}(R)$ is also a prime GPI-ring (see Fact 1.4). Since $Q_{mr}(R)$ is a centrally closed prime ring, it follows from [23, Theorem 3] that $Q_{mr}(R)$ is a primitive ring with nonzero socle. Write $H := \text{soc}(Q_{mr}(R))$, the socle of $Q_{mr}(R)$. Note that H is a regular ring (see [9]); that is, for any $w \in H$, $zw = w$ for some $z \in H$. For $z \in H$, we write $\ell_H(z)$ for the left annihilator of z in H; that is, $\ell_H(z) = \{x \in H \mid xz = 0\}$.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1446788713000670
We first consider the case that \(a, b \in H\). Let \(w \in \ell_H(b)\). By (2.3),
\[
0 = w(a(xw) + b(xw)c)\alpha x = (wax)^{n+1}
\]
for all \(x \in Q_{mr}(R)\). In view of Fact 1.6, \(wa = 0\). That is, \(w \in \ell_H(a)\). Up to now, we have proved that \(\ell_H(b) \subseteq \ell_H(a)\)

Since \(a, b \in H\), there exist \(u, v \in H\) such that \(aua = a\) and \(bvb = b\). Set \(f := au\) and \(g := bv\). Then \(f, g\) are idempotents. Then \(\ell_H(g) \subseteq \ell_H(f)\); that is, \(H(1 - g) \subseteq H(1 - f)\).

So \((1 - g)f = 0\). Then \(a = fa = gfa = bvfa \in bH\), as asserted.

For the general case, let \(w \in H\). We see that \((awx + bwxc)^n = 0\) for all \(x \in Q_{mr}(R)\). Since \(aw, bw \in H\), the first case implies that \(aw \in bwH\). Write \(aw = bw \gamma\) for some \(\gamma \in H\), depending on \(w\). Replacing \(x\) by \(wx\) in (2.3),
\[
(bw(tx + xc))^n = (awx + bwxc)c^n = 0
\]
for all \(x \in Q_{mr}(R)\). By Lemma 2.2, there exists \(\beta_w \in C\), depending on \(w\), such that \(bw(t - \beta_w) = 0\). That is, \(aw = \beta_w bw\) for \(w \in H\).

Fix an idempotent \(e_0 \in H\) such that \(ae_0 \neq 0\). Then \(ae_0 = \beta be_0\) for some \(\beta \in C\). Let \(f\) be an idempotent of \(H\). Then \(af = \beta f\) for some \(\beta \in C\). We claim that \(\beta f = \beta f\) if \(af \neq 0\). Indeed, there exists \(h = h^2 \in H\) such that \(e_0 h + fH = h^2 H\) and \(ah = \beta h bh\) for some \(\beta \in C\). Note that \(he_0 = e_0\) and \(hf = f\). Thus,
\[
\beta e_0 = ahe_0 = \beta h b h \beta e_0 = \beta h be_0,
\]

implying that \(\beta h = \beta\). Similarly, \(\beta_h = \beta_f\) and so \(\beta = \beta_f\). Thus, \((a - \beta b)f = 0\) if \(af \neq 0\).

Let \(f = f^2 \in H\) with \(af = 0\). We claim that \(bf = 0\). By Litoff’s theorem [9], there exists an idempotent \(h \in H\) such that \(e_0 f \in hHh\). If \(ah = 0\) then \(ae_0 = ahe_0 = 0\), which is a contradiction. Thus, neither \(ah\) nor \(a(h - f)\) is zero. Note that \(h - f\) is an idempotent. Then
\[
ah = \beta bh \quad \text{and} \quad a(h - f) = \beta b(h - f).
\]

This implies that \(\beta b f = 0\), so \(bf = 0\) follows. Up to now, we have proved that \((a - \beta b)f = 0\) for any idempotent \(f \in H\) with \(af = 0\).

In either case, \((a - \beta b)f = 0\) for any idempotent \(f \in H\). Since \(H\) is a regular ring, \((a - \beta b)H = 0\) and so \(a = \beta b\). Rewrite (2.3) as \((bx(\epsilon + \beta))^n = 0\) for all \(x \in Q_{mr}(R)\). So \((x(c + \beta))^{n+1} = 0\) for all \(x \in Q_{mr}(R)\). By Fact 1.6, \((c + \beta)\gamma = 0\) follows. \(\Box\)

The following characterizes \(b\)-generalized derivations of semiprime rings.

Theorem 2.3. Let \(R\) be a semiprime ring, \(b \in Q_{mr}(R),\) and let \(\delta: R \rightarrow Q_{mr}(R)\) be a \(b\)-generalized derivation with associated map \(d\). Then \(E[b]d: R \rightarrow Q_{mr}(R)\) is a derivation and there exists \(\tilde{b} \in Q_{mr}(R)\) such that \(\tilde{b}(x) = bd(x) + bx\) for all \(x \in R\).

Proof. Expanding \(\delta((xy)z)\) and \(\delta(x(yz))\) respectively, we see that
\[
bx(d(yz) - yd(z) - d(y)z) = 0
\]
for all $x, y, z \in R$. The semiprimeness of R implies that $E[b]d(yz) = yE[b]d(z) + E[b]d(y)z$ for all $y, z \in R$; that is, $E[b]d : R \to Q_{mr}(R)$ is a derivation. Let $\mu : R \to Q_{mr}(R)$ be the map defined by $\mu(x) = bd(x)$ for $x \in R$. Then

$$
\mu(xy) = bE[b]d(xy) = bE[b]d(x)y + bxE[b]d(y) = bd(x)y + bxd(y) = \mu(x)y + bxd(y)
$$

for all $x, y \in R$. Thus, we have $(\delta - \mu)(xy) = (\delta - \mu)(x)y$ for all $x, y \in R$. In view of Fact 1.7, there exists $b \in Q_{mr}(R)$ such that $\delta(x) = bd(x) + bx$ for all $x \in R$.

Theorem 2.4. Let R be a prime ring, $b \in Q_{mr}(R)$, and let $\delta : R \to Q_{mr}(R)$ be a nonzero b-generalized derivation with associated map d. Suppose that $\delta(x)^n = 0$ for all $x \in R$, where n is a positive integer. Then there exists $q \in Q_{mr}(R)$ such that $d = ad(q)$,

$$
\delta(x) = -bxq\text{ for }x \in R, \text{ and } qb = 0.
$$

Proof. In view of Theorem 2.3, there exists $b \in Q_{mr}(R)$ such that $\delta(x) = bd(x) + bx$ for all $x \in R$. By assumption,

$$
(bd(x) + bx)^n = 0 \tag{2.4}
$$

for all $x \in R$. By Fact 1.8, d can be uniquely extended to a derivation from $Q_{mr}(R)$ to itself, also denoted by d. In view of Fact 1.5, (2.4) holds for all $x \in Q_{mr}(R)$. Note that $Q_{mr}(R)$ is ring-isomorphic to the direct product $\prod_{y \in \Lambda} Q_{mr}(R)$.

Suppose first that d is X-outer. In view of [15, Theorem 2], $(by + bx)^n = 0$ for all $x, y \in Q_{mr}(R)$. Then $b = 0 = b$ (see Fact 1.6). This implies that $\delta = 0$, which is a contradiction. Thus, d is X-inner. Then there exists $q' \in Q_{mr}(R)$ such that $d(x) = [q', x]$ for $x \in R$. Since R and $Q_{mr}(R)$ satisfy the same GPIs (see Fact 1.4), we rewrite (2.4) as

$$
((bq' + b)x - bxq')^n = 0
$$

for all $x \in Q_{mr}(R)$. In view of Proposition 2.1, there exists $\mu \in C$ such that $bq' + b = \mu b$ and $(q' - \mu)b = 0$. Let $q := q' - \mu$. Then $d = ad(q)$, $bq = -b$ and $qb = 0$. Therefore,

$$
\delta(x) = bd(x) + bx = bq(x - xq) - bqx = -bxq \quad \text{for } x \in R,
$$

as asserted. \hfill \Box

3. Proof of Theorem 1.2

Let R be a semiprime ring with extended centroid C. We call $\{e_v \mid v \in \Lambda\} \subseteq B$ an orthogonal subset if $e_ve_\mu = 0$ for $v \neq \mu$ and a dense subset of B if $\sum_{v \in \Lambda} e_vC$ is an essential ideal of C. The ring $Q_{mr}(R)$ is orthogonally complete in the following sense: Given any dense orthogonal subset $\{e_v \mid v \in \Lambda\}$ of B, $Q_{mr}(R)$ is ring-isomorphic to the direct product $\prod_{v \in \Lambda} Q_{mr}(R)e_v$ via the map

$$
x \mapsto \langle xe_v \rangle \in \prod_{v \in \Lambda} Q_{mr}(R)e_v \quad \text{for } x \in Q_{mr}(R).\]
Therefore, given any subset \(\{a_v \in Q_{mr}(R) \mid v \in \Lambda \} \), there exists a unique \(a \in Q_{mr}(R) \) such that \(a \mapsto \langle a_v e_v \rangle \). The element \(a \) is written as \(\sum_{v \in \Lambda} a_v e_v \) and is characterized by the property that \(ae_v = a_v e_v \) for all \(v \in \Lambda \). A subset \(T \) of \(Q_{mr}(R) \) is called orthogonally complete if \(0 \in T \) and \(\sum_{v \in \Lambda} a_v e_v \in T \) for any dense orthogonal subset \(\{ e_v \mid v \in \Lambda \} \) of \(B \) and any subset \(\{a_v \mid v \in \Lambda \} \subseteq T \). Denote by \(\text{Spec}(B) \) the set of all maximal ideals of the complete Boolean algebra \(B \). Let \(T \) be a subset of \(Q_{mr}(R) \). The intersection of all orthogonally complete subsets of \(Q_{mr}(R) \) containing \(T \) is called the orthogonal completion of \(T \) and is denoted by \(\widehat{T} \). In view of [1, Proposition 3.1.14 and Corollary 3.1.15], \(\widehat{R} \) is a subring of \(Q_{mr}(R) \) and

\[
\widehat{R} = \left\{ \sum_{\alpha \in \Lambda} x_\alpha e_\alpha \mid \{ e_\alpha \mid \alpha \in \Lambda \} \text{ is a dense orthogonal subset of } B \text{ and } x_\alpha \in R \text{ for all } \alpha \in \Lambda \right\}.
\]

Moreover, \(\widehat{R} \cap mQ_{mr}(R) \) is a prime ideal of \(\widehat{R} \) for all \(m \in \text{Spec}(B) \) (see [1, Theorem 3.2.15]).

Proposition 3.1. A derivation \(d : Q_{mr}(R) \to Q_{mr}(R) \) is X-inner if and only if \(d : Q_{mr}(R)/mQ_{mr}(R) \to Q_{mr}(R)/mQ_{mr}(R) \) is X-inner for any \(m \in \text{Spec}(B) \).

The proof of Proposition 3.1 is the same as that of [20, Proposition 2.2]. Let \(m \in \text{Spec}(B) \). It is known that \(mQ_{mr}(R) \) is a prime ideal of \(Q_{mr}(R) \). We use the notations: \(\overline{Q_{mr}(R)} = Q_{mr}(R)/mQ_{mr}(R) \), \(\overline{C} = C + mQ_{mr}(R)/mQ_{mr}(R) \), and \(\overline{\widehat{R}} = \overline{R} + mQ_{mr}(R)/mQ_{mr}(R) \). Then both \(\overline{Q_{mr}(R)} \) and \(\overline{\widehat{R}} \) are prime rings having the same extended centroid \(\overline{C} \) (see [1]). Keeping these notations we have the following.

Lemma 3.2. Let \(v, x \in Q_{mr}(R) \). Suppose that \(\overline{x} \in \overline{Cv} \) for any \(m \in \text{Spec}(B) \), where \(\overline{x} := z + mQ_{mr}(R) \) for \(z \in Q_{mr}(R) \). Then \(x \in Cv \).

Proof. Consider the set \(\Sigma = \{ e \in B \mid ex \in Cv \} \). We see that if \(e \leq f \in \Sigma \) then \(e \in \Sigma \). Also, if \(e, f \in \Sigma \) are orthogonal then clearly \(e + f \in \Sigma \). This means that \(\Sigma \) is an ideal of the complete Boolean algebra \(B \). If \(1 \in \Sigma \) then \(x \in Cv \), as asserted. Suppose on the contrary that \(1 \notin \Sigma \). By Zorn’s lemma, there exists \(m \in \text{Spec}(B) \) such that \(\Sigma \subseteq m \). We work in \(Q_{mr}(R)/mQ_{mr}(R) \). Since \(\overline{x} \in \overline{Cv} \), there exists \(a \in Cv \) such that \(\overline{x} = \overline{a} \). Therefore, \(ex = ea \) for some \(e \in B \setminus m \). Note that \(ea \in Cv \), implying \(e \in \Sigma \). This is a contradiction.

The next theorem extends Proposition 2.1 to the semiprime case.

Theorem 3.3. Let \(R \) be a semiprime ring, \(a, b, c \in R \), and \(n \) a positive integer. Suppose that \((ax + bxc)^n = 0 \) for all \(x \in R \). Then there exists \(\beta \in C \) such that \(a = \beta b \) and \((c + \beta)b = 0 \).

Proof. By Fact 1.4, \((ax + bxc)^n = 0 \) for all \(x \in Q_{mr}(R) \). Let \(m \in \text{Spec}(B) \). Working in \(Q_{mr}(R)/mQ_{mr}(R) \), we see that \((\overline{a} \overline{x} + \overline{b} \overline{xc})^n = 0 \) for all \(\overline{x} \in Q_{mr}(R)/mQ_{mr}(R) \). In view of Proposition 2.1, \(\overline{a} \in \overline{C} \overline{b} \). Since \(m \in \text{Spec}(B) \) is arbitrary, it follows from Lemma 3.2.
that $a \in Cb$. Write $a = \beta b$ for some $\beta \in C$. Then $(bx(c + \beta))^n = 0$ for all $x \in R$. By Fact 1.6, $(c + \beta)b = 0$ follows, as asserted.

Lemma 3.4. Theorem 1.2 holds if $E[b] = 1$.

Proof. Since $E[b] = 1$, it follows from Theorem 2.3 that $d' : R \to Q_{mr}(R)$ is a derivation. By Fact 1.8, d can be uniquely extended to a derivation $\hat{d} : Q_{mr}(R) \to Q_{mr}(R)$. Clearly,

$$\hat{d} \left(\sum_{\nu \in \Lambda} x_{\nu}e_{\nu} \right) = \sum_{\nu \in \Lambda} d(x_{\nu})e_{\nu},$$

where $x_{\nu} \in R$. We claim that δ can be also uniquely extended to a b-generalized derivation of \hat{R}, say $\hat{\delta}$, with associated map $\hat{d} : \hat{R} \to Q_{mr}(R)$, by defining

$$\hat{\delta} \left(\sum_{\nu \in \Lambda} x_{\nu}e_{\nu} \right) = \sum_{\nu \in \Lambda} \hat{\delta}(x_{\nu})e_{\nu},$$

where $x_{\nu} \in R$. Indeed, let $\sum_{\nu \in \Lambda} x_{\nu}e_{\nu} = 0$, where $x_{\nu} \in R$. Then $x_{\nu}e_{\nu} = 0$ for any ν. Fix an x_{ν}. Choose a dense ideal I of R such that $x_{\nu}I \subseteq R$. Note that $d(ye_{\nu}) = \hat{d}(ye_{\nu}) = \hat{d}(y)e_{\nu} = d(y)e_{\nu}$ for $y \in I$ since \hat{d} is a derivation. Thus,

$$0 = \delta(x_{\nu}(ye_{\nu})) = \delta(x_{\nu})ye_{\nu} + bx_{\nu}d(ye_{\nu}) = \delta(x_{\nu})ye_{\nu},$$

implying that $\delta(x_{\nu})ye_{\nu} = 0$ for all $y \in I$. Fact 1.4 implies that $\delta(x_{\nu})ye_{\nu} = 0$ for all $y \in Q_{mr}(R)$. By Fact 1.6, $\delta(x_{\nu})e_{\nu} = 0$. So $\sum_{\nu \in \Lambda} \delta(x_{\nu})e_{\nu} = 0$. This proves that $\hat{\delta}$ is well defined. It is routine to check that $\hat{\delta}$ is an additive map.

We claim that $\hat{\delta} : \hat{R} \to Q_{mr}(R)$ is a b-generalized derivation with associated map \hat{d}. Indeed, let $\hat{x}, \hat{y} \in \hat{R}$. Write

$$\hat{x} = \sum_{\nu \in \Lambda} x_{\nu}e_{\nu} \quad \text{and} \quad \hat{y} = \sum_{\nu \in \Lambda} y_{\nu}e_{\nu},$$

where $x_{\nu}, y_{\nu} \in R$. Then $\hat{x}\hat{y} = \sum_{\nu \in \Lambda} (x_{\nu}y_{\nu})e_{\nu}$ and

$$\hat{\delta}(\hat{x}\hat{y}) = \sum_{\nu \in \Lambda} \hat{\delta}(x_{\nu}y_{\nu})e_{\nu} = \sum_{\nu \in \Lambda} \left(\delta(x_{\nu})y_{\nu} + bx_{\nu}d(y_{\nu}) \right)e_{\nu} = \left(\sum_{\nu \in \Lambda} \delta(x_{\nu})e_{\nu} \right) \left(\sum_{\nu \in \Lambda} y_{\nu}e_{\nu} \right) + \left(\sum_{\nu \in \Lambda} x_{\nu}e_{\nu} \right) \left(\sum_{\nu \in \Lambda} d(y_{\nu})e_{\nu} \right) = \hat{\delta}(\hat{x})\hat{y} + b\hat{x}\hat{d}(\hat{y}),$$

as asserted.

Let $m \in \text{Spec}(B)$. Clearly, $\hat{d}(m\hat{R}) \subseteq mQ_{mr}(R)$ since \hat{d} is a derivation. We claim that $\hat{\delta}(m\hat{R}) \subseteq mQ_{mr}(R)$. Let $x \in m\hat{R}$. Then $xe = 0$ for some $e \in B \setminus m$. Applying the same argument as in the first paragraph, we see that $\hat{\delta}(x)e = 0$. Thus $\hat{\delta}(x) \in mQ_{mr}(R)$. This proves our claim.

Thus, $\hat{\delta}$ and \hat{d} canonically induce the maps $\hat{\delta}_m : \hat{R}/m\hat{R} \to Q_{mr}(R)/mQ_{mr}(R)$ and $\hat{d}_m : \hat{R}/m\hat{R} \to Q_{mr}(R)/mQ_{mr}(R)$, where

$$\hat{\delta}_m(\hat{x}) := \hat{\delta}(\hat{x}) \quad \text{and} \quad \hat{d}_m(\hat{x}) := \hat{d}(\hat{x})$$
for $\tilde{x} = \tilde{x} + m\hat{R}$, where $\tilde{x} \in \hat{R}$. Note that $Q_{mr}(R)/mQ_{mr}(R) \subseteq Q_{mr}(\hat{R}/m\hat{R})$. It is clear that \tilde{d}_m is a \hat{b}-generalized derivation with associated map d_m. Note that $\hat{b} \neq \hat{0}$ since $E[b] = 1$.

We work in the prime ring $\hat{R}/m\hat{R}$ with extended centroid $\hat{C}(= C + m\hat{R}/m\hat{R})$. Let $\tilde{x} = \tilde{x} + m\hat{R} \in \hat{R}/m\hat{R}$, where $\tilde{x} \in \hat{R}$. Write $\tilde{x} = \sum_{v \in A} x_v e_v$, where $x_v \in R$. Then

$$
\delta(\tilde{x}) = \sum_{v \in A} \delta(x_v)e_v
$$

and

$$
\tilde{d}_m(\tilde{x})^n = \tilde{\delta}(\tilde{x})^n = \left(\sum_{v \in A} \delta(x_v)e_v\right)^n = \sum_{v \in A} \delta(x_v)^n e_v = 0.
$$

In view of Theorem 2.4, the derivation \tilde{d}_m is X-inner. It follows from Proposition 3.1 that \tilde{d} is X-inner. Thus, $\tilde{d} = \text{ad}(q')$ for some $q' \in Q_{mr}(R)$. Moreover, in view of Theorem 2.4, for any $m \in \text{Spec}(B)$ we have $q' \hat{b} = q'b \in \hat{C}\hat{b}$. By Lemma 3.2, $q'b = \beta b$ for some $\beta \in C$. Set $q := q' - \beta$. Then $d = \text{ad}(q)$ and $qb = 0$.

Let $x, y \in R$. Then

$$
\delta(xy) = \delta(x)y + bxyq = \delta(x)y + bx(qy - yq),
$$

implying that

$$
\delta(xy) + bxyq = (\delta(x) + bxq)y.
$$

By Fact 1.7, there exists $w \in Q_{mr}(R)$ such that $\delta(x) = -bxq + wx$ for all $x \in R$. Thus, $(wx - bxq)^n = 0$ for all $x \in R$ and hence for all $x \in Q_{mr}(R)$ (see Fact 1.4). In view of Theorem 3.3, there exists $\mu \in C$ such that $w = \mu b$ and $(q - \mu)b = 0$. Thus, by the fact that $qb = 0$, we see that $\mu = 0$ and $w = 0$. That is, $\delta(x) = -bxq$ for all $x \in R$, as asserted.

Proof of Theorem 1.2. Let $e := E[b]$, $\delta_1(x) := e\delta(x)$ and $d_1(x) := ed(x)$ for $x \in R$. Then $(1 - e)\delta(xy) = (1 - e)\delta(x)y$ for all $x, y \in R$. By Fact 1.7, there exists $w \in Q_{mr}(R)$ such that $(1 - e)\delta(x) = wx$ for all $x \in R$. But $(wx)^n = 0$ for all $x \in R$. This implies that $w = 0$; that is, $(1 - e)\delta(x) = 0$ for all $x \in R$.

Note that $\delta_1 : R \to Q_{mr}(R)$, $d_1 : R \to Q_{mr}(R)$, and $\delta_1(xy) = \delta_1(x)y + bxd_1(y)$ for all $x, y \in R$. Applying the same argument given in the proof of Lemma 3.4, d_1 is a derivation and can be uniquely extended to a derivation $\tilde{d}_1 : \hat{R} \to Q_{mr}(R)$ by defining

$$
\tilde{d}_1\left(\sum_{v \in A} x_v e_v\right) = \sum_{v \in A} (ed(x_v))e_v,
$$

where $x_v \in R$.

On the other hand, δ_1 can be extended to a map $\tilde{\delta}_1 : \hat{R} \to Q_{mr}(R)$ by defining

$$
\tilde{\delta}_1\left(\sum_{v \in A} x_v e_v\right) = \sum_{v \in A} (e\delta(x_v))e_v,
$$

where $x_v \in R$.

Note that $\tilde{d}_1(e\hat{R}) \subseteq eQ_{mr}(R)$ and $\tilde{\delta}_1(e\hat{R}) \subseteq eQ_{mr}(R)$. Working on $eQ_{mr}(R)$,

$$
\tilde{\delta}_1(xy) = \tilde{\delta}_1(x)y + bxd_1(y)
$$

for all $x, y \in e\hat{R}$. Note that $Q_{mr}(e\hat{R}) = eQ_{mr}(R)$ and that $(\tilde{\delta}_1(x))^n = 0$ for all $x \in e\hat{R}$. Since $E[b] = e$ and the extended centroid of $e\hat{R}$ is equal to eC, it follows from Lemma 3.4 that
there exists \(q \in eQ_{mr}(R) \) such that \(ed(x) = [q, x] \) for \(x \in e\hat{R}, e\delta(x) = -bxq \) for \(x \in e\hat{R}, \) and \(qb = 0. \)

Choose a dense ideal \(I \) of \(R \) such that \((1 - e)I \subseteq R. \) Let \(x, y, z \in I. \) Then
\[
\delta(x(1 - e)y) = \delta(x)(1 - e)y + bxd((1 - e)y) \\
= bxed((1 - e)y) = bx(ed(y) - ed(e)y - ed(y)) = 0,
\]
since \(\delta(x)(1 - e) = 0 \) and \(ed \) is a derivation on \(Q_{mr}(R). \) So \(\delta((1 - e)I^2) = 0. \) Let \(x \in I^2. \) Then
\[
\delta(x) = e\delta(x) = e\delta(ex + (1 - e)x) = -b(ex)q = -bxq.
\]
Up to now, we have proved that \(\delta(x) = -bxq \) for \(x \in I^2. \) Let \(y \in R \) and \(x \in I^2. \) We notice that \(ed(x) = ed(ex) = e[q, ex] = [q, x], \) Then \(yx \in I^2 \) and
\[-byxq = \delta(yx) = \delta(y)x + byd(x) = \delta(y)x + byed(x) = \delta(y)x + by[q, x], \]
implying that \((\delta(y) + byq)x = 0. \) That is, \((\delta(y) + byq)I^2 = 0 \) and so \(\delta(y) = -byq, \) as asserted. \(\Box \)

References

M. TAMER KOŞAN, Department of Mathematics, Gebze Institute of Technology, 41400 Gebze/Kocaeli, Turkey
e-mail: mtkosan@gyte.edu.tr

TSIU-KWEN LEE, Department of Mathematics, National Taiwan University, Taipei, Taiwan
e-mail: tklee@math.ntu.edu.tw