
Publications of the Astronomical Society of Australia (2023), 40, e048, 20 pages

doi:10.1017/pasa.2023.47

Research Article

SimSpin v2.6.0—constructing synthetic spectral IFU cubes for
comparison with observational surveys
K. E. Harborne1,2 , A. Serene1, E. J. A. Davies3,4 , C. Derkenne2,5, S. Vaughan2,5,6, A. I. Burdon5, C. del P Lagos1,2 ,
R. McDermid2,5, S. O’Toole2,3,4, C. Power1,2, A. S. G. Robotham1,2, G. Santucci1,2 and R. Tobar1
1International Centre for Radio Astronomy (ICRAR), M468, The University of Western Australia, Crawley, WA, Australia, 2ARC Centre of Excellence for All Sky
Astrophysics in 3 Dimensions (ASTRO 3D), 3Australian Astronomical Optics, Macquarie University, Sydney, NSW, Australia, 4Astrophysics and Space Technologies
Research Centre, Macquarie University, Sydney, NSW, Australia, 5Research Centre for Astronomy, Astrophysics, and Astrophotonics, School of Mathematical and
Physical Sciences, Macquarie University, Sydney, NSW, Australia and 6Centre for Astrophysics and Supercomputing, School of Science, Swinburne University of
Technology, Hawthorn, VIC, Australia

Abstract
In this work, we present a methodology and a corresponding code-base for constructing mock integral field spectrograph (IFS) observations
of simulated galaxies in a consistent and reproducible way. Such methods are necessary to improve the collaboration and comparison of
observation and theory results, and accelerate our understanding of how the kinematics of galaxies evolve over time. This code, SIMSPIN,
is an open-source package written in R, but also with an API interface such that the code can be interacted with in any coding language.
Documentation and individual examples can be found at the open-source website connected to the online repository. SIMSPIN is already
being utilised by international IFS collaborations, including SAMI and MAGPI, for generating comparable data sets from a diverse suite of
cosmological hydrodynamical simulations.

Keywords:Virtual observatory tools; galaxies: evolution; galaxy: kinematics; methods: numerical
Abbreviations: IFS; integral field spectroscopy; SSP; simple stellar populations

(Received 6 July 2023; revised 14 August 2023; accepted 30 August 2023)

1. Introduction

Astronomy is divided. Observers are collecting increasingly
exquisite data using telescopes focused on the Universe around
us. Theorists, meanwhile, are attempting to explain and predict
the observable Universe from first principles using fundamental
physics and progressively more complex computational models.
The discussion between these parties is most commonly separated
by paper preparation and publication cadence, while further data
is collected and new simulations’ features are implemented and
tested.

To accelerate the conversation between these parties, and our
understanding of galaxy evolution as a result, it is imperative that
like-for-like comparisons between observational data and theory
results are easy to produce in a consistent and reproducible man-
ner. This is particularly important given ongoing advances in both
observational and theoretical astrophysics.

We have seen a revolution in spatially resolved kinematic stud-
ies of stars and gas with the development of the integral field
spectrograph (IFS). Based on the principles developed for the
TIGER and OASIS instruments (Bacon et al. 1995; Bacon &

Corresponding author: K. E. Harborne; Email: katherine.harborne@uwa.edu.au
Cite this article:Harborne KE, Serene A, Davies EJA, Derkenne C, Vaughan S, Burdon

AI, Lagos C. del P, McDermid R, O’Toole S, Power C, Robotham ASG, Santucci G and
Tobar R. (2023) SimSpin v2.6.0—constructing synthetic spectral IFU cubes for compar-
ison with observational surveys. Publications of the Astronomical Society of Australia 40,
e048, 1–20. https://doi.org/10.1017/pasa.2023.47

Monnet 2017), which used lens-let arrays to collect spectra in a
grid across the surface of galactic nuclei, further instruments such
as SAURON (Bacon et al. 2001) paved the way for studying the
stellar motions of entire galaxy structures. Following the final data
releases of SAMI (Croomet al. 2021) and MaNGA (Bundy et al.
2015; Abdurro’uf et al. 2022), instruments with multi-object aper-
tures that allow the collection of many galaxies during a single
observation, astronomers now have access to spatially resolved,
kinematic observations of over 10000 galaxies. These products
give us the required statistics to examine the kinematic variety
within the nearby Universe at a scale only imagined at the turn
of the century. Availability of such data is due only to increase
in resolution and scale with the commissioning of the Hector
instrument in 2022 July (Bryant et al. 2020).

Alongside these developments, only the most recent of the
large-scale cosmological hydrodynamical simulations have suffi-
cient resolution to explore individual galaxies on a case-by-case
basis within a representative cosmological volume. Cosmological
simulations such as EAGLE (Schaye et al. 2015; Crain et al. 2015),
Magneticum Pathfinder (Teklu et al. 2015; Schulze et al. 2018),
HorizonAGN(Dubois et al. 2014) and IllustrisTNG (Pillepich et al.
2018; Springel et al. 2018; Nelson et al. 2019) have baryonic par-
ticles that represent of order 106–107 solar masses such that an
individual resolved galaxy can be composed of 103–105 individual
stellar particles. In comparison to the early cosmological mod-
els of Metzler & Evrard (1994) and Katz, Weinberg, & Hernquist
(1996), in which galaxies were represented by single particles

c© The Author(s), 2023. Published by Cambridge University Press on behalf of the Astronomical Society of Australia. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is
properly cited.

https://doi.org/10.1017/pasa.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2023.47
https://orcid.org/0000-0002-2043-7985
https://orcid.org/0000-0003-1976-4839
https://orcid.org/0000-0003-3021-8564
mailto:katherine.harborne@uwa.edu.au
https://doi.org/10.1017/pasa.2023.47
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/pasa.2023.47&domain=pdf
https://doi.org/10.1017/pasa.2023.47

2 K.E. Harborne et al.

or tens of stellar particles respectively, the structural parameters
of individual galaxies can now be examined in a cosmological
context.

The numerical convergence, and hence the kinematics, of these
galaxies will be affected by the smoothness of the underlying
potential, specifically the number of dark matter particles within
the simulation in question. In modern simulations, this number
is generally minimised to reduce the computational cost of large
volume codes which results in numerical disk heating (e.g. Ludlow
et al. 2019, Ludlow et al. 2023, Wilkinson et al. 2023). Never-the-
less, these simulations are an important test-bed for experimental
models of galaxy evolution. They enable us to uncover the key
ingredients necessary for recovering observed distributions. It
remains important that our comparisons between observation
and simulation are made consistently such that the impact of
any changes to sub-grid physics and numerical methods can be
properly contextualised.

In recent years, we have seen a number of direct comparisons
made between cosmological models and integral field spectro-
scopic observations -

• Bendo & Barnes (2000) demonstrated the first example of
post-processing idealised galaxy merger simulations into pro-
jected line-of-sight (LOS) velocity and dispersion maps. These
were used for direct comparison with observations made
around this time using long-slit spectra, in an effort to explore
the possible formation paths of different kinematic morpholo-
gies.

• The concept of utilising theoretical simulations to explore for-
mation scenarios was further utilised by the results of the
SAURON survey (Bacon et al. 2001; de Zeeuw et al. 2002;
Emsellem et al. 2004). Jesseit et al. (2007, 2009) produced
2D kinematic maps with the aim of exploring the formation
mechanisms driving the range of kinematic morphologies dis-
covered by the survey, e.g. counter-rotating cores and slow
rotating ellipticals. Subsequently, as part of the ATLAS3D sur-
vey (Cappellari et al. 2011), Naab et al. (2014) demonstrated
the first example of comparison with cosmological simulations
from Oser et al. (2010) to explore the cosmological origin of
variety in kinematic morphology.

• A thorough study systematically comparing results frommod-
ern cosmological simulations and observational surveys was
presented in van de Sande et al. (2019). The key purpose of
this study was to demonstrate key areas of success and ten-
sion between various hydrodynamical simulations and IFS
observational surveys. Although every attempt was made to
ensure consistency, each simulation’s data was compiled by the
respective team and methodological differences exist between
the samples as a result. For example, (1) the method of deter-
mining the projected ellipticity of a galaxy is done iteratively
using the observational method of Cappellari et al. (2007) at
1.5 times the effective radius (Re) for the Magneticum simu-
lation, while EAGLE and HorizonAGN were measured using
the eigenvalues of the moment-of-inertia tensor within 1 Re.
(2) Various particle-per-pixel choices are made per simulation;
HorizonAGN has a lower particle limit of 10 per pixel, while
Magenticum uses Voronoi bins to increase this resolution to
at least 100 particles per ‘pixel’ (Schulze et al. 2018).

Then in Foster et al. (2021), we saw the first example of a sur-
vey incorporating comparisons with theoretical simulations from

the project conception. Since this time, the number of examples
have increased exponentially, with Bottrell & Hani (2022), Nanni
et al. (2022) and Sarmiento et al. (2023) the most recent exam-
ples of mock observations produced for either simulation suites,
or individual surveys. Other works, such as Poci et al. (2021) and
Zhu et al. (2022), have used such mocks as independent tests to
explore the success of Schwarzschild models in reconstructing the
full orbital distributions of galaxies.

As the popularity of these comparisons increases, it is impor-
tant that concrete methods of constructing our comparative data
sets are established. Differences in constructing these data may
introduce errors that carry through to later inference. It is impor-
tant that methods are: (1) applicable to different simulations and
telescopes, (2) that their operation is well-documented and tested,
and (3) that this operation is open to extension and modification
by the wider community, i.e. that the code is open source.

In this paper, we present an updated version of the soft-
ware SIMSPIN. This code is open-source and fully documented
with function descriptions and examples. SIMSPIN is designed
to be agnostic to the input simulation, with various cosmo-
logical hydrodynamical simulations supported including EAGLE,
MAGNETICUM Pathfinder, HORIZONAGN and ILLUSTRISTNG.

It is worth noting that, especially for open-source code, it is dif-
ficult to provide a static reference for the current capabilities of a
given code-base. For that reason, this paper is just one form of ref-
erence for SIMSPIN. When using this code, we advise you visit the
website www.github.io/kateharborne/SimSpin for the most recent
updates and code examples. If you use this code for your research,
we ask that you cite this paper, as described in the citation file
contained in the repository.

Aim of this paper

The code presented in this paper is a substantial body of work,
extending the capabilities of the original code presented in
Harborne, Power, & Robotham (2020a). A new publication is war-
ranted to record the new methodologies involved. In summary,
new features of the code include:

• the addition of spectral data cube generation, such that mock
data-products can be run through analysis pipelines in the
same way as real IFS observations;

• the analysis and incorporation of gas particles, requiring
smoothing techniques, within mock data-products;

• the addition of higher-order kinematic measurements in both
gas and stellar mock-kinematic data cubes;

• and the incorporation of multi-threading capabilities to aid
speed-up of processing large numbers of galaxies from a cos-
mological simulation.

In this paper, we present the new methodology behind each
of these added features. For further documentation details, go to
https://kateharborne.github.io/SimSpin/. This website contains a
series of walk-throughs and examples, as well as the full documen-
tation for each SIMSPIN function. Here, you will also find details
about the web application and API, via which those uncomfortable
with the R-package can still produce SimSpin mock observations
in FITS format for processing in any language of choice. The infor-
mation at these locations will continue to evolve with development
time (the date at the end of each page will reflect the last time that
document was modified). You can also check out the NEWS on

https://doi.org/10.1017/pasa.2023.47 Published online by Cambridge University Press

http://www.github.io/kateharborne/SimSpin
https://kateharborne.github.io/SimSpin/
https://doi.org/10.1017/pasa.2023.47

Publications of the Astronomical Society of Australia 3

Figure 1. Demonstrating some of the possible outputs of a SIMSPIN observation using a MUSE-like telescope on an inclined EAGLE disk galaxy from the z= 0.271 snapshot of the
RefL0100N1504 box. To the left, we show the possible outputs from a kinematic data cube measured for the smoothed gas component. In this scenario, the code has been run
with method = ‘gas’, meaning that all gas particles within the subhalo have been used to compute the observations shown. From top to bottom, we show the line-of-sight
velocity, dispersion, star formation rate (SFR) and logged total metallicity of the gas in the model. Along the bottom, we show a similar range of possible outputs for a kinematic
mode observation of the stellar component where the code has been run with method = ‘velocity’. Here we show the kinematics as light-weighted values, while setting
mass_flag = TRUE would result in mass-weighted kinematics being produced. From left to right, we show the line-of-sight velocity, dispersion and higher-order kinematics
h3 and h4. On the right, we demonstrate a spectrum from a central spaxel, as fit with pPXF. An associated spectrum per pixel will be produced by the code when method =
‘spectral’. These can be run through software tools such as pPXF to recover the underlying kinematics. The central image of EAGLE GalaxyID 16382120 has beenmade using the
code SPLASH (Price 2007). This shows the smoothed gas and stellar distribution of particles in the galaxy. The white boundary illustrates the size of the MUSE field-of-view relative
to this galaxy model.

GitHuba to see the latest updates to the code since the publication
of this paper.

As this code is continuously improving and extending to tackle
new science questions, we have chosen to use traditional seman-
tic versioning standards. This paper presents the methodology
behind the code at the time of writing, with SIMSPIN v2.6.0. For
further information about the current version of the code, please
visit the website for the live documentation.

2. Methodology

The key function performed by SIMSPIN is the construction of
a mock IFS data cube from a galaxy simulation input, as shown
in Fig. 1. In this section, we describe the methodology used for
constructing such an observation. The process is broken into
three steps: (1) preparing the input simulation; (2) preparing
the mock observation settings (i.e. telescope and object projec-
tion); (3) building the mock data cube. This section does not
aim to act as documentation for each function, rather to high-
light the key methodological principles incorporated at each step.
For specific documentation and examples, we refer the reader

ahttps://github.com/kateharborne/SimSpin/blob/master/NEWS.md.

to the live and continuously-updated documentation website
https://kateharborne.github.io/SimSpin/.

The aim is for this code to be agnostic to the type of simula-
tion supplied: smoothed particle hydrodynamics, adaptive mesh
refinement, orN-body. In all cases, you should receive a consistent
and comparable output cube with metadata such that the whole
product can be reconstructed with the information contained
within the file itself and the input simulation.

2.1. Creating an input file

We begin with a function, make_simspin_file(), whose pur-
pose is to prepare the simulation into a consistent format. This
first step allows all other processes to occur in the same way for
any type of input simulation or requested telescope. The function
accepts an output simulation file (in either HDF5 or GADGET2
Binary format) and returns a binary (.RData) file in a universal
format that SIMSPIN can process.

make_simspin_file(

filename, cores = 1,
disk_age = 5,
bulge_age = 10,

https://doi.org/10.1017/pasa.2023.47 Published online by Cambridge University Press

https://github.com/kateharborne/SimSpin/blob/master/NEWS.md
https://kateharborne.github.io/SimSpin/
https://doi.org/10.1017/pasa.2023.47

4 K.E. Harborne et al.

disk_Z = 0.024,
bulge_Z = 0.001,
write_to_file = TRUE,
output, overwrite = F,
template = “BC03lr”, # 1
centre = NA, half_mass = NA, # 2
sph_spawn_n = 1 # 3

)

Currently, SIMSPIN directly supports simulation inputs cut-
out from a range of cosmological models including EAGLE,
MAGNETICUM Pathfinder, HORIZONAGN and ILLUSTRISTNG.
However, the expected format is fully described within the doc-
umentation such that any HDF5 file with the required parameters
and units can be read and processed by the code. Further details
about how to format your simulation data for ingestion into
SIMSPIN can be found through the documentation website.b We
summarise the main important features here.

Each particle will have a number of existing tagged properties
used to track their progress throughout the simulation. In order to
make a SIMSPIN observation, the key elements we require include
positions (x, y, z), velocities (vz , vy, vz), and masses for the stel-
lar and/or gas components. In order to assign a spectrum to a
given ‘stellar’ particle, we also require ages, metallicities [M/H]
and the initial mass of that star. In the case of hydrodynami-
cal simulations, these properties will be tracked throughout the
evolution of the system and can be used directly from the out-
put. For isolated N-body models, in which we are just tracing
gravitational effects on the motions of bulge and disk stars, we
specify these age andmetallicity parameters for the stellar particles
within the make_simspin_file() function to assign these values
arbitrarily. A summary of these necessary particle properties will
be tabulated and stored as list elements within the SIMSPIN file for
later data cube processing. The stellar and gas particle properties
will be split into two separate data tables, in the case that gas is
present in the input model.

This formatting of the SIMSPIN input allows the code specific
metadata to be summarised in an efficient way. In the output of
this file, we summarise the properties of the input simulation (e.g.
the simulation type and location of the input file from which this
product has been made); the parameter choices (e.g. the name and
properties of the chosen spectral templates); as well as a record
of the code version used to build the file and the date on which
it was constructed. This aids the user in inspecting the status of
a given file in a human-readable way. It also enables the user to
re-create the same file with the same methodology in the future
without needing to retain the code used to generate the file.

Besides the universal formatting procedure and metadata addi-
tion, the main justification for creating a ‘SIMSPIN’-formatted
input file is to pre-compute the computationally expensive steps—
(1) associating a spectrumwith each particle, (2) to align the object
within the field-of-view such that our observations are clearly
defined and (3) smoothing gas particle or cell properties across
their kernel. The galaxy within the output file can be observed
multiple times once a single SIMSPIN file has been constructed.
However, there are some choices made at this stage that may
depend on the type of observations you wish to make, as high-
lighted in the code snippet above. Further information about these
choices will be discussed in this section. We present the necessary

bhttps://kateharborne.github.io/SimSpin/examples/generating_hdf5.html.

considerations for hydrodynamical models, including the treat-
ment of gas (Section 2.1.1) and stars (Section 2.1.2), and for
N-body models (Section 2.1.3) below.

2.1.1. Hydrodynamic models: gas components

In the case of galaxies extracted from hydrodynamical simulations,
a population of particles or cells trace the underlying distribution
of a fluid (such as the gas in a galaxy). Properties of the fluid are
computed across a volume, described by the smoothing ‘kernel’
or cell size, centred at the given location. In order to ensure that
we reproduce this smoothing in our data cubes and recover the
underlying fluid properties appropriately within our images, we
use an over-sampling method to visualise this kernel volume.

This means that, when we generate a mock observation of the
gas component, we must project particles with adaptive sizes onto
a fixed grid of pixels. As discussed in Borrow & Kelly (2021), there
are many methods of doing this. However, many of the simple
methods result in inaccuracies and artefacts due to the projection
of spherical kernels onto a rectangular grid.

The smoothed particle hydrodynamic (SPH) kernel projection
method is outlined in Borrow&Kelly (2021) (a flavor of which is
used in Dolag et al. 2005). We have taken the sub-sampling regime
described in these papers and redesigned them for use in SIMSPIN.
Particles are treated as Monte Carlo tracers of the field. The basic
features of this algorithm are stated below:

1. Each SPH particle read in contains information about its
‘smoothing length’, h, across which hydrodynamical equations
have been computed for the fluid represented at that particle
position. In the case of AMR codes, the equivalent information
about the ‘cell size’ is computed from the mass and density of
the cell, as described below.

2. We randomly sample sph_spawn_n tracer particles within a
sphere centred on the true SPH particle position.

3. Each tracer particle is associated with a numerical weight as
described by the relevant SPH kernel. All weights for an indi-
vidual SPH particle will sum to one in order to conserve mass
within the system.

4. These new tracer particles replace the original SPH particle.
They gain all the properties of the original particle, but a
weighted fraction of the total mass according to the weight
assigned using the kernel.

This results in a new table of particle properties. The new table
will contain ‘sph_spawn_n’ times as many rows as the origi-
nal component of SPH particles. The number of particles it is
necessary to spawn will be dependent on the underlying number
density of the input model, the desired telescope properties and
projected distance to the object. We recommend adjusting this
value until each pixel in the mock images contains a minimum
of 200 particles to avoid statistical particle noise from dominating
the resulting kinematics. Once this table of over-sampled gas parti-
cles has been computed, the processing of these observations with
build_datacube() will be very quick due to the O(n) computa-
tion used to grid particles into pixels. For this reason, we perform
the smoothing at the point ofmaking the SIMSPIN input file, rather
than at the build_datacube() step.

When using this option, we attempt to ensure that the projec-
tion kernel corresponds to the kernel used for the SPH calculations
within the simulation. For supported hydrodynamic simulations,
we provide a smoothing kernel to best match the one used in

https://doi.org/10.1017/pasa.2023.47 Published online by Cambridge University Press

https://kateharborne.github.io/SimSpin/examples/generating_hdf5.html
https://doi.org/10.1017/pasa.2023.47

Publications of the Astronomical Society of Australia 5

the original model. These are selected automatically based on the
metadata contained within the input file.

Most SPH simulations use a flavour of the Wendland kernel
outlined in Wendland (1995). The C2 Wendland kernel, used in
EAGLE (Schaller et al. 2015), is a spherically symmetric kernel,
W(r,h), which has the form:

W(r, h)=
⎧⎨
⎩

21
2π

(1− r/h)4(4r/h+ 1), if 0≤ r/h< 1

0, if r/h≥ 1
(1)

Here, r denotes the distance from the particle to another position
at which the weight is calculated and h denotes the smoothing
length of a particle. For each simulation, this smoothing length, h,
is a value given by requiring that the weighted number of nearest
neighbouring particles, Nneigh, is a pre-defined constant:

Nneigh = 4πh3i
3

∑
j

W
(|xi − xj|, hi

)
. (2)

For the EAGLE simulation, Nneigh = 48, but this will vary for each
SPH simulation. This smoothing length is computed for each par-
ticle throughout the simulation, as this value will obviously be
dependent on the local number density of particles. The smooth-
ing length, h, is commonly stored as a parameter within the output
files. We can use this parameter to then determine the radius
across which each individual gas particle should be over-sampled.

The C6 Wendland kernel used in MAGNETICUM (Teklu et al.
2015) has the form:

W(r, h)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1365
64π

(1− r/h)8×
(1+ 8r/h+ 25(r/h)2 + 32(r/h)3), if 0≤ r/h< 1

0, if r/h≥ 1
(3)

In MAGNETICUM, the smoothing lengths have been computed
with Nneigh = 64 (Beck et al. 2016), but again, the raw h for each
particle is given in the output for this simulation.

Finally, in the case of GADGET2 SPH simulations, and for
visualisation of AMR/cell model implementations, we use the
M4 cubic spline kernel to smooth gas distributions across our
image grid. In particular, for mesh-based codes, we do not have
a smoothing length for a given cell. As an approximation, we use
the quoted cell density and mass to compute an ‘effective’ smooth-
ing length at a position at the centre of the cell (at the position
where cell properties are given).

hi = 2
3
4π

(Mi/ρi)
1/3 (4)

where the effective smoothing length, h, for a given cell, i, is the
mass within that cell, Mi, divided by the density of the cell, ρi.
A spherical distribution is assumed so that the system can be
observed fairly from any angle without observing discontinuities
at low density locations.

We then use a simplest appropriate kernel, the M4 cubic spline
kernel, as an approximation of the behaviour of the gas within a
given cell:

W(r, h)=

⎧⎪⎨
⎪⎩

1
4π

(
(2− r/h)3 − (1− r/h)3

)
, if 0≤ r/h< 1

0, if r/h≥ 1
(5)

This approximation is used for visualisation of HORIZONAGN
and ILLUSTRISTNG simulations.

It is also important to remember that within true observa-
tions of these systems, only gas within specific phases would be
observable by an integral field unit. At the point of constructing
the SimSpin file, we record the basic attributes of all gas particles
within the simulation in a list element ‘gas_part’. At the point
of building a mock observation from this information, cold, dense
gas can be filtered to produce a comparable set of kinematic maps
to observables.

2.1.2. Hydrodynamical simulations: stellar components

Within a hydrodynamical model, stars from in dense, cold gas
and their age, metallicity and birth mass are tracked as they
evolve through time in the simulation. We use these parameters
to tag each stellar particle with a spectral template. These can
later be adjusted to reflect the line-of-sight velocity within a given
pixel, the distance to the projected object through cosmological
dimming, and wavelength resolution of a given telescope.

There are currently three options to choose from for spectral
templates used to associate spectra with individual stellar parti-
cles, which are listed in Table 1. These prepared templates have
been taken from PROSPECT, a generative spectral energy distribu-
tion code (Robotham et al. 2020), for which these templates have
been prepared using a Chabrier initial mass function (Chabrier
2003). We give this selection of options as a user may wish to focus
on a different science question with one set of templates better
suited than the other, e.g. for observations using higher spectral
resolution instruments, the high-resolution template options will
be necessary, but these may be avoided in other cases due to the
increased memory requirements and computation. This suite of
templates is also a reflection of those commonly used within the
literature for exploring stellar kinematics. As this changes with
time, we intend to update and expand this selection of template
libraries in future versions of the code.

When selected, the spectral templates within the chosen library
are used to tag each stellar particle with an associated spectrum.
Here, the requirement to select the correct template for the science
in question is made clear. E-MILES templates are higher spec-
tral resolution (�λ = 0.9 Å with σLSF = 2.51Å) in comparison to
the variable spectral resolution �λ = 1 to 50Å with σLSF = 3Å
for the BC03 templates. However, the grid of possible age and
metallicity combinations is more sparse in the E-MILES template
set, with 636 combinations in comparison to the 1326 available
for the BC03 templates. Depending on the science in question,
you may value higher spectral resolution, or higher age-metallicity
resolution.

The assigned spectrum for a given age-metallicity stellar parti-
cle is computed as a weighted interpolation of the four template
spectra that surround that particle within the age and metallicity
grid of the chosen template. An index for the age and metallic-
ity, as well as the assigned weights based on the location of the
particle relative to the template bins, are then stored against the
spectral_weights list element in the file. Given the template,
recorded in the header of the file, these weights can then be used to
construct a unique spectrum for each age-metallicity combination
during the build of the mock data cube.

In the current version of SimSpin, v2.6.0, we do not modify the
spectra of young stars to reflect attenuation due to birth clouds.
However, we note that this is an important extension to the code

https://doi.org/10.1017/pasa.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2023.47

6 K.E. Harborne et al.

Table 1. Demonstrating the resolution properties of the variety of spectral templates available in SIMSPIN, including the GalexEV (Bruzual &
Charlot 2003) (hereafter BC03) and E-MILES (Vazdekis et al. 2016) as prepared for the PROSPECT code (Robotham et al. 2020). It is useful to be
aware that the resolution of mock data is built upon templates with finite resolution themselves.

Name Age steps Age range (Gyr) Z steps Z range (Z�) λ steps λ range (Å) LSF FWHM (Å)

‘BC03lr’ 221 0–20 6 0.0001–0.05 1221 91–1.6×106 3

‘BC03hr’ 221 0–20 6 0.0001–0.05 6990 91–1.6×106 3

‘E-MILES’ 53 0.03–14 12 0.0001–0.04 53689 1680.2–49999.4 2.51

that will be added in the future and should be noted if your input
model is dominated by younger stellar populations.

2.1.3. N-body models

Within isolated N-body models, stellar particles are treated as col-
lisionless and move only under the force of gravity. Unlike their
hydrodynamic partners, these stars are initialised with a given 6D
distribution. In particular, for Gadget models, particles can be sep-
arated into two different distributions to reflect the bulge and disk
of a galaxy.

Within SimSpin, we can generate mock data cubes of these
kinds of models using these bulge and disk tracer particles as
stars. For Gadget-like formatted files, disk particles are listed under
PartType2 and bulge particles under PartType3. We assume
that these populations all represent stellar material and summarise
their attributes within the star_part list of the SimSpin file.

Of course, because these stars are not evolved hydrodynami-
cally throughout the course of the simulation, these stellar particles
will not contain age, metallicity, or birth mass information. For
this reason, we give the user the choice of specifying the star for-
mation history of the bulge and disk stars within the code (i.e. via
the bulge_age, bulge_Z, disk_age, and disk_Z input parame-
ters). Currently, this will allocate a single age/metallicity value for
all bulge stars and all disk stars respectfully. It would be trivial to
modify this to assign a more physically motivated range for each
population. The age and metallicity information is then used to
assign spectra to these particles as described for hydrodynamical
systems in Section 2.1.2.

The type of the input simulation is recorded within the meta-
data of the file, but otherwise should result in a file that can be
processed in an identical fashion to the hydrodynamical examples.

2.1.4. Alignment choice

By default, the input galaxy simulation will be aligned in this func-
tion such that the semi-major axis of an ellipsoid fit to the stellar
component is oriented with the x-axis of the reference frame, and
the minor axis of the fitted ellipsoid is oriented with the z-axis.
This provides consistency for multiple observations made at a
variety of inclination angles. However, in the case that a full clus-
ter, galaxy group, or a particularly ‘clumpy’ galaxy with lots of
substructure is requested for observation, this alignment will be
strongly affected by this non-axisymmetric structure.

Hence, SIMSPIN gives the user the option to define a single
location around which to centre the system (centre) and define
a half-mass value in solar masses at which the shape of the galaxy
will be measured (half_mass). If unspecified, the code will eval-
uate the alignment about the median stellar particle position with
an iteratively fit ellipsoid that has grown to contain half the total
stellar mass in the input file.

This alignment is done using the method described in the work
of Bassett & Foster (2019), which in turn is based on the work
from Li et al. (2018) and Allgood et al. (2006). We first assume
that the initial distribution of stellar particles is an ellipsoid with
axis ratios p= q (i.e. a sphere, where p= b/a and q= c/a, with a,
b and c representing the axes lengths in decreasing size such that
a> b> c and p> q, by necessity). This ellipsoid is grown from the
median position of all stellar particles within the file (or from the
position specified by centre) until it contains half the total stellar
mass within the file (or the threshold mass described by the spec-
ified half_mass parameter input). Once this limit is reached, we
use the stellar particles within the region to measure the reduced
inertia tensor.

The reduced inertia tensor, I, is computed:

Ii,j =
∑
n

Mnxi,nxj,n
r2n

, (6)

where we perform this sum for n stellar particles within the ellip-
soid with given positions, xn, weighted by individual stellar particle
masses,Mn, which may vary within the simulation and rn, the 3D
radius of that particle from the centre as described by,

rn =
√
x2n + y2n/p2 + z2n/q2. (7)

The eigenvalues and eigenvectors of this tensor, Iij give
the orientation and distribution of matter within the ellipsoid.
Specifically, p and q are given by the square-root of the ratios
between the intermediate and largest eigenvalues (b and a) and
the smallest and largest eigenvalues (c and a) respectively.

The ellipsoid is then deformed tomatch the distribution of stel-
lar particles. The whole system is reoriented such that the major
axis of the distribution identified is now aligned with the major
axis of the ellipsoid. We then begin the procedure again, this time
growing an ellipsoid with new a, b, and c reflecting the matter dis-
tribution of the stellar particles contained. This is repeated until
the axis ratios p and q stabilise over ten iterations.

All particles within the input simulation file are aligned with
the major axis, a, along the x-axis of the volume and the minor
axis, c, aligned with the z-axis using this method. In themajority of
cases, we find that this is suitable for finding the underlying shape
of the galaxy in question and aligning the object within the frame.
In a data set of 1835 galaxies taken from the IllustrisTNG50-1
simulation (Nelson et al. 2019; Pillepich et al. 2019), a compari-
son between the alignment found by the mgefit.find_galaxy
function (Cappellari 2002) and SIMSPIN revealed that 92.3%
(1693/1835) of the alignments agreed within ten degrees. Caution
is advised when making mock observations of ellipticals or galax-
ies undergoing merger interactions, as a visual analysis of the
farthest outliers found most fell under these categories.

https://doi.org/10.1017/pasa.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2023.47

Publications of the Astronomical Society of Australia 7

Table 2. A list of predefined parameters for each telescope() ‘type’ available in v2.6.0. A number of these parameters are variables that the user can further specify,
which have been emphasised in bold below.

Telescope parameter Units SAMI MaNGA CALIFA MUSE Hector

(Croom et al. 2012) (Bundy et al. 2015)

fov arcsec 15 n= 12, 17, 22, 27 or 32 74 n < 60 30

aperture_shape ‘circular’ ‘hexagonal’ ‘hexagonal’ ‘square’ ‘hexagonal’

wave_range Å 3750–5750 3600–6350 3700–4750 4700.15–9351.4 3720–5910

wave_centre Å 4800 4700 4225 6975 4815

wave_res Å 1.04 1.04 2.7 1.25 1.60

spatial_res arcsec/pixel 0.5 0.5 1 0.2 (WFM) or 0.025 (NFM) 0.2

lsf_fwhm Å 2.65 2.85 2.7 2.51 1.3

The steps laid out in this subsection allow us to correctly
re-orient the galaxy to the user specified inclination and twist pro-
jection at the stage of building the mock data cubes. In cases where
the semi-major axis is not well defined, this can be adjusted for
purpose with some experimentation of the alignment parameters,
centre and half_mass.

Once this SimSpin file is created for one simulated object, it can
be used many times for observations. This file contains all of the
multi-dimensional information from the simulation file, with an
additional set of tagged properties for SIMSPIN to construct each
cube.

2.2. Initialising the telescope and observing strategy

SIMSPIN acts as a virtual telescope wrapper. You can choose to
observe your galaxy model in a variety of different ways with
any integral field unit (IFU) instrument. This requires you to
set two distinct groups of properties: (1) the properties of the
instrument used to take the observation, i.e. the telescope(),
and (2) the properties of the object under scrutiny, i.e. the
observing_strategy().

The properties are split in this way to enable a suite of observa-
tions to be generated in a straightforward manner. It is common
that an observer will wish to observe a suite of galaxies using
the same telescope, but may want to iterate over a number of
projected viewing angles, distances or seeing conditions. Hence,
we have split the description classes for the observing telescope
and observed object properties into two. We describe the math-
ematics behind the functions in the sections below, but direct
the reader to the specific documentation pagesc for up-to-date,
detailed examples of running each function.

2.2.1. Telescope choice

telescope(

type="IFU”,
fov=15,
aperture_shape="circular”,
wave_range=c(3700,5700),
wave_centre, wave_res=1.04,
spatial_res=0.5,
filter="g”, lsf_fwhm=2.65,
signal_to_noise = NA

)

chttps://kateharborne.github.io/SimSpin/docs/documentation.

SIMSPIN has a number of predefined IFU telescopes, for which
the required field-of-view, spectral and spatial resolutions have
been taken from the available literature. In Table 2, we describe
the values associated with these defaults and their appropriate
references.

For a number of these choices, there are further selections
that can be made. For example, the ‘MaNGA’ telescope has a
variable field-of-view size that the user can select. If a specific
telescope ‘type’ is not covered by the available options, the param-
eters can be fully specified by using the type = ‘IFU’. This
requires the user to describe the remaining parameter options of
the telescope, including the field-of-view size in arcseconds, the
shape of the field-of-view, the wavelength range and central wave-
length in Å, the wavelength resolution in Å, the spatial resolution
in arcseconds, and the associated line spread function (LSF) of
the instrument in Å. Two parameters can be further altered by
the user when using the predefine telescope types: the filter, and
the minimum level of signal-to-noise.

The available filters in SIMSPIN v2.6.0 include the SDSS u, g, r,
i and z filters (Fukugita et al. 1996; Doi et al. 2010). Each of these
data tables are stored as an rda file optimally compressed using xz
compression such that they are lazy loaded with the package. The
associated documentation gives the location fromwhich these data
have been collected. As with the predefined telescope types, the list
of available filters may grow in time. Any updates will be listed on
the live documentation website. These filters are then ready to be
used in the build_datacube() function.

The signal-to-noise specified will be implemented in spectral
and kinematic data cubes when a minimum signal-to-noise value
is specified. Following the mathematical implementation of noise
to cubes given in Nanni et al. (2022) we similarly scale the level of
Gaussian perturbation added to each spectrum based on the total
flux measured within an integrated spectrum:

dFi
Fi

=
√
F̃

S/N × √
Fi
, (8)

where dF/F is the fractional perturbation of flux within a
given spaxel i, S/N is the requested parameter given in the
telescope() function, and F̃ is the median pixel flux from the
observation. At each spaxel, we draw a random number from a
Gaussian distribution, scaled by this dF/F, and add this perturba-
tion as a function of wavelength to each spectrum. For kinematic
cubes, this perturbation is applied to the observed fluxes alone.

With the telescope() elements defined, parameters can be
precomputed. The number of spatial pixels, sbin, required to fill
the diameter of the field-of-view (FOV) is computed and stored

https://doi.org/10.1017/pasa.2023.47 Published online by Cambridge University Press

https://kateharborne.github.io/SimSpin/docs/documentation
https://doi.org/10.1017/pasa.2023.47

8 K.E. Harborne et al.

for gridding purposes. When combined with the coordinate infor-
mation for a simulation at the build_datacube() stage, we can
use the following simple equation to label each particle with a cor-
responding pixel in the FOV of the telescope. We bin the particle
data along the x- and y-axes respectively (xbin and ybin) labelling
each bin with an integer value from 1 to sbin and then combine
these using,

pixel_pos = xbin + (sbin × ybin)− sbin, (9)

such that every pixel within the FOV has a unique identifier
which can be associated with each particle within the model at the
build_datacube() stage.

Checks are also performed at this stage such that a user does not
waste the time loading in a large simulation file only to have the
code fail due to a filter mismatch. We ensure that the requested fil-
ter will overlap with the telescope wavelength range coverage and
the centre of this wavelength range, if not provided, is computed as
the centre of the given range. A further check is made for the vari-
able parameters such as MANGA field-of-view, that the requested
value is one of the available bundle sizes (i.e. 12”, 17”, 22”, 27” or
32”). If not, the closest value larger than the requested parameter
will be taken by default and a warning will be issued. Similarly, if a
user asks for a MUSE cube with greater than 60” field-of-view, the
value will be reduced to a value of 60”. Users will also be able to
specify wide-field mode (WFM) in which spaxels are 0.2” or near-
field mode (NFM) where spaxels are 0.025” for MUSE. If another
value is suggested, the function will default to WFM (as this is the
most computationally efficient due to the smaller number of spax-
els per arcsecond) and issue a warning to the user that this has
occurred.

Further default telescope types will be added in the future to
keep up with ongoing developments. The live documentation will
reflect any changes made.

2.2.2. Observation strategy choice

observing_strategy(

dist_z = 0.05,
inc_deg = 70,
twist_deg = 0,
pointing_kpc = c(0,0),
blur = T,
fwhm = 1,
psf = “Gaussian"

)

Another necessary ingredient for specifying a mock observa-
tion is the description of the conditions in which the model galaxy
is observed. How far away is the object? How is it projected on the
sky? How severe are the seeing conditions? These properties are
specified using the observing_strategy() function.

It is expected that a user may wish to observe the same galaxy at
a range of distances, inclinations, and seeing conditions, while the
overall properties of the telescope() are more likely to remain
fixed.d

dIt is also possible to iterate over a range of these parameters to produce a series of obser-
vations using lapplywithin R, an example of which can be found at https://kateharborne.
github.io/SimSpin/docs/observing_strategy.html.

To describe the distance to the observed galaxy model, the user
may specify a redshift distance (dist_z), a physical luminosity
distance in Mpc (dist_Mpc) or an angular scale distance in kpc
per arcsecond (dist_kpc_per_arcsec). When any one of these
parameters are specified, the other two are calculated through the
S4 Distance class using the Hogg (1999) methods implemented
in the R-package celestial.e

The inclination and twist parameters define how the model
is projected onto the sky. Following the make_simspin_file()
function, the system is aligned such that the major axis of the
ellipsoid (a) is aligned with the x-axis, while the minor axis (c) is
aligned with the z-axis.With this knowledge, we can then use basic
trigonometry to incline the ellipsoid to a requested inclination and
twist.

The inclination of the object describes the level of rotation
about the x-axis defined in degrees. We use the definition that
inc_deg = 0 is a face on system, while inc_deg = 90 is edge-on.
The following mathematics then gives us the coordinates at which
the particles would be observed in the y- and z-axis frames.

yobsi = −yisin
(π

180
inc_deg

)
+ zicos

(π

180
inc_deg

)
, (10)

zobsi = yicos
(π

180
inc_deg

)
+ zisin

(π

180
inc_deg

)
, (11)

where the yobsi and zobsi denote the observed y and z coordinates of
particle i in the rotated frame, and yi and zi are the y and z coor-
dinates in the original, fixed ellipsoid frame. The same projections
are used for the velocities observed along the rotated y- and z-axis.

Similarly, the ‘twist’ of the object is described as the rotation
about the z-axis of the ellipsoid, i.e. the azimuthal projected rota-
tion on the sky, defined also in degrees. Here, twist_deg = 0 is an
object viewed with the major axis, a, parallel to the x−axis of the
projection, while twist_deg = 90 would be the ellipsoid viewed
from the side, such that a is now aligned with the y axis instead.
This is computed using similar trigonometric projections as above,

xobsi = xicos
(π

180
twist_deg

)
− yisin

(π

180
twist_deg

)
, (12)

yobsi = xisin
(π

180
twist_deg

)
+ yicos

(π

180
twist_deg

)
. (13)

where, as above, the xobsi denotes the observed x coordinates of par-
ticle i in the rotated frame, and xi is the x coordinate in the original,
fixed ellipsoid frame. The same equations are used to project the
particle velocities.

These projections are performed in the order discussed, i.e. the
galaxy ellipsoid is inclined on the sky using Equations (10)–(11)
and then twisted using Equations (12)–(13), such that the object
can be observed from any angle across the surface of a sphere. This
is useful for exploring the effects of inclination and projection on
the recovery of galaxy kinematics (Harborne et al. 2019).

The final specification of observing_strategy() describes
the level of atmospheric seeing via the parameters psf and fwhm,
describing the shape and full-width half-maximum (FWHM) size
of the point-spread function (PSF) smoothing kernel respectively.
We compute and store the kernel shape here, for each image plane
of the observed cube to be convolved at a later stage. Currently,
this PSF is not wavelength dependent, but the implementation of

ehttps://github.com/asgr/celestial.

https://doi.org/10.1017/pasa.2023.47 Published online by Cambridge University Press

https://kateharborne.github.io/SimSpin/docs/observing_strategy.html
https://kateharborne.github.io/SimSpin/docs/observing_strategy.html
https://github.com/asgr/celestial
https://doi.org/10.1017/pasa.2023.47

Publications of the Astronomical Society of Australia 9

such a convolution kernel would be trivial in future iterations of
the code.

Two options are currently available to the user, where the psf
may be described by a ‘Gaussian’ kernel, or a ‘Moffat’ kernel
(Moffat 1969) which has a Normal-like distribution at the centre
withmore extendedwings. These are taken from the parameterisa-
tion in the R-package ProFit (Robotham et al. 2017). A Gaussian
kernel is parameterised:

I(R)= I0 exp
(

− R2

2σ 2

)
, (14)

where,

σ = FWHM
2
√
2ln(2)

(15)

and I0 is the peak intensity at the centre and the FWHM is the value
specified in the function. A Moffat kernel is parameterised:

I(R)= I0

[
1+

(
R
Rd

)2
]
, (16)

where,

Rd = FWHM
2
√
21/c − 1

(17)

and c= 5, in line with the common defaults. We ensure that the
kernel is normalised to 1 such that convolution with the kernel
results in suitable flux conservation. These kernels are then stored
for use in the blurring step later on.

Having specified the nature of the observation, these functions
(telescope() and observing_strategy()) are combined to
summarise the properties of the resulting observation. This is
stored as metadata in the final data cube produced. Storing the
data in this way ensures that the same file can be produced at a
later time using the information stored in the output cube alone.
With these parameters specified, we can now go about building
our mock observation.

2.3. Building a data cube

Once the observing telescope and properties of the underlying
galaxy have been specified, we can go about building amock obser-
vation. Within SIMSPIN, we present the user with an option at this
stage. Either, a series of kinematic maps can be generated from
the line-of-sight velocity distributions at each spaxel using the 3D
velocity information present for stars, gas or just star forming, cold
gas in the simulation; or, you can choose to create a spectral cube
using the stellar spectra themselves, shifted in wavelength space to
reflect those underlying velocities and projected redshift distance.
The resulting spectral cube needs to be run through observa-
tional software to generate kinematic maps, and as such is useful
for exploring the reliability of reduction pipelines. This choice is
specified in the input parameters by the key word method:

build_datacube(

simspin_file,
telescope,
observing_strategy,
method = “spectral”,
verbose = F, write_fits = F

)

The behaviour of the code will be different depending on
the method chosen, though the outputs of the method =
‘spectral’ and ‘velocity’ are equivalent once run through
an observational fitting code such as pPXF (Cappellari &
Emsellem 2004; Cappellari 2017). We demonstrate this equiva-
lence in the results section.

Whether we are building a kinematic data cube, or a spec-
tral one, the process of re-projecting the model galaxy to a given
orientation (using the information provided in the observing_
strategy()) and gridding particles into the necessary pixel
locations is done in the same way (using the telescope()
specific information) before splitting off into method specific
functions.

The output of build_datacube() will always include five list
elements containing (1) the observed data cube, (2) the metadata
table recording the details of the observation, (3) the raw particle
property images for reference against, (4), the observed kine-
matic property images and (5) the observed inverse variance cube
(1/noise2). The final two image elements (‘raw’ and ‘observed’) will
vary in length depending on the type of observation requested.
These are summarised in each method description below.

2.3.1. Spectral data cubes

If method = ‘spectral’, the build_datacube() function
will return a data cube in which each spatial coordinate, x− y,
holds a spectral energy distribution in gridded wavelength bins
along the z-axis. As particles have been allocated to individual
pixels within the FOV, we can parallelise over each pixel and per-
form the mathematics at each pixel in turn, as demonstrated in
Fig. 2.

Each stellar particle has been assigned a spectrum using the
template described within the make_simspin_file() function
in Section 2.1. These spectra are at the resolution of the templates
from which they have been drawn, e.g. with E-MILES templates,
these spectra will have a wavelength resolution of �λ = 0.9Å and
a spectral resolution of 2.51Å. The template spectrum is weighted
by the particle’s stellar initial mass to give the luminosity as a
function of wavelength.

We shift the wavelength labels to λobs-z = λ(1+ z) to account
for the input redshift of the system. Within each pixel, we then
further shift the wavelength labels according to the LOS velocity
of each individual particle, λobs = λobs-zexp(vLOS/c). At this stage
we are still just modifying the raw spectral templates.

Once each template is both z-shifted and vLOS-shifted, we then
interpolate these spectra onto the wavelengths observed by the
requested telescope(). This is done using a spline function
in which an exact cubic is fitted using the method described by
Forsythe, Malcolm, & Moler (1977). Next, the individual particle
spectra are summed column-wise to produce the observed spec-
trum at that pixel. This procedure is repeated for every pixel within
the FOV and then the spaxels are combined into a volume to con-
struct a 3D data cube, with spatial dimensions in the x- and y-axes
and wavelength information in the z-axes.

If a PSF (i.e. atmospheric blurring) has been specified in
the observing_strategy(), we then perform a spatial 2D
convolution across each x− y plane in the cube. The convo-
lution kernel will have a shape and width as described by the
observing_strategy() in Section 2.2.2:

Fobs(λ)= F(λ)� PSF. (18)

https://doi.org/10.1017/pasa.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2023.47

10 K.E. Harborne et al.

Figure 2. Method for constructing spectral data cubes. For the set of particles associated with each spaxel position across the field-of-view, we take the spectrum associated with
each stellar particle, weight it by the initial mass of that star particle and then shift the spectrum in wavelength space to reflect that particle’s line-of-sight velocity. Each spectrum
in the pixel is then interpolated onto the wavelength range of the observing telescope and summed to give the overall spectrum at that spaxel position. The summed spectrum is
finally convolved with the λLSF of the observing telescope.

Following the spatial convolution, we also need to convolve
the summed spectrum with a Gaussian kernel, with width �σLSF,
mimicking the effects of the spectral resolution of the instru-
ment, where �σLSF is the root-square of the difference between
the telescope and the redshift-ed templates.

The template spectra associated with a single particle have an
intrinsic spectral resolution, λ

template
LSF . Of the templates included

within this package, these resolutions range from 2.51–3Å in the
rest-frame. This spectral resolution represents a ‘minimum disper-
sion’ due to the instrument with which the template was observed
ormodelled.When the template spectrum ismoved to greater red-
shift, the spectrum is stretched in wavelength space.Whenwe wish
to model a galaxy at redshift, z, the intrinsic spectral resolution of
the templates must also be adjusted to this new redshift-ed spec-
trum. At higher redshift, the minimum dispersion we can detect
with these templates becomes larger, as the wavelength space is
broadened.

Hence, we must account for this when mimicking the effect
of using our ‘mock’ telescope with its spectral resolution, λtelescope

LSF .
The value of this resolution is fixed by the telescope and is assumed
constant with redshift. However, the templates which we have
redshift-ed to some distance, z, will now have some intrinsic spec-
tral resolution, λ

template
LSF@z = λ

template
LSF (1+ z). To match the spectral

resolution of the observing telescope then, we only need convolve

our templates with a Gaussian the root-square of the difference
between the telescope and the redshift-ed templates, i.e.

�λLSF =
√(

λ
telescope
LSF

)2 −
(
λ
template
LSF@z

)2
. (19)

This is computed using the metadata information contained
in the input SimSpin file. The user simply needs to specify the
resolution of the observing telescope.

Finally, we add the level of noise requested to each spectrum,
as described in the telescope() function. The inverse variance
of this noise (1/noise2) is also returned to the user under the
‘variance_cube’ list element. If no noise is requested, this list
element will be returned the user with NULL.

The resulting ‘observed’ spectral cube is returned under the
‘spectral_cube’ list element. A summary of the run observa-
tion details are tabulated and returned under the list element
‘observation’. At each pixel, we also measure a number of par-
ticle properties, including the total number of particles in each
location, the total particle flux, the mean and standard deviation
LOS velocity, the mean stellar age and mean stellar metallicity.
This information is stored as an image returned to user under the
list element ‘raw_images’. All of these details can optionally be
saved to a FITS file that contains each of these elements in sub-
sequent HDU extensions for later processing with observational

https://doi.org/10.1017/pasa.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2023.47

Publications of the Astronomical Society of Australia 11

Figure 3. Method for constructing kinematic data cubes. At each pixel, the velocities of the contained particles are binned into velocity channels that map back to the under-
lying spectral resolution of the observing telescope. These LOSVD’s can be weighted by the underlying particle mass or luminosity depending on the settings selected at the
build_datacube() stage.

pipelines. Examples of this can be found at the documentation
website.f

2.3.2. Kinematic data cubes

If method = ‘velocity’, the build_datacube() function
will return a data cube in which each spatial coordinate, x− y,
holds a line-of-sight velocity distribution in gridded velocity bins
along the z-axis. A visual representation of this process is outlined
in Fig. 3.

Given the wavelength and spectral resolution of the underlying
telescope, we can compute the effective velocity sampling rate of a
given instrument as:

�v= c�log(λ), (20)

were λ is the wavelength resolution of the given instrument,
�log(λ) represents the smallest wavelength gap in log space and
c is the speed of light.

As in the previous methodology, we can use the gridded FOV
to perform the requiredmathematics on a pixel-by-pixel basis. For
each pixel, we take each contained stellar particle. Each stellar par-
ticle has been assigned a spectrum using the template described
within the make_simspin_file() function in Section 2.1. This
spectrum is multiplied by the initial mass of the stellar particle and
re-gridded on the wavelength scale of a given telescope to give the
luminosity at all wavelengths measured. From this spectrum, the
luminosity of that particle can be computed. Each particle also has

fhttps://kateharborne.github.io/SimSpin/examples/examples.

a mass, which can be used to weight the kinematics in place of the
particle luminosity when mass_flag = T.

Each particle’s velocity is binned along the velocity axis depen-
dent on the wavelength (and associated velocity) resolution as
specified in Equation (20). This distribution is weighted either
the particle’s luminosity in a given band (given by passing the
observed spectrum through the specified band pass filter) or the
mass of the particle. This leaves us with a line-of-sight velocity
distribution (LOSVD), weighted by luminosity or mass, for each
spatial pixel at the resolution of the respective telescope(). This
process is repeated for every spatial pixel.

At each pixel, as in the spectral mode case, we also measure a
number of the raw particle properties including the total number
of particles, the mean and standard deviation of the population of
particle velocities, the mean stellar age and mean stellar metallic-
ity. These are returned to the user as 2D named arrays embedded
within the list element, ‘raw_images’.

If an atmospheric blurring is specified, convolution of the ker-
nel selected and described in Section 2.2.2 is performed across each
spatial plane of the kinematic data cube following its construc-
tion, this time as a function of the velocity channels rather than
wavelength channels:

Fobs(v)= F(v)� PSF. (21)

If requested, noise is added per spaxel as described in the
telescope() function, applying dF/F as a function of velocity,
rather than wavelength.We save a volume of the added noise as an
inverse variance velocity cube (1/noise2) and return this to the user
under the list element ‘variance_cube’. The final, ‘observed’ 3D

https://doi.org/10.1017/pasa.2023.47 Published online by Cambridge University Press

https://kateharborne.github.io/SimSpin/examples/examples
https://doi.org/10.1017/pasa.2023.47

12 K.E. Harborne et al.

array structure, containing spatial planes of the data in the x− y at
subsequent velocity channels along the z−axis, is returned to the
user under the ‘velocity_cube’ list element.

From this kinematic data cube, we also compute a number of
‘observed_images’. At each pixel in the cube, we now have a
LOSVD sampled at the same resolution as the wavelength resolu-
tion of the telescope. This distribution is fit with a Gauss-Hermite
function of the form:

L(ω, h3, h4)= 1
σ
√
2π

exp
(

−ω2

2

) [
1+ h3H3 + h4H4

]
, (22)

where,

ω = vi −V
σ

, (23)

H3 = 1√
6

(
2
√
2ω3 − 3

√
2ω

)
, (24)

H4 = 1√
24

(
4ω4 − 12ω2 + 3

)
, (25)

where vi is the observed velocity channels, V and σ are the first
and second order moments of the LOSVD, h3 and h4 represent
the expanded third and fourth moments of the Hermite polyno-
mial (van der Marel & Franx 1993; Cappellari 2017). This fit is
performed using the quasi-Newton method published simultane-
ously by Broyden, Fletcher, Goldfarb and Shanno in 1970 (known
as BFGS) (Broyden 1970; Fletcher 1970; Goldfarb 1970; Shanno
1970) using the optim minimisation provided in base R.

We compute the observed LOS velocity, dispersion and higher-
order kinematics h3 and h4 on a pixel-by-pixel basis through this
fit. If a PSF has been specified in the observing_strategy(),
this fit is performed on the spatially blurred cubes and the result-
ing images will have this blurring effect incorporated (unlike the
raw particle properties, which will be returned as a summary of the
underlying simulation). Each parameter is stored as a 2D array and
returned to the user under the list element ‘observed_images’.
The residual of this fit to the LOSVD is also returned to give an
understanding of how well these returned parameters describe the
true underlying distribution. This is also output as a 2D array
under the same list element as the observed images.

As in the spectral mode case, the returned observation can be
written to a FITS file for later processing. Each of the arrays in
the list elements are saved to subsequent HDU extensions with
explanatory names so that the raw and observed images can be dis-
tinguished (e.g. OBS_VEL and RAW_VEL for the observed LOSVD
and the raw particle mean velocity images respectively). These will
be presented in a consistent format to the spectral FITS files, but
with the velocity cube output under the DATA extension, with the
necessary axes labels given the header information.

2.3.3. Gas data cubes

If method = ‘gas’ or ‘sf gas’, the build_datacube()
function will follow the kinematic data cube methodology, but
only for the gas component (or gas classed as star forming, in the
later case) of the input model. As in Section 2.3.2, this results in
a data cube containing the spatial information about the gas dis-
tribution along the x-y axes, with velocity information along the
z-axis.

To distinguish between all gas and gas particles that are classed
as star forming, we filter by the instantaneous star-formation rate.

These properties are commonly reported against each gas parti-
cle within the model and allow us to filter gas that has met the
threshold for star formation.

Beyond the focus on the gas component, rather than the stel-
lar component, the process by which this cube is constructed is
almost identical to above. The gas kinematics are weighted by the
observed gas mass per pixel, rather than using a luminosity. This
is equivalent to forcing mass_flag = T in the stellar kinematic
cube construction. Each gas particle also has some intrinsic dis-
persion related to their thermal motions. We compute the thermal
contribution to the dispersion of each particle as:

σ 2
thermal = P/ρ = u(1− γ), (26)

where P is the gas pressure, ρ is the gas density, u is the internal
energy of the gas and γ = 5/3 is the adiabatic index. Of course,
due to the effective equation of state employed by many cosmo-
logical simulations, this approximation for thermal motions is no
longer valid once gas cools below the star forming threshold. At
this stage, the temperature and internal energies become effec-
tive measures. In this regime, we assume a thermal value which
reflects the sound speed of gas at the temperature floor in each
hydrodynamical simulation (Pillepich et al. 2019; Jiménez et al.
2023).

The mock observed kinematic images are constructed as above
and we return the observed mass, velocity, dispersion, h3 and
h4 images under the ‘observed_images’ However, a number of
additional raw particle properties are also included in the gas
output.

In addition to the raw gas mass per pixel, we record the mean
mass-weighted instantaneous star formation rate, the mean gas
metallicity, and the mean oxygen over hydrogen abundance ratio.
The raw mass-weighted mean velocity and standard deviation are
also returned in this ‘raw_images’ list under clearly named 2D
arrays. A number of these images are shown for our example
galaxy from the EAGLE simulation in Fig. 1 in the gas property
maps on the right hand side.

In the future, we aim to incorporate the gas information at
each pixel position within the spectral cube, through the addi-
tion of emission lines of appropriate ratio and kinematics. This
is currently beyond the scope of the code, due to the necessity to
incorporate other features of realism such as the attenuation and
re-emission due to dust which is currently beyond the resolution
limits of the majority of simulations. We direct the user to codes
such as SKIRT (Camps & Baes 2020) and the work of Barrientos
Acevedo et al. (2023) for the proper radiative transfer treatment
through an assumed dust distribution.

3. Results

3.1. Comparison of spectral and kinematic cubes

A kinematic data cube should mimic the kinematic information
included within a full spectral cube. Here, we present a series of
tests to ensure the similarity of these products using two high-
resolution galaxy models. One model represents a disk galaxy with
highly coherent rotation. The other represents an elliptical galaxy
with highly dispersive support. At these extremes, we hope to
identify any systematic offsets between the kinematic cubes and
spectral cubes as a function of the underlying model.

These high-resolution N-body models have been constructed
using the initial conditions code GalIC (Yurin & Springel 2014)

https://doi.org/10.1017/pasa.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2023.47

Publications of the Astronomical Society of Australia 13

and evolved in a smooth analytic potential using a modified ver-
sion of Gadget2 (Springel 2005). Each galaxy contains 6.5× 106
particles, each of mass 1× 104 M�.

The elliptical system is modelled as a spherically symmetric
model with density profile described by:

ρ(r)= M
2π

a
r(r + a)3

, (27)

where a is the scale factor given by,

a= r200
c

√
2

[
ln(1+ c)− c

(1+ c)

]
, (28)

where r200 and c is the concentration of the distribution.
The disk model has been initialised with an exponential radial

profile and sech2-profile in the vertical direction, described by:

ρ(R, z)= M∗
4πz0h2

sech2
(
z
z0

)
exp

(
−R
h

)
. (29)

The velocity profiles of these structures are initialised using the
optimisation procedure outlined in Yurin & Springel (2014). We
allow these systems to evolve in an analytic potential for 10 Gyr
using Gadget2. We outline the procedure for each test below.

We begin by generating three SIMSPIN files. As these are
N-body models, we must assign each particle a stellar age and
metallicity (such that an appropriate stellar template can be
assigned). We produce two SIMSPIN files with identical particle
ages and metallicities in order to examine both the variation of the
underlying kinematic model (i.e. bulge vs. disk) with consistent
underlying spectra:

make_simspin_file(
filename = “disk_model.hdf5",
disk_age = 5, disk_Z = 0.024,
template = “E-MILES”,
output = “disk_age05_Z024.Rdata"
)

make_simspin_file(
filename = “bulge_model.hdf5",
bulge_age = 5,
bulge_Z = 0.024,
template = “E-MILES”,
output = “bulge_age05_Z024.Rdata”
)

The final SIMSPIN file contains more realistic stellar ages and
metallicities for their component, with older, more metal poor
stars present in the elliptical system and younger, more metal rich
stars in the disk galaxy. This allows us to examine the effect of
varied stellar templates on the comparison between spectral and
kinematic data cubes.

make_simspin_file(
filename = “bulge_model.hdf5",
bulge_age = 10, bulge_Z = 0.001,
template = “E-MILES”,
output = “bulge_age10_Z001.Rdata"
)

We build two versions of each of these files. One is prepared
using the E-MILES templates (Vazdekis et al. 2016), which have

both higher wavelength and spectral resolution parameters than
the alternative BC03 models (Bruzual&Charlot 2003) from which
we prepare the second SIMSPIN file.

These SIMSPIN files are used for the following tests in an
effort to evaluate the consistency between our two mock observ-
ing methods. In each case, we generate a kinematic data cube
and a spectral data cube. These cubes have identical observing
conditions, i.e. projected distance, observed projection angle on
the sky, field-of-view, etc. The spectral cube is then fit using
pPXF, with the E-MILES spectra used as fitting templates. We
then compare the kinematic maps produced through the penalised
pixel fitting method and our kinematic cubes. With the two
versions of SimSpin file (E-MILES and BC03), we can exam-
ine consistency across a variety of spectral qualities. Within each
test, we can further turn the dials of the telescope() and
observing_strategy() functions to explore the reliability of
the results with respect to the LSF, spatial and spectral resolution
and seeing.

Selected properties are described in each of the case studies
below. We have comparison figures for each test contained in the
Supplementary Material at the end of the paper, though a sum-
mary of these is also presented at the end of the results section. A
walk-through of code used to generate these examples can also be
found at the SimSpin website.

3.1.1. Test 1: Intrinsic template spectral resolution at low redshift

Wewould like to ensure that, in the simplest regime where there is
no LSF convolution and the object is projected to a small redshift, a
kinematic data cube and a spectral data cube fit with pPXF should
return consistent answers. In essence, this tests that the velocity-
shift added to each particle’s spectrum is working appropriately.
This is done for all three examples (the young disk, young bulge
and old bulge). We use different telescope() configurations for
the E-MILES and BC03 cubes to suit the different resolution con-
straints for these spectra, and to explore the robustness of the
comparison to different configurations of the telescope.

This is done using the following telescope parameters for the
E-MILES and BC03hr cubes respectively:

telescope(
type = “IFU”, signal_to_noise = 30,
lsf_fwhm = 0,
wave_res = 1.04, aperture_shape = “circular”,
fov = 15,
spatial_res = 0.5
)

telescope(
type = “IFU”,
signal_to_noise = 30,
lsf_fwhm = 0, wave_res = 3,
aperture_shape = “hexagonal”,
fov = 17, spatial_res = 0.7
)

The same observing strategy is used for all observations:

observing_strategy(
dist_kpc_per_arcsec = 0.3,
inc_deg = 60,
blur = F)

https://doi.org/10.1017/pasa.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2023.47

14 K.E. Harborne et al.

Figure 4. Case Study 1: The diskmodel built with E-MILES templates observed with an
intrinsic telescope resolution of λtelescopeLSF = 0 Å at a low redshift distance of z= 0.0144.
Here we compare the output kinematic cubes to the kinematics fit with pPXF, where
the average pixel spectral fit has χ 2/DOF = 0.95. The red ellipse demonstrates 1 Re for
this model.

In this test, we force SimSpin to generate a spectral cube at
the intrinsic template spectral resolution by requesting a telescope
with a λ

telescope
LSF = 0Å. This will cause the code to issue a warning

that the templates used have insufficient resolution to construct
such an observation, but will produce the output spectral cube
never-the-less.

It is important to remember that the underlying templates
used to construct the observed galaxy do have some intrinsic
LSF, as shown in Table 1. Hence, when using spectral templates
to fit the SimSpin spectral cubes with pPXF, it is important that
we do match the fitting templates to the true underlying LSF,
which is dependent on the templates from which the cube has
been made

(
λ
templates
LSF = 2.51Å in the case of E-MILES SimSpin

cubes and λ
templates
LSF = 3Å in the case of BC03 SimSpin cubes

)
.

When performing the pPXF fit using the E-MILES templates to
fit the model spectra, we do convolve the fitting templates with the
root-square difference between the BC03 and E-MILES LSF (i.e.√
32 − 2.512 = 1.64Å and

√
2.512 − 2.512 = 0Å), due to the fact

that the intrinsic templates from which the mock observation has
been built have a greater LSF than the templates used to perform
the fit.

We compare the output of the pPXF run in this case to a kine-
matic data cube run using the same parameters, but this time with
method = ‘velocity’. We expect that the observed kinematics
will be consistent within the noise and the resolution of the tele-
scope. The resulting comparison can be seen visually for our disk
model in Figs. 4 and 5. Similar plots for each of the models built
for these tests can be found in Appendix 1.1 (see Supplementary
Material). Visually, it is clear that the E-MILES spectral cube com-
parison in Fig. 4 is much more consistent than the BC03 spectral
cube comparison in Fig. 5. However, in both cases the residual

Figure 5. Case Study 1: The disk model built with BC03 templates observed with an
intrinsic telescope resolution of λtelescopeLSF = 0 Å at a low redshift distance of z= 0.0144.
Here we compare the output velocity cubes to the kinematics fit with pPXF, where
the average pixel fit χ 2/DOF = 3.46. The final column demonstrates these residuals as
histograms

distributions are centred around zero. In the recovery of the kine-
matics in the BC03 example, we struggle to find a sufficiently good
fit, with the χ 2/DOF averaging �4, as opposed to the E-MILES
comparison value of �1. We believe this is due to mismatch
between the templates used for cube generation and for fitting with
pPXF. As discussed in Nanni et al. (2023), the biases introduced
through the adoption of different spectral models are important
to consider. Here, we demonstrate the impact of these biases. It is
important to note, of course, that the spread of residuals recorded
in both cases are within the velocity resolution of the telescope
used.

In Fig. 6, we show the residual differences between the kine-
matic and spectral cubes as a histogram for each model and
spectral template set. This allows us to directly compare the dif-
ferences between spectral cubes built with the E-MILES and BC03
templates. At low redshift and with no additional LSF effects, we
see that the two methods (‘spectral’ and ‘velocity’) com-
pare quite nicely, with all resulting residuals centred around zero.
As noted visually from the kinematic maps, there is a broader dif-
ference between the returned kinematics for the BC03 SimSpin
cubes fit with the E-MILES templates through pPXF.

3.1.2. Test 2: Intrinsic template spectral resolution at high red-
shift

Following the success at low redshift, where we tested that spectra
are shifted in wavelength space effectively, we next consider the
effect of projecting the galaxies to larger distances. In this study,
we use the same telescope definitions as in Test 1, keeping the
templates from which the cubes are built at their intrinsic reso-
lution using λ

telescope
LSF = 0Å, but modifying the observing strategy

as follows:

https://doi.org/10.1017/pasa.2023.47 Published online by Cambridge University Press

http://doi.org/10.1017/pasa.2023.47
https://doi.org/10.1017/pasa.2023.47

Publications of the Astronomical Society of Australia 15

Figure 6. Case Study 1: The residual differences between the kinematic observations
and the spectral fits in case study 1 for the vLOS and σLOS each with respect to the veloc-
ity resolution of the telescope, and h3 and h4, for each of the models (disc, bulge, and
old bulge in blue, pink and yellow respectively). The solid lines show the residual rela-
tionship for the E-MILES cubes, while the dotted lines demonstrate the residuals for the
BC03hr cubes. All are nicely centred around zero aswewould expect, thoughwe do see
broader distributions for the BC03hr models in comparison to the E-MILES models.

observing_strategy(
dist_z = 0.3,
inc_deg = 60,
blur = F
)

We note here that the median signal-to-noise is set to 30, as in
the previous test. It is important to remember that, with objects
projected to further distances, we do not perform an exposure
time calculation and as such these may not be realistic of the noise
expected from such an observation.

Here, we examine whether the red-shifting module is working
effectively in both methods and still produces equivalent results
between the spectral and velocity cubes. We build both a
spectral and velocity cube of each of the simulations with these
specifications. The resulting spectral cubes are fit using pPXF to
find the observed spectral kinematics and the maps are compared
with their method = ‘velocity’ counterparts.

As in the previous test, we compare the kinematic maps for
each model, as shown in Figs. 7 and 8. This time, we demon-
strate using the bulge model, but provide the images for every
model tested in Appendix 1.2 (see Supplementary Material). We
successfully recover kinematic details in the E-MILES built images
in Fig. 7. However, we find that it is much more difficult to get a
successful fit for the BC03 spectral cubes through pPXF. The direct
comparison between the two is clearly demonstrated in the his-
tograms in Fig. 9. At the wavelength resolution of 3Å, as is run
for the BC03 SimSpin cubes, we find that it is especially difficult
to recover the higher-order kinematics, as would be expected for
higher redshift observations for a telescope with poorer spectral
resolution.

Figure 7. Case Study 2: The bulge model built with E-MILES templates observed with
an intrinsic telescope resolution of λtelescopeLSF = 0 Å at a high redshift distance of z= 0.3.
Here we compare the output kinematic cubes to the kinematics fit with pPXF, where
the average pixel fit χ 2/DOF = 0.88.

Figure 8. Case Study 2: The bulge model built with BC03 templates observed with
an intrinsic telescope resolution of λtelescopeLSF = 0 Å at a high redshift distance of z= 0.3.
Here we compare the output kinematic cubes to the kinematics fit with pPXF, where
the average pixel fit χ 2/DOF = 51.

3.1.3. Test 3: telescope() spectral resolution at low & high
redshift

The next test is designed to evaluate the module of the code that
varies the spectral resolution. In this case study, we take the disk
simulation built with each the E-MILES and BC03 templates and

https://doi.org/10.1017/pasa.2023.47 Published online by Cambridge University Press

http://doi.org/10.1017/pasa.2023.47
https://doi.org/10.1017/pasa.2023.47

16 K.E. Harborne et al.

Figure 9. Case Study 2: The residual differences between the kinematic observations
and the spectral fits as in Fig. 3, but for case study 2. Again, we find that all distributions
are nicely centred around zero as we would expect, though we do see significantly
broader distributions for the BC03hr models in comparison to the E-MILES models.

observe them using telescopes with LSFs greater than the under-
lying templates. We do this with the disc projected at both low
and high redshift, as the convolution kernel used for the LSF will
change as a function of z as demonstrated by Equation (19).

We broaden each set of templates by different amounts as
shown in the telescope() specifications below for the E-MILES
and BC03 SimSpin files respectively:

telescope(
type = “IFU”,
signal_to_noise = 30,
lsf_fwhm = 3.61,
wave_res = 1.04,
aperture_shape = “circular”,
fov = 15, spatial_res = 0.5
)

telescope(
type = “IFU”,

signal_to_noise = 30,
lsf_fwhm = 4.56,
wave_res = 3,
aperture_shape = “hexagonal”,
fov = 17, spatial_res = 0.7
)

We then run each model twice, once at low and once at high z,
using the following observing_strategy() functions:

observing_strategy(
dist_kpc_per_arcsec = 0.3,
inc_deg = 60,
blur = F
)

Figure 10. Case Study 3: The disk model built with E-MILES templates observed with
an intrinsic telescope resolution of λtelescopeLSF = 3.61 Å at a high redshift distance of z=
0.3. Here we compare the output kinematic cubes to the kinematics fit with pPXF.

observing_strategy(
dist_z = 0.3,
inc_deg = 60,
blur = F
)

As before, we produce a spectral and kinematic SIMSPIN cube
for each iteration and run the spectral cubes through pPXF to
recover the observable kinematics. For this set of pPXF fits, when
using the E-MILES templates to fit themodel spectra, we only need
to convolve the fitting templates with the root-square difference
between telescope() LSF for each observation and the fit-
ting templates (i.e.

√
3.612 − 2.512 = 2.59Å and

√
4.562 − 2.512 =

3.81Å for the E-MILES and BC03 examples respectively).
The results of these fits are demonstrated visually in Figs. 10

and 11. These examples show the high redshift examples, with the
low z fits shown in Appendix 1.3 (see Supplementary Material).

In Fig. 10, we can see that the structure of the LOS dispersion
has been well captured in the resulting spectral fit. However, we see
that the higher-order kinematics, h3 and h4 become quite difficult
to explore as you go out in radius where noise begins to dominate.

We provide a direct comparison between the BC03 and E-
MILES residuals in Fig. 12, built at both high and low redshift.
It is quite clear from this comparison that there is no significant
difference between the high and low redshift behaviour, except in
the case of the cube built with BC03 templates. In this example,
we see that the lower redshift model appears to under-estimate the
true dispersion, as shown by the positive dispersion residuals.

Given the difficulty we have had fitting the BC03 spectral mod-
els for kinematics, it is unclear whether these discrepancies are the
fault of the SIMSPIN code, or the fitting methodology. As the fits
are quite consistent for the E-MILES spectral cubes, we will pro-
ceed with the final test to check for consistency when atmospheric
blurring conditions are incorporated.

https://doi.org/10.1017/pasa.2023.47 Published online by Cambridge University Press

http://doi.org/10.1017/pasa.2023.47
https://doi.org/10.1017/pasa.2023.47

Publications of the Astronomical Society of Australia 17

Figure 11. Case Study 3: The disk model built with BC03 templates observed with an
intrinsic telescope resolution of λtelescopeLSF = 4.56 Å at a high redshift distance of z= 0.3.
Here we compare the output kinematic cubes to the kinematics fit with pPXF.

Figure 12. Case Study 3: The residual differences between the kinematic observa-
tions and the spectral fits for the low and high redshift disc models (in yellow and
green respectively) built with E-MILES and BC03 templates. All distributions are nicely
centred around zero as we would expect, though we do see significantly broader
distributions for the BC03hr models in comparison to the E-MILES models.

3.1.4. Test 4: telescope() spectral resolution with atmospheric
seeing

The final test involves taking the previous mock observations, and
introducing seeing conditions. As described in Section 2.2.2, we
convolve each spatial plane of our spectral or velocity data cube

Figure 13. Case Study 4: The disk model built with E-MILES templates observed with
an intrinsic telescope resolution of λ

telescope
LSF = 3.61 Å at a low redshift distance of z=

0.0144 with an added seeing condition of a Gaussian kernel with FWHM of 1 arcsec.
Here we compare the output kinematic cubes to the kinematics fit with pPXF.

with a kernel to imitate the blurring effects of the atmosphere.
This is done by specifying the blur = T parameter below, indi-
cating that we would like the image to be blurred, as well as the
size and shape of the convolution kernel. This is all done in the
observing_strategy() function. For the following study, we
use the following specification for the E-MILES and BC03 mod-
els, projecting each to both near and far distances with the varied
seeing conditions:

observing_strategy(
dist_kpc_per_arcsec = 0.3,
inc_deg = 60, blur = T,
fwhm = 1,
psf="Gaussian"
)

observing_strategy(
dist_z = 0.3,
inc_deg = 60,
blur = T,
fwhm = 2.8,
psf="Moffat"
)

The rest of the telescope() parameters remain consistent
with the previous case study. As in the previous case, we test these
observations at both high and low redshift distances for the young
disc model with the two flavours of spectral templates. The results
of these fits are demonstrated in Figs. 13 and 14, where we show
the fitting results for the low redshift E-MILES galaxy and the high
redshift BC03 galaxy. The remaining images are included in the
final Appendix 1.4 (see Supplementary Material).

Even in the blurred images, as shown in Fig. 13, we can see
that the kinematics between the method = ‘velocity’ and

https://doi.org/10.1017/pasa.2023.47 Published online by Cambridge University Press

http://doi.org/10.1017/pasa.2023.47
https://doi.org/10.1017/pasa.2023.47

18 K.E. Harborne et al.

Figure 14. Case Study 4: The disk model built with BC03 templates observed with an
intrinsic telescope resolution of λtelescopeLSF = 4.56 Å at a high redshift distance of z= 0.3
with an added seeing conditions of a Moffat kernel with FWHM of 2.8 arcsec. Here we
compare the output kinematic cubes to the kinematics fit with pPXF.

Figure 15. Case Study 4: The residual differences between the kinematic observations
and the spectral fits for the low and high redshift disc models (in yellow and green
respectively) built with E-MILES and BC03 templates. Most distributions are nicely
centred around zero as we would expect, though we do see significantly broader dis-
tributions for the BC03hr models as well as some offset between the low redshift
dispersion measured.

‘spectral’ cubes are closely comparable, with residuals nicely
balanced around the zero point. With the BC03 system, we see a
poorer recovery. Comparing the two directly using the histograms
in Fig. 15, a hollow yellow bump is visible towards the positive

residuals showing that the kinematic cubes provide an overesti-
mate of the dispersion in comparison to the spectral cube fit with
pPXF.

These are important tests to run in order to evaluate the suc-
cess and flexibility of the code. Here we have taken each feature
in turn and assessed how its addition affects the resulting kine-
matic image. We note that, within the extra-galactic community,
the use of E-MILES templates for kinematic fitting is common-
place and as such it is good to see the consistency between input
and output in the simulations that have been built and kinemat-
ics fit using the same set of stellar population synthesis models.
Concern is raised with regards to the poorer fits found between
the BC03 models fit using E-MILES templates, though we note
that these differences are within the spectral resolution of the
respective instruments used. Furthermore, he BC03 templates are
evolutionary stellar population synthesis codes that are commonly
used within the theory community for semi-analytic models and
for stellar population fitting.

3.2. Web application

SIMSPIN is a flexible and modular code, as demonstrated in this
article and the numerous examples available online. As the num-
ber of applications for mock simulation data grows with ever more
resolved models of galaxy formation and evolution, it is important
that access to the code is accessible and usable by a wide range of
users, theorists and observers alike. In order to remove some of
the barriers we perceive preventing users working with this code
(including working with R, handling simulation data, or running
large memory jobs locally), we have built a web application of
SIMSPIN.g

The SIMSPIN web application has the same range of functional-
ity as the R-package, without the necessity to download and install
the package yourself. It is a performant React Single Page App
communicating asynchronously with a RESTful API, hosted by
Data Central. The application allows for instant data exploration
via a dedicated viewer, where authenticated users can re-visit pre-
vious queries and share results with others. Generated FITS files
can be directly downloaded for further exploration and quan-
tification. All services are containerised and managed by docker
compose, such that the project is easily re-deployable. The API is
fully documented, and comes with an API Schema (adhering to
the OpenAPI Specification) to aid users in calling the API from
other services.

The SimSpin app removes the barrier of entry for novice
astronomers, providing an accessible and time-saving tool for sim-
ulated galaxy visualisations. The API further removes a code lan-
guage barrier as individuals can generate SIMSPIN queries using
whichever language they choose. An example of this can be found
within the documentation.h

4. Conclusion

In conclusion, we have presented a significant update to the mock
observation code, SIMSPIN. We have demonstrated a number of
new features available in the code v2.6.0, including the measure-
ment of higher-order kinematics, the construction of spectral
data cubes and the inclusion of gas component analysis. The code

ghttps://simspin.datacentral.org.au/app/.
hhttps://kateharborne.github.io/SimSpin/examples/query_the_API.html.

https://doi.org/10.1017/pasa.2023.47 Published online by Cambridge University Press

https://simspin.datacentral.org.au/app/
https://kateharborne.github.io/SimSpin/examples/query_the_API.html
https://doi.org/10.1017/pasa.2023.47

Publications of the Astronomical Society of Australia 19

now supports a wide number of different cosmological, hydro-
dynamical simulations, including EAGLE, ILLUSTRISTNG,
MAGNETICUM, and HORIZONAGN. We further have container-
ised the code into a web application such that anyone can work
with mock data, regardless of their coding language or computer
specifications.

All of these features have been tested using unit testing, as well
as the longer case study explorations that are presented in the
results of this paper. In line with standard continuous integration
procedures, we run all unit tests and require them to pass before
any changes can be merged into the main branch of the code. We
also require the code coverage (as measured by the number of
lines within the code hit by the unit tests) to remain at approxi-
mately 90% for tests to pass. In the future, as more developers aim
to expand the capabilities of the code, we may further implement
another set of checks by core developers using the review system
in place through GitHub.

The range of applications for this code is already begin-
ning to be demonstrated within the literature for applications
from designing corrections for the effects of seeing conditions
(Harborne et al. 2020b), exploring the observational signatures of
slow rotating systems formed in different ways (Lagos et al. 2022),
or building machine learning models to explore the connection
between intrinsic 3D shape and observable kinematics (Yong et al.
in preparation). Of particular interest, with the ready incorpora-
tion of theory data with observational surveys, we hope to see
similar data releases of simulated galaxies for comparison along-
side observations (such as is being prepared for theMAGPI survey
as described in Foster et al. 2021). With tools like SIMSPIN, we are
enabling these comparisons to be made consistently, both between
simulations and observations, but also consistently between the
different simulations themselves.

Simulations provide us with the ability to explore the far
reaches of space and time, while SIMSPIN now enables us to com-
pare these simulations to our exquisite observations. The benefit of
this is that, we our models we know the ground truth—projection
effects can be modified by simply moving our observer, the atmo-
sphere can be turned ‘on’ or ‘off’, and we can fast-forward through
time to examine how a given systemmay change over the course of
its life. Such information is undoubtedly useful for contextualising
the results we find in observations, as well as to improve existing
sub-grid recipes within simulations in line with this. The future of
mock observables is bright.

Acknowledgements. We would like to thank the anonymous reviewer for
the thoughtful comments on this manuscript that led to significant memory
saving functionality in the code. Further thanks is due to Adriano Poci for
helpful discussions about the measurement of higher-order kinematics. KH
acknowledges funding from CL’s Discovery Project, DP210101945, funded by
the Australian Government. AS acknowledges support through the summer
internship programme from the International Centre for Radio Astronomy
Research (ICRAR) and the Pawsey Supercomputing Centre.

This work has been made possible through the Astronomy Data and
Computing Services (ADACS). This research was conducted under the
Australian Research Council Centre of Excellence for All Sky Astrophysics in
3 Dimensions (ASTRO 3D), through project number CE170100013.

Parts of this research, including the construction of N-body models
for the case study analysis, were undertaken on Magnus at the Pawsey
Supercomputing Centre in Perth, Australia.

Supplementary material. The supplementary material for this article can
be found at http://doi.org/10.1017/pasa.2023.47

Data Availability. The data that support the findings of this study are openly
available in the public repository kateharborne/project_simspin at
https://github.com/kateharborne/project_simspin. This includes the raw data
and code used to generate the plots for the paper, as well as the source code
for the paper. The simulations, from which this data has been consolidated,
are also available in this repository as HDF5 files. Simulation models have
been built using GalIC (Yurin & Springel 2014) and Gadget2 (Springel 2005).
Several public, open-source codes have been used in this work to generate
the data. These include SimSpin (https://github.com/kateharborne/SimSpin),
magicaxis (https://github.com/asgr/magicaxis) and pPXF (https://pypi.org/
project/ppxf/). For pPXF fits, we also make use of the EMILES_PADOVA_CH
templates, documented in Vazdekis et al. (2016) and available online at
http://research.iac.es/proyecto/miles/pages/spectral-energy-distributions-seds/
e-miles.php.

References

Abdurro’uf, et al. 2022, ApJS, 259, 35
Allgood, B., et al. 2006, MNRAS, 367, 1781
Bacon, R., et al. 1995, A&AS, 113, 347
Bacon, R., et al. 2001, MNRAS, 326, 23
Bacon, R., & Monnet, G. 2017, Optical 3D-Spectroscopy for Astronomy

(Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA), doi:
10.1002/9783527674824

Barrientos Acevedo, D., et al. 2023, MNRAS, 524, 907
Bassett, R., & Foster, C. 2019, MNRAS, 487, 2354
Beck, A. M., et al. 2016, MNRAS, 455, 2110
Bendo, G. J., & Barnes, J. E. 2000, MNRAS, 316, 315
Borrow, J., & Kelly, A. J. 2021, arXiv, arXiv:2106.05281
Bottrell, C., & Hani, M. H. 2022, MNRAS, 514, 2821
Broyden, C. G. 1970, IMA JAM, 6, 76
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Bryant, J. J., et al. 2020, in Society of Photo-Optical Instrumentation

Engineers (SPIE) Conference Series, Vol. 11447, Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series, 1144715

Bundy, K., et al. 2015, ApJ, 798, doi: 10.1088/0004-637X/798/1/7
Camps, P., & Baes, M. 2020, A&C, 31, 100381
Cappellari, M. 2002, MNRAS, 333, 400
Cappellari, M., et al. 2007, MNRAS, 379, 418
Cappellari, M., et al. 2011, MNRAS, 413, 813
Cappellari, M. 2017, MNRAS, 466, 798
Cappellari, M., & Emsellem, E. 2004, PASP, 116, 138
Chabrier, G. 2003, PASP, 115, 763
Crain, R. A., et al. 2015, MNRAS, 450, 1937
Croom, S. M., et al. 2012, MNRAS, 421, 872
Croom, S. M., et al. 2021, MNRAS, 505, 2247
de Zeeuw, P. T., et al. 2002, MNRAS, 329, 513
Doi, M., et al. 2010, AJ, 139, 1628
Dolag, K., Hansen, F. K., Roncarelli, M., & Moscardini, L. 2005, MNRAS,

363, 29
Dubois, Y., et al. 2014, MNRAS, 444, 1453
Emsellem, E., et al. 2004, MNRAS, 352, 721
Fletcher, R. 1970, CJ, 13, 317
Forsythe, MALCOLM, M. A., & Moler, M. A. 1977, Computer Methods for

Mathematical Computations (Wiley)
Foster, C., et al. 2021, PASA, 38, e031
Fukugita, M., et al. 1996, AJ, 111, 1748
Goldfarb, D. 1970, MC, 24, 23
Harborne, K. E., et al. 2020 b, MNRAS, 497, 2018
Harborne, K. E., Power, C., & Robotham, A. S. G. 2020 a, PASA, 37, doi:

10.1017/pasa.2020.8
Harborne, K. E., Power, C., Robotham, A. S. G., Cortese, L., & Taranu, D. S.

2019, MNRAS, 483, 249
Hogg, D. W. 1999, arXiv e-prints, astro
Jesseit, R., Cappellari, M., Naab, T., Emsellem, E., & Burkert, A. 2009, MNRAS,

397, 1202
Jesseit, R., Naab, T., Peletier, R. F., & Burkert, A. 2007, MNRAS, 376, 997

https://doi.org/10.1017/pasa.2023.47 Published online by Cambridge University Press

http://doi.org/10.1017/pasa.2023.47
https://github.com/kateharborne/project_simspin
https://github.com/kateharborne/SimSpin
https://github.com/asgr/magicaxis
https://pypi.org/project/ppxf/
https://pypi.org/project/ppxf/
http://research.iac.es/proyecto/miles/pages/spectral-energy-distributions-seds/e-miles.php
http://research.iac.es/proyecto/miles/pages/spectral-energy-distributions-seds/e-miles.php
https://doi.org/10.3847/1538-4365/ac4414
https://doi.org/10.1111/J.1365-2966.2006.10094.X
https://doi.org/1995A&AS..113..347B
https://doi.org/10.1046/j.1365-8711.2001.04612.x
https://doi.org/10.1093/mnras/stad1771
https://ui.adsabs.harvard.edu/abs/2023MNRAS.524..907B
https://doi.org/10.1093/mnras/stz1440
https://doi.org/10.1093/mnras/stv2443
https://ui.adsabs.harvard.edu/abs/2016MNRAS.455.2110B
https://doi.org/10.1046/j.1365-8711.2000.03475.x
https://arxiv.org/abs/2106.05281
https://doi.org/10.1093/mnras/stac1532
https://doi.org/10.1093/imamat/6.1.76
https://doi.org/10.1046/j.1365-8711.2003.06897.x
https://ui.adsabs.harvard.edu/abs/2020SPIE11447E..15B
https://doi.org/10.1088/0004-637X/798/1/7
https://doi.org/10.1016/j.ascom.2020.100381
https://ui.adsabs.harvard.edu/abs/2020A&C....3100381C
https://doi.org/10.1046/j.1365-8711.2002.05412.x
https://ui.adsabs.harvard.edu/abs/2002MNRAS.333..400C
https://doi.org/10.1111/j.1365-2966.2007.11963.x
https://doi.org/10.1111/j.1365-2966.2010.18174.x
https://doi.org/10.1093/mnras/stw3020
https://doi.org/10.1086/381875
https://doi.org/10.1086/376392
https://doi.org/10.1093/mnras/stv725
https://doi.org/10.1111/j.1365-2966.2011.20365.x
https://doi.org/10.1093/MNRAS/STAB1494
https://doi.org/10.1046/j.1365-8711.2002.05059.x
https://doi.org/10.1088/0004-6256/139/4/1628
https://ui.adsabs.harvard.edu/abs/2010AJ....139.1628D
https://doi.org/10.1111/j.1365-2966.2005.09452.x
https://doi.org/10.1093/mnras/stu1227
https://doi.org/10.1111/j.1365-2966.2004.07948.x
https://doi.org/10.1093/comjnl/13.3.317
https://doi.org/10.1017/PASA.2021.25
https://doi.org/10.1086/117915
https://ui.adsabs.harvard.edu/abs/1996AJ....111.1748F
https://doi.org/10.2307/2004840
https://doi.org/10.1093/mnras/staa1847
https://doi.org/10.1017/pasa.2020.8
10.1017/pasa.2020.8
https://doi.org/10.1093/mnras/sty3120
https://doi.org/10.1111/j.1365-2966.2009.14984.x
https://doi.org/10.1111/j.1365-2966.2007.11524.x
https://doi.org/10.1017/pasa.2023.47

20 K.E. Harborne et al.

Jiménez, E., Lagos, C. d. P., Ludlow, A. D., & Wisnioski, E. 2023, MNRAS,
524, 4346

Katz, N., Weinberg, D. H., & Hernquist, L. 1996, ApJS, 105, 19
Lagos, C. d. P., et al. 2022, MNRAS, 509, 4372
Li, H., et al. 2018, MNRAS, 473, 1489
Ludlow, A. D., et al. 2019, MNRAS, 488, 3663
Ludlow, A. D., Fall, S. M., Wilkinson, M. J., Schaye, J., & Obreschkow, D. 2023,

arXiv e-prints, arXiv:2306.05753
Metzler, C. A., & Evrard, A. E. 1994, ApJ, 437, 564
Moffat, A. F. J. 1969, A&A, 3, 455
Naab, T., et al. 2014, MNRAS, 444, 3357
Nanni, L., et al. 2022, MNRAS, 515, 320
Nanni, L., et al. 2023, MNRAS, 522, 5479
Nelson, D., et al. 2019, MNRAS, 490, 3234
Oser, L., Ostriker, J. P., Naab, T., Johansson, P. H., & Burkert, A. 2010, ApJ,

725, 2312
Pillepich, A., et al. 2018, MNRAS, 473, 4077
Pillepich, A., et al. 2019, MNRAS, 490, 3196
Poci, A., et al. 2021, A&A, 647, A145
Price, D. J. 2007, PSSA, 24, 159

Robotham, A. S. G., et al. 2020, ProSpect: Generating Rapid Spectral Energy
Distributions with Complex Star Formation and Metallicity Histories

Robotham, A. S. G., Taranu, D. S., Tobar, R., Moffett, A., & Driver, S. P. 2017,
MNRAS, 466, 1513

Sarmiento, R., et al. 2023, A&A, 673, A23
Schaller, M., et al. 2015, MNRAS, 454, 2277
Schaye, J., et al. 2015, MNRAS, 446, 521
Schulze, F., et al. 2018, MNRAS, 480, 4636
Shanno, D. F. 1970, MC, 24, 647
Springel, V. 2005, MNRAS, 364, 1105
Springel, V., et al. 2018, MNRAS, 475, 1, 676, 475, 676
Teklu, A. F., et al. 2015, ApJ, 812, 29
van de Sande, J., et al. 2019, MNRAS, 484, 869
van der Marel, R. P., & Franx, M. 1993, ApJ, 407, 525
Vazdekis, A., Koleva, M., Ricciardelli, E., Röck, B., & Falcón-Barroso, J. 2016,

MNRAS, 463, 3409
Wendland, H. 1995, ACM, 4, 389
Wilkinson, M. J., et al. 2023, MNRAS, 519, 5942
Yurin, D., & Springel, V. 2014, MNRAS, 444, 62
Zhu, L., et al. 2022, A&A, 660, A20

https://doi.org/10.1017/pasa.2023.47 Published online by Cambridge University Press

https://doi.org/10.1093/mnras/stad2119
https://ui.adsabs.harvard.edu/abs/2023MNRAS.524.4346J
https://doi.org/10.1086/192305
https://doi.org/10.1093/mnras/stab3128
https://ui.adsabs.harvard.edu/abs/2022MNRAS.509.4372L
https://doi.org/10.1093/MNRAS/STX2374
https://doi.org/10.1093/MNRASL/SLZ110
https://arxiv.org/abs/2306.05753
https://doi.org/10.1086/175022
https://doi.org/1969A&A.....3..455M
https://doi.org/10.1093/mnras/stt1919
https://doi.org/10.1093/mnras/stac1531
https://doi.org/10.1093/mnras/stad1337
https://ui.adsabs.harvard.edu/abs/2023MNRAS.522.5479N
https://doi.org/10.1093/mnras/stz2306
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.3234N
https://doi.org/10.1088/0004-637X/725/2/2312
https://doi.org/10.1093/mnras/stx2656
https://doi.org/10.1093/mnras/stz2338
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.3196P
https://doi.org/10.1051/0004-6361/202039644
https://ui.adsabs.harvard.edu/abs/2021A&A...647A.145P
https://doi.org/10.1071/AS07022
https://ui.adsabs.harvard.edu/abs/2007PASA...24..159P
https://doi.org/10.1093/mnras/stw3039
https://doi.org/10.1051/0004-6361/202245509
https://ui.adsabs.harvard.edu/abs/2023A&A...673A..23S
https://doi.org/10.1093/mnras/stv2169
https://doi.org/10.1093/mnras/stu2058
https://doi.org/10.1093/MNRAS/STY2090
https://doi.org/10.2307/2004840
https://doi.org/10.1111/j.1365-2966.2005.09238.x
https://doi.org/10.1093/MNRAS/STX3304
https://doi.org/10.1088/0004-637X/812/1/29
https://doi.org/10.1093/mnras/sty3506
https://doi.org/10.1093/mnras/stw2231
https://doi.org/10.1007/BF02123482
https://doi.org/10.1093/mnras/stad055
https://ui.adsabs.harvard.edu/abs/2023MNRAS.519.5942W
https://doi.org/10.1093/mnras/stu1421
https://doi.org/10.1051/0004-6361/202142496
https://ui.adsabs.harvard.edu/abs/2022A&A...660A..20Z
https://doi.org/10.1017/pasa.2023.47

	
	Introduction
	
	Aim of this paper
	Methodology
	Creating an input file
	Hydrodynamic models: gas components
	Hydrodynamical simulations: stellar components
	N-body models
	Alignment choice
	Initialising the telescope and observing strategy
	Telescope choice
	Observation strategy choice
	Building a data cube
	Spectral data cubes
	Kinematic data cubes
	Gas data cubes
	Results
	Comparison of spectral and kinematic cubes
	Test 1: Intrinsic template spectral resolution at low redshift
	Test 2: Intrinsic template spectral resolution at high redshift
	Test 3: telescope() spectral resolution at low high redshift
	Test 4: telescope() spectral resolution with atmospheric seeing

	Web application
	Conclusion

