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LYNDON WORDS, FREE ALGEBRAS AND SHUFFLES 

GUY MELANÇON AND CHRISTOPHE REUTENAUER 

1. Introduction. A Lyndon word is a primitive word which is minimum in 
its conjugation class, for the lexicographical ordering. These words have been 
introduced by Lyndon in order to find bases of the quotients of the lower central 
series of a free group or, equivalently, bases of the free Lie algebra [2], [7]. 
They have also many combinatorial properties, with applications to semigroups, 
pi-rings and pattern-matching, see [1], [10]. 

We study here the Poincaré-Birkhoff-Witt basis constructed on the Lyndon 
basis (PBWL basis). We give an algorithm to write each word in this basis: it 
reads the word from right to left, and the first encountered inversion is either 
bracketted, or straightened, and this process is iterated: the point is to show 
that each bracketting is a standard one: this we show by introducing a loop 
invariant (property (S)) of the algorithm. This algorithm has some analogy with 
the collecting process of P. Hall [5], but was never described for the Lyndon 
basis, as far we know. 

A striking consequence of this algorithm is that any word, when written in 
the PBWL basis, has coefficients in N (see Theorem 1). This will be proved 
twice in fact, and is similar to the same property for the Shirshov-Hall basis, as 
shown by M.P. Schutzenberger [11]. 

Our next result is a precise description of the dual basis of the PBWL basis. 
The former is denoted (Sw), where w is any word, and we show that 

if w = au is a Lyndon word beginning with the letter a, and that 

Sw = ( t i ! . . .* I I ! r 1 5* , o. . .oS*-

if w = l\x . . . lk
n
n is the decomposition of w into Lyndon words, where o is the 

shuffle product and Sk means shuffle exponentiation. The latter relation may 
also be expressed by the following formula, "à la Hopf algebra": 

^ iv ® w = Y[ exp(5/ ® [/]) 
w I 

in the complete tensor product Q<Cv4^>0Q<Ci4^>, with the shuffle algebra 
on the left, and the concatenation on the right, where the sum is taken over all 
words w, and the product over all Lyndon words / in decreasing order, and where 
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578 G. MELANÇON AND C. REUTENAUER 

[/] means the element of the PBWL basis associated to /. This formula holds in 
fact in any enveloping algebra, for any basis, as we shall indicate (remark 4). 

An application of the previous result is that the elements Si form a transcen
dance basis of the shuffle algebra Q(A). As a consequence, we prove a theorem 
of Radford [9], who shows that the shuffle algebra Z(A) admits as a basis the 
set of Lyndon words. More precisely, for each word 

* = / * • . . . # 

decomposed into Lyndon words, the polynomial 

(* , ! . . .* n ! r 1 /* 1 o . . .o /^ 

has coefficients in N and is of the form vv+ smaller words (Section 4). As 
a corollary, Z(A) (with the shuffle) is isomorphic to the algebra of integral 
exponential polynomials over the set of Lyndon words, hence it is a free Z-
algebra with divided powers. 

2. Lyndon words and the free Lie algebra. For properties on Lyndon words 
which are not proved here, see [6] Chapter 5. Let A be a totally ordered set. 
The elements of A are called letters and the elements of the free monoid A* 
generated by A are called words. 

We totally order A* as follows: u < v if and only if: (i) there exists a non
empty word w such that uw = v, or (ii) there exist word Jt,;y,z and letters a,b 
such that u = xay, v = xbz and a < b. This is the usual lexicographical order 
on A*. 

A word u is a. factor of a word v if there exist words jt,y such that v = xuy; 
in case x = 1 is the empty word (resp. y = 1) we say that u is a left (resp. 
right) factor of v, proper if y ^ 1 (resp. x ^ 1). Two words w, v are said to be 
conjugate if there exist words JC, y such that u — xy and v — yx. A Lyndon word 
may be equivalently defined to be a word w: (i) that is strictly less than any of 
its conjugates; or (ii) that is strictly less than any of its proper right factors. 

For example a,ab,aabab are Lyndon (a < b). From now on, let L denote 
the set of Lyndon words over A. For any Lyndon word w G L — A let m be its 
longest proper right factor in L. Then w = Im with / E L and I < Im < m. The 
couple a(w) — (/?m) is called the standard factorization of w. For example, the 
standard factorization of aaabab is (a, aabab), and not (aaab, ab). We also have 
the following: if /, m G L and / < m then Im £ L. 

We consider sequences of the form 

(1) s = [ui][u2]...[un] 

where each w/ is a Lyndon word, with the following property: 

(S) ui is either a letter, or if (x: y) is its standard factorization, then _y is greater 
than or equal to any UjJ ^ /. 
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Note that if each U[ is a letter, then s has property (S). Moreover, if s is 
decreasing, that is, wi ^ «2 = • • • = ww, tnen s n a s also property (S). A sequence 
having property (5) will be called a standard sequence. 

We present now a rewriting system on the set of standard sequences: for s as 
in (1), s non decreasing, let [M,-][W/+I] be the rightmost inversion, that is, / is the 
greatest index such that ut < w/+1. Then define 

(2) s' = [u{][u2]... [w,-w/+i]. •. [un] 

(3) / = [ui][u2] • •. [M/+I][M,-] • • • [un]. 

As the reader may guess, the brackettings will be interpreted in the sequel as 
Lie brackettings. The following key lemma shows that s',s" are standard and 
that the bracketting [w/W/+i] is standard. 

LEMMA 1. Let s, sf
7 s" be defined by (1), (2), (3). Then, s', s" are standard se

quences. Moreover, UiU(+\ is a Lyndon word, of standard factorization (w,-, «/+i). 

Proof We prove first the second assertion. If /, m are Lyndon words with 
/ < m, then Im is a Lyndon word (see [6] Proposition 5.1.3). Hence w,«/+i is 
a Lyndon word. Moreover, either w/ is a letter, hence (M/,M/+I) is the standard 
factorization of U(Ui+\ ; or w, has the standard factorization (/, m); as s is a standard 
sequence, we have m ^ «;+i; this shows, by [6] Proposition 5.1.4, that (M/, M/+I) 
is the standard factorization of UiUi+\. 

We show now that sf, s" are standard sequences. By assumption, 

M/+1 ^ M/+2 = • • • = Un, 

moreover, Ui+\ > uiUi+\, because w/W/+i is Lyndon. This shows that s' is standard, 
because s is already standard. For s", it is enough to observe that if U(+\ is not 
a letter and if (x,y) is its standard factorization, then y > w/, because ui < ui+\ 
by assumption and ui+\ < y, because w/+i is Lyndon. Hence .y7' is standard. 

We define a relation —• on the set of standard sequences: if s,s',sfr are as 
above, we define 

s —+ s' and 51 —• .y'7 

Furthermore, -^ will denote the transitive and reflexive closure of —K 
Let Z(A) denote the free associative algebra generated by A over Z. Each 

element of Z(A) is simply a Z-linear combination of words on A, and called a 
polynomial. Put in another way, A* is a Z-basis of Z(A). As we shall consider 
also another product on Z(A), we call the product of the free algebra Z(A) the 
concatenation product (because it corresponds to concatenation of words). 

Let L(A) denote be the sub-Lie-algebra of Z(A) generated by the letters in A. 
It is known that L (A) is the free Lie algebra on A and that Z(A) is its enveloping 
algebra (see [6] Chapter 5, for this and what follows). An element of L(A) is 
called a Lie polynomial, or a Lie element of Z(A). 

https://doi.org/10.4153/CJM-1989-025-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-025-2
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Define inductively Lie polynomials [/], for any Lyndon word / (we use again 
the notation [/] as above, by a slight abuse, which will not be confusing as 
/ —> [/] is a bijection). For any letter a, let 

[a] = a (a G A) 

and if « is a Lyndon word of standard factorization (&, /), then 

[u] = [[k],[l]] = [k][l]-[l][k] 

By a theorem of Lyndon, the set 

{U]\ieL} 

is a basis of L (A) over Z. By the Poincaré-Birkhoff-Witt theorem, the set 

{[/i].-•[/«]|/i ^ 0, /f- € i , /i ^ . . . ^ /„} 

is a basis of Z(A), which we call the PBWL basis of Z(A). 
Recall that each word in A* may be considered as a standard sequence. 
The following result expresses each word in the PBWL basis, using the above 

rewriting system. 

THEOREM 1. For each word w, one has 

w = J2 s 

w—>s 
s decreasing 

where each s appears with its multiplicity. 

The theorem is illustrated by the two following examples 

Example 1. Let A = {a <b} and w = abba. One has 

[abb][a] 

[ab][b][a] — • [b][ab][a] 

[a][b][b][a] 

[b][a][b][a] —+ [b][ab][a] 

[b][b][a][a] 

hence by the theorem 

abba = [abb][a] + 2[b][ab][a] + [b][b][a][a]. 
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Example 2. Let A = {1 < 2 < 3} and w = 123. Then 

» t123l 

y 
[1][23] - ^ [23][1] 

y 
[1][2][3] 

\ / • [ 1 3 2 ] 

[1][3][2] —» [13][2] - ^ [2][13] 

[3][1][2] —+ [3][12] 

[3][2][1] 
hence 

123 = [123] + [23][1] + [132] + [2]f 13] + [3][12] + [3][2][1], 

More generally, it is easy to see that for A = {1 < 2 < . . . < n}, one has 

12...«=£[*] 
wesn 

where each w in Sn is considered as a word and where [w] denotes [u\]... [«*], 
with each m Lyndon and u\ > . . . > w*. Note that in this case, [w] is just the 
Foata transform of w (see [3], p. 92). As a byproduct of the rewriting system, 
we have obtained an algorithm to generate each permutation, in Foata form, or 
equivalently, in cycle decomposition form. 

Proof of Theorem 1. Let s — \u{\... [uk] be a standard sequence, interpreted 
as an element of Z(A) (that is, [«,] is interpreted as the corresponding Lie 
element and s as the product of these polynomials). Let s', s" be as in (2) and 
(3). We have in Z(A), 

because 

[W,-][K,-+I] = [[«/], [ui+\]] + [ui+i][ui] 

Now, .s7 is shorter that s, and s" has one fewer inversion than s. This allows to 
conclude, by an easy induction. 

Remark 1. We have shown that in fact Theorem 1 holds for each standard 
sequence w. 
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Remark 2. The algorithm of Theorem 1 is similar to P. Hall's "collecting 
process" (see [5], or [4] Chapter 11; see also [11]; in fact, the collecting process 
works with commutators in the free group, but there exists a version in the 
free algebra). However in our algorithm, we look for the first inversion in the 
standard sequence; in the collecting process, one looks for the first inversion 
involving the smallest term of the sequence. This difference makes it impossible 
to find a common generalization of Hall basis and Lyndon basis, with a common 
generalization to both algorithms. 

3. The dual basis and the shuffle product. In this section, we shall in
vestigate the dual basis of the PBWL basis. We shall need the shuffle product. 
Before this, we recall the following fundamental result on Lyndon words. 

THEOREM . ([6], Theorem 5.1.5) Each word w in A* may be uniquely written 
as 

(4) w = / i . . . /„ 

where each U is a Lyndon word with l\ ^ . . . ^ ln. 

We extend the notation [w] to the whole free monoid. Recall that for each 
Lyndon word /, the Lie polynomial [/] was defined in Section 2. If w is any 
word, decomposed into Lyndon words as in (4), define [w] to be the polynomial 

M = [/i]...[/n]. 

With this notation, the PBWL basis is just the set 

{[u]\ueA*}. 

Note that the dual space of Z(A) is naturally isomorphic to the set Z <̂C A >> of 
all formal series. Each formal series is an infinite linear combination of words. 
The duality 

Z < A > x Z(A) -» Z 

is defined by 

(S ,P )= ]T(S,w)CP,w) 
weA* 

where (S, w) denotes the coefficient of w in S. 
The dual basis SUJ u G A*, is defined by 

ueA* 

https://doi.org/10.4153/CJM-1989-025-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-025-2


LYNDON WORDS 583 

for any word w. 
Then we know by Theorem 1, that Su is a polynomial with coefficients in N, 

and which is homogeneous of degree length(w). 
The shuffle product o is defined inductively for any words w, v and letters a, b 

by (1 is the empty word): 

l o « = M O l = M 

(au) o (bv) = a(u o (bv)) + b((au) o v) 

It is a commutative and associative product, without zero divisors (see [12]). 

THEOREM 2. (i) Let 1 be the empty word. Then 

Si = l. 

(ii) Let bv be a Lyndon word with first letter b. Then 

(iii) Let w be any word, decomposed into Lyndon words as 

Then 

where exponentiation means shuffle exponentiation. 

Remark 3. It is a surprising fact that exactly the same formula hold for the 
Hall-Shirshov basis, as shown by M. P. Schiitzenberger (see [11] IV). We have 
already indicated that the Lyndon basis is not a particular case of the Hall-
Shirshov basis. However, this analogy is mainly surprising because of (ii) (see 
remark 4). 

Remark 4. As the proof will show, formulas (iii) hold in any envelopping 
algebra. More precisely, let L be any Lie algebra over Q, A its enveloping 
algebra, (/*/)/<=/ a totally ordered basis of L. Then the decreasing products of 
hi9s form a basis of Si, by the PBW theorem. Let 2L1 denote the dual space of 
A, and 

be the usual coproduct of A defined by 

c(h) = h (g) 1 + 1 (g) h 
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for h in L. Let o be the transpose of c: then Si' with o becomes a commutative 
and associative algebra. 

Let, for M, . . . /* E / , /i > . . . > /*, j \ , . . .y* G N J b . . . Jk è 1, 

denote the element of the dual basis of the PBW basis corresponding to 
h3> -"hf. Hence we have, for any x in A 

x = Yy(fj
i
u-f(x)hJ

]
l ...B 

/ J T i\,-,ikv ; i\ ik 

For simplicity, let <pi = if}. Then theorem 2 (iii) extends to 

(with o exponentiation). 
Before proving theorem 2, we need a lemma on the rewriting system of 

Section 2. 

LEMMA 2. (i) Ler s be the standard sequence of Eq. (1) and suppose that 
u\ ^ u2l..., un and n ^ 2. 77/£« /or a^y sequence t such that s —> t, t is of 
length at least 2. 

(ii) Let s be the standard sequence of Eq. (1) with u2 = • • • = un. If u\ . . . un 

is a Lyndon word, then s A [u\ ...un] at multiplicity one. Otherwise, s -^ t 
implies that t is of length at least 2. 

Proof (i) (Induction of the length of the derivations s -A t.) By assumption, 
[^i][«2] is not an inversion. So for the rightmost inversion [w/][w/+i], one has 
/ ^ 2. This implies that sf and s" defined by (2) and (3) are of length ^ 2. 
Moreover, they satisfy to the same condition as s: their first term is greater than 
the others. This is clear for s", and for s\ note that W;M/+I < «/+i, because w;W/+i 
is a Lyndon word. So, one concludes by induction. 

(ii) (Induction on n.) If n = 1, there is nothing to prove. Suppose n ^ 2. If 
u\ ^ U2, then s is decreasing, and so there is no derivation from s; moreover, 
u\... un is not a Lyndon word (because n ^ 2, and by unicity of decomposition 
into Lyndon words). So in this case, we are done, too. 

Hence, we may suppose that u\ < U2. This will be the rightmost inversion. 
So 

s—>s' = [u2][ui][u3]... [un] and 

s-+s" = [uiu2]][u3]...[un]. 

Note that u2 is the greatest term of s', so by (i), sf -A t implies that t is of length 
at least 2. Moreover, s" is shorter than s and satisfies to the same conditions as 
s: so we conclude by induction on n. 
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Proof of Theorem 2(i), (ii). (i) is clear, because [1] = 1. 
(ii) We have just to show that for any word u and any letter a, one has 

(Sbv,au) = 6a,b(Sv,u). 

We have, by definition of the 5"s 

u = ^ ( S V , M ) [ V ] . 

vGA* 

This implies that 

au = ^2(Sv,u)a[v]. 
V 

Let v = 11 ...ln be decomposed into a decreasing product of Lyndon words. 
Then the sequence s — [à\[l\\... [ln] is standard, hence by remark 1 

a[v] = ]T t 
s—*t 

t decreasing 

holds in Z(A). By Lemma 2 (ii), the only such t which is of the form t — [/], / 
Lyndon, is [av] if av is Lyndon. Thus 

a[v] = e(av)[av] + ^ *[u\]... [uk] 

with e(av) = 1 or 0 according to av G L or av £ L. 
This shows that 

avEL k^2 

6v£L £^2 

This proves (ii). 
Before proving (iii) we need to develop a little theory. Let p > 1 an integer 

and let 

cp:Z(A)^Z(Af 

be the homomorphism for the concatenation product defined for all a G by: 

cp(a) = a®l®...®l + l®a®...®l + ...+ l®l®...®a 
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where each tensor has p factors. If w G A* we see that 

cp(w) = y ^ u\ ® . . . ® up 

where the sum runs over all p-uples of words (u\,...,up) such that w G 
u\ o ...o up, with multiplicity. For example, 

c2(abb) = abb ® 1 + 2a6 ®b + bb®a + a®bb + 2b<g>ab+l® abb. 

The following lemmas are welll-known. We give a sketch of proof for sake 
of completeness. 

LEMMA 3. Let S i , . . . , Sp G Z < A > arcd /> G Z(A); fAe/î 

(SI O . . . o Sp, P) = (Sx ® . . . 0 Sp, Cp(P)). 

Proof. We only have to prove the lemma when the S/ and P are words; but 
in that case it follows from the remark made above. 

LEMMA 4. If P is a Lie polynomial, that is, P G L(A), then 

cp(P) = P 0 l...<g>l + l<g)/> + . . . + l < g ) . . . ® l ® P . 

Proof The lemma may be proven by proving that the set of polynomials 
satisfying the lemma contains the letters, is closed under linear combinations 
and is closed under Lie product, hence it contains L (A). 

LEMMA 5. Let T\,..., T( be series /« Z < A > with constant terms equal to 
zero and let Q\,...,Qj be Lie polynomials. Suppose i > j ; then 

(Tlo...oThQl...Qj) = 0. 

Proof. Write 

(Tx o . . . o Th Qx ... Qj) = (7! ® . . . ® Th ct(Q{ . . . Qj)). 

Then the lemma follows from Lemma 4 and by noting that each tensor in 
Ci(Q\... Qj) has a factor equal to one (since / > j) and that each 7/ has zero 
constant term. 

LEMMA 6. Let T\,..., Tp be series m Z < A > with constant terms equal to 
zero and let Q\,... ,QP be Lie polynomials. Then: 

(Tlo...oTp,Ql... Qp) = ] T ( r b Qa{l))... (Tp, Qa{p)) 

where the sum runs over all permutations a of the set { 1 , . . . ,p}. 
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Proof. The result follows directly from Lemma 3 and Lemma 4. 

Proof of Theorem 2 (iii). We particularize the result of the preceding lemmas 
to the case where the series Ti = Su for a word u and the Lie polynomials are 
the brackets [/](/ G L). Note that each Sw(w ^ 1) has its constant term equal to 
zero. Take u\,..., un G L with u\ ^ . . . ^ un and w G A*; set u — u\... un. We 
have 

(Sw,[ui]...[un]) = £tt,w, 

where 8UjW is equal to 1 if u = w and to 0 if not, since [u] = [u\]...[un]. So in 
case w G L and n ^ 2 we have (Sw, M) = 0. Now, if H>I, . . . , w/ and wi,. . . , w/ 
are Lyndon words then Lemma 5 tells us that if / >j we have: 

(5Wl O. . .OSH, . , [MI] . . . [M/]) = 0. 

If on the contrary, / < j , the equality remains true; this follows from the fact 
that 

(SWl o . . . o Swn [wi]... [UJ]) = (SWl 0 . . . (8) SwnCi([u\]... [UJ])) 

and by noting that each tensor on the right contains a factors that is a product 
of the form [un ] . . . [urJ with un ^ . . . ^ urs and s ^ 2. 

So the only possibility for (5Wl o . . . oSwn [u\]... [«/]) to be non-zero is when 
/ = j ; and in that case, according to Lemma 6, it is equal to the sum 

]T)(SW,, [*Mi)]) • • • (Swn [ua(i)]) 

taken over all permutations a of the set { 1 , . . . , /} . 
Take 

W = /?. . . /? 

as in the statement of the theorem. Set m = Yl ir and consider wi, . . . , um G L 
such that wi ^ . . . ^ um. We have 

(s/;o...os;;,[m]...[MW]) 

= 2_^(^ / i ? [ *Vl )D • • • (S/i ? [Wa(/,)]) • • • 0$/*, [Wcr(m—ijt+l)] • • • (Slk, [Ua(m)]) 

where the sum runs over all permutations a of the set { 1 , . . . , m}. This sum is 
non-zero if and only if 

l\ — U\ — . . . = U[x, . . . , Ik = Um-ik + \ = . . . = Um. 
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In that case the permutations a for which the product 

(S/i , Ua(l)]) • • • (Sl{, [/<r(/,)]) ' ' ' (Ski Ua(m-ik + l)Y) • • • (Slk, Ua(m)]) 

is non-zero are the ones permuting the ir factors lr among themselves. For such 
a permutation the product evaluates to one and since there are i\\ .../*! such 
permutations, the sum adds up to i\ ! . . . /*!. We conclude that the two series Sw 

and 

— - — - s i 1 0 . . . 0 sik 

1 1 ! . . . i t ! h lk 

take the same value on the basis elements [u], so they must be equal. This 
completes the proof of Theorem 2. 

COROLLARY 1. Let T denote the complete tensor product Q <C A ^> ®Q(A), 
where Q <C A ^> /zas /to shuffle structure and Q(A) the concatenation structure. 
Then 

^ w ® w = Y[ exp(5/ 0 [/]) 
weA* leL 

where the product is taken in decreasing order. 

Proof. The right-hand side is 

leL V/̂ o ' J 

I l , . . . , 1 ^ 1 

This is equal, by Lyndon's theorem, Theorem 2 and our notation [w], to 

Hence, the corollary is equivalent to 

w = ^(S t t ,w)[w] 

which is true by definition. 

Remark 5. There is an equivalent formulation of Corollary 1 in terms of 
Hopf algebras: it says that the identity of Q(A) is the product of exponentials 
of special projections, in the algebra End(Q(A)) with the product 

(f,g)-*h 
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with h(w) — IT o (f (g) g) o C2(w) and TT(U 0 v) = uv (see [13] p. 71 for the 
definition of this product). 

4. Basis for the shuffle algebra. We prove a result of D. E. Radford, as a 
consequence of Theorem 2. 

THEOREM. ([9])(i) Lyndon words form a transcendance basis of the shuffle 
algebra Q(A). 

(ii) More precisely, for any Lyndon word w, decomposed into Lyndon words 
as 

w = l\i...l^ (h > . . . > / * ; / b . . . , / * £ 1) 

one has 

(7) , * ^ . . 4 = W + V > „ M 

where au is some natural integer and ll means shuffle exponentiation. 

Part (i) was obtained differently by Perrin, Viennot [8]. 

Proof Note that it is enough to prove (ii); by triangularity, the polynomials 

i i ! . . . l i t ! l k 

will form a basis of the Z-module Z(A). 
Note first that Pw has integer coefficients: indeed, in /J1 . . . Ç, each word has 

a coefficient divisible by i\\.../*! The point is to show that w has coefficient 
one. By [6] Lemma 5.3.2, we know that for any Lyndon word /, one has 

[/] = / + £ * ! / . 
U>1 

Because of the properties of the lexicographical order, this implies 

iw] = w+y^j*u 
u>w 

for any word w. By duality, we obtain 

(5) Sw = w + ^ *w. 
u<w 

This implies by theorem 2 (iii) that for w = l\l . . . ll£ (Lyndon factorization) 

(6) Sw = , X . ^ o . . . 05;; = Pw +Q 
ix\...ik\

 ll k 

https://doi.org/10.4153/CJM-1989-025-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-025-2


590 G. MELANÇON AND C. REUTENAUER 

where Q has nonnegative coefficients. Comparing (5) and (6), and knowing that 
w occurs in Pw with coefficient ^ 1, we obtain that this coefficient must be 1. 

Remark 6. Another transcendance basis of the shuffle algebra is the set 5/, / G 
L. Indeed, by duality, each word w may be written 

w = ]T]([M],HOSM 

U<EA* 

and one concludes using Theorem 2 (iii). 
Part (i) of the previous result is equivalent to the following assertion: the 

shuffle algebra Q(A) is isomorphic with the free commutative algebra Q[L] 
generated by the set L of Lyndon words over Q. When one is only interested 
in the subalgebra Z(A), then one obtains the following result, where we call 
algebra of integral exponential polynomials over L, the subalgebra of Q[L] 
which is linearly generated over Z by the monomials 

lil lk 

(8) ^ - ^ - (IjEL). 
i l l . . . ix\ 

COROLLARY. The shuffle algebra Z(A) is isomorphic with the algebra of inte
gral exponential polynomials over the set of Lyndon words. 

Proof. Let E be the algebra of integral exponential polynomials over Z. De
fine a Z-linear homomorphism E —* Z(A) by mapping the monomial (8) onto 
the polynomial (7) in Z(A). This mapping is well defined and onto, by triangu
larity of (7). Moreover, it preserves the product of both algebras, hence it is an 
isomorphism. 

Acknowledgements. We thank A. Joyal for many stimulating discussions. He 
indicated to us the paper of Radford [9], and suggested the corollary of Section 
4. 

Added in proof. The first author has recently shown that Theorems 1 and 2 
hold - mutatis mutandis - for the bases considered by Viennof (Lecture Notes 
Maths. 691 Springer Verlag), which generalize both Lyndon and Hall bases. 
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