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Abstract. Let p and q be relatively prime natural numbers. Define To and So to be
multiplication by p and q (mod 1) respectively, endomorphisms of [0,1).

Let (x. be a borel measure invariant for both To and So and ergodic for the
semigroup they generate. We show that if /* is not Lebesgue measure, then with
respect to fx. both To and So have entropy zero. Equivalently, both To and So are
H- almost surely invertible.

1. Introduction
In [F] Furstenberg showed that any closed set Sc[0,1), and invariant under
multiplication by a non-lacunary semigroup of integers must either be finite or all
of [0,1). He has conjectured that perhaps a stronger result held, that any invariant,
ergodic, borel probability measure for such a semigroup must be either atomic, or
Lebesgue measure.

To be non-Lacunary is to not be all powers of a single integer. Under a stronger
hypothesis, that the semigroup contains two relatively prime integers, Lyons [L]
obtains a partial result. If either one of these two elements is exact as a measure-
preserving endomorphism (a one-sided K-system) then /t is Lebesgue measure.

Motivated by this indication of the role entropy might play in this problem, we
have obtained the following strengthening of Lyons' work. If either of the relatively
prime pair has positive entropy with respect to fi, then p is Lebesgue measure. This
is equivalent to saying that if /J, is not Lebesgue measure, the semigroup generated
by these two elements is fi- almost surely a group.

The theorem requires us to only look at semigroups of multiplication generated
by two relatively prime integers p and q. If /t is ergodic for a larger semigroup, it
decomposes into ergodic components for this one. The entropies of xp and xq will
be constant /t-a.e. Hence the theorem for the sub-semigroup is sufficient.

The proof is constructed as follows. First we partition [0,1) into pq intervals and
use this to construct a symbolic version of the fraction. This turns out to be a
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2-dimensional subshift of finite type. We lift this to its inverse limit, a Z2-subshift
of finite type. Let T and S be the left and down shifts, corresponding to xp and
xq, respectively.

Any invariant and ergodic borel measure fi on [0,1) lifts to an invariant, ergodic
borel measure (L on this symbolic cover.

Using the origins of these shifts of finite type as maps of [0,1) we show that for
any such /2, and any T and S invariant factor algebra X, that

(i) hfi(T, X) = [log (/>)/log (q)-]hfi(S, X).
To complete the theorem we show how, under the assumption that /x is not

Lebesgue measure, to construct such an algebra X with
(ii) hfi(T, X) = h^T), i.e. (T, X) is a full entropy factor and

(iii) (S, X) has rational, pure point spectrum, hence

hfi(S,X) = 0.

Facts (i), (ii) and (iii) of course say ha(S) = hfi(T) = 0.
The existence of the factor (S, X) hints tantalizingly at the possibility of proving

the full conjecture. A simple corollary of the argument, though, is that X is trivial.
Some other method is needed for the 0-entropy case.

2. 77ie symbolic representation
At this point we make no restrictions on p and q other than that they are ^ 1 .
Whenever GCD(p, q) = 1 is needed, it will be explicitly stated. Let T0(x) and S0(x)
be px mod 1 and qx mod 1 on [0,1) respectively. Let

=
PI

and

We build a symbolic version of (To, So) acting on [0,1) by partitioning it into pq
disjoint invervals

j = 0,...,pq-l.

These form a Markov partition for both To and So.
In fact To 1(Ii) consists of p disjoint intervals, each contained in one of p distinct

7/s. Let LT(i) be the subscripts of these p distinct 7/s.
Similarly So'(/() consists of q distinct intervals, each contained in one of q distinct

7/s. Let Ls(i) be the subscripts of these q distinct 7,'s.
We define FT(i) = {j: ie LT(j)} and similarly Fs(i) = {j: ie Ls(j)}. As To(7,)

covers exactly p of the lh FT(i) also consists of exactly p elements, the subscripts
of these Ij. Similarly Fs(i) consists of q subscripts for each i. In these definitions
L stands for 'leader' and F for 'follower'.

To both To and So we associate (0, l)-transition matrices; MT = [atJ] where aUi = 1
iff je FT(i), Ms = [&,-_,] where bu = 1 iffy € Fs(i). Let 2 = ( 0 , 1 , . . . , pq -1), the state
space of these processes.
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As T05o = S0To=xpq(modl) which lifts to the full shift on 2, MTMS has all
nonzero elements. As the sum on each row of MTMS is exactly pq, MTMS = MSMT =

[!]•
If [i'o, I'I , . . . , »'n-i) is a finite word of elements of 1 with all a,-fo,-4+1 = 1, then

n-l _. [ / (4
Pi 7V(/,-.) is an interval ——,—-
j=o ' LP q P q.

Thus to any one-sided infinite AfT-allowed word i = [i0, U,...], there corresponds
a point

as long as x £ V, x is xf for a unique i.
Similarly for any Ms- allowed word

n'
•o j

is an interval

[——1
lpq""pqm}

and there is a natural identification of one-sided infinite Ms- allowed words and
points xe[0,1) which is 1-1 for xi. V.

For our purposes N = {0,1, 2,...} and now let Y <=, 2N2 consist of all arrays which
are Mj-allowed on rows and Ms allowed on columns. Let T be the left shift and
S the down shift on such arrays.

To any point xe[0, l)| V there corresponds a unique point yx e Y. Just set

yx(n,m)=j if T"0SZ(x)e Ij.

For xeV there are two such representations with yx(n, m) =j if ToS™(x)e Ij. For
xe k/prq\ once n > r - l , m > s - l , TQS™(X) is on the boundary of two J/s. Once
we specify which symbol to place at one such index (n, m), all the rest are forced.
If we choose the /, to the left (right) of T£S™(x), then we must always choose left
(right) to satisfy the transition rules.

We now want to see that Y consists of precisely those arrays that arise from
points xe[0,1).

L E M M A 2.1. For any symbols a,be1 and ieN, there are yeY with y(i,i) = a,

y{i+l, i+l) = b but all such agree on y(i + 1 , i) andy{i, i+1).

Proof. This is just our earlier remark that MTMS = [1]. •

LEMMA 2.2. There is a natural almost 1-1 conjugation
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between (S, T, Y) and (So, To, [0,1))

Proof. From Lemma 2.1, the values (y(0,0),y(l, 1),...) determine y completely.
They also determine a unique

x = p | To "So'(/,<„)) e [0,1), for xi. v.

Hence y(i,j)e1 is such that T'oS
i
o(x)e IyUJ) as this symbolic array is in Y and

agrees with y on the diagonal.
We have seen <p is 1-1 off of V and precisely 2-1 on V. •

Putting the product topology on Y, <p is continuous. Let V* c Y be those countably
many points with (p(y)eV. V* is both forward and backward invariant for both T
and S.

C O R O L L A R Y 2.3. Any MT-allowed horizontal ray of symbols i< „,„,>,

»«+i,m), • • • , determines all symbols y(j, k), j>n,k>m of any yeY with y(j, k) = iU k )

on the ray, as long as y £ V*.

Similarly any Ms-allowed vertical ray determines the symbols to its right in yeY,

as long as y& V*.

Proof Determining y(j, k) = i(lk) determines

x = <p(T"Sm(y))=r)T-[Ii(n+iJ.
1 = 0

We assume x£ V and hence y(j, k) = <p~\x)(j-n, k-m). •

Let Yz1z be those doubly infinite arrays where all rows are MT-allowed and
columns are Ms- allowed.

For yeY, let ${y) e Y be its restriction to the first quadrant, and <p(y) its image
in [0,1).

Letting T and S also represent the left and down shifts respectively on Y,

LEMMA 2.4. The symbols y(i, i), ie z completely determine y.

Proof. See Lemma 2.1. •

At this point, and for much of our entropy work, GCD(p, q) = \ is not needed.
We now state a lemma which requires it, and explains its role in our work.

LEMMA 2.5. Assume GCD(p, q) = 1.
(i) For any yeY, y/V*, and ke LT(y(0,mo)) there is a unique y*eY with

(ii) For any ye Y,yiV* andke Ls(y(no,0)) there is a unique y* e Y, y*(no,0) = k
and S(y*) = y.

(iii) Foranyye Yandkei there is a unique y* e Ywithy*(0,0) = k and ST(y*) = y.
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Proof. (Hi) is just Lemma 2.1. To see (i), notice any x = <p(y) 6 [0,1) has exactly p
inverse images for To,

x i
*,=- + - , 0<i<p.

P P
Acting on these by Sm° we obtain points

p p

As GCD(p, q) = 1, qm<>, 2qm°, ...,{p- \)qm" (mod p) are distinct, and hence each
of these p points lies in a distinct Ij. The subscripts of these intervals are all in
LT(y(0, mo)). Hence exactly one of them must be k.

Thus for some unique x,-, Sm°(x,) e h- Set y* = <p~l(Xj).
Statement (ii) is symmetric. •

3. Invariant measures and entropy:
Let M be the space of all To and So invariant borel probability measures on [0,1).
This is a weakly compact convex space. The extreme points, Mo, are the ergodic
measures.

LEMMA 3.1. If n&M and xe V, x # 0 then /JL(X) = 0.

Proof. If xe V, x^O and fi(x)>0, as there is an S£TS(x) = 0, /x(0)>0. But as 0
is a fixed point fi(0) = fi(SomTo"(0))^ fi(x) + fi(O). This is a conflict. •

COROLLARY 3.2. Any measuren&M with fi(0) = 0 lifts to a unique TandS invariant
borel probability measure on Y.

Proof. As n (V) = 0, fi lifts to Y. Y is the inverse limit of Y under the action of
(TS) hence /x lifts to a unique measure on Y.

Let M be the T and S invariant borel probability measures on Y, Mo, the ergodic
ones, excluding the point mass at 0.

For a measure jl e Mo, our work will focus on the /^-conditional expectations of
finite words along the negative horizontal and vertical axes, given the symbols in
the first quadrant.

Let P be the partition of Y according to symbol ^(0,0).

LEMMA 3.3. For any (isM,

(a) VJU T-j(P) = V;=o S-j(P) M-a.s. and
(b) if GCD(p, q) = 1, then for any m0 > 0, n0 > 0

S-m°T(P) V T~J(P)= V T
j=0 j = -\

T-"°S{P) V S~J(P)= V S

V T-^(P) V S-j(P)= V T - ^
7 = 1 j=l j=0

Proof. These are just reinterpretations of Lemmas 2.1, 2.2 and 2.5 as fi( V*) = 0.
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LEMMA 3.4. IfGCD(p, q) = 1, then for any (L e Mo, « o
s 1» "io> 1, for /I-a.e., y,

Efi[ P(—l, ™o)l V S~J(P)) = a(y), independent of m0, and
\ j=o I

Efi(y(no, -1) | V TJ(P)) = fc(j), independent of n0-
\ j=o I

Note: Ep, is the conditional expectation with respect to (L.

Proof. Just notice that y(-\,m0) and V*L0S~J(P) together determine all other
y(-\,m), m>0, and y(n0, -1) together with \/'JL0T~J(P) determine all other
y(n, -1), «>0. •

For /I e J<o, let hfi(T) and fyj(S) be the measure-theoretic entropies of these two
maps, respectively. It is important to bear in mind that S and T separately need
not be ergodic. An assumption of ergodicity of either T or S greatly simplifies our
work. See [K] or [I-T] for discussions of non-ergodic entropy theory.

LEMMA 3.5. For any fieJl0, hfi(T) = hll(T, P) and

Proof. P generates under (S, T) so,
S, P).

V

T-J(P)

hfi(T)=]hn \ hj V S~k(P)
n-*co J \k = — n

= lim f t
n-*co J \

= lim hA
n-»oo J \

The argument for S is symmetric.

COROLLARY 3.6. If GCD(p, q) = \, then for any fieJi0,

V 7-~'(P)))

))

•

(-1,-D V V T-'S
i=0j=0

(see Lemma 3.4).

Proof. Computing,

V V T~'S-

=1
=1

V T-J(P) V V T-',!

CO OO

V V T~'S-J

i = l i = l
V V T-js~j(P)
;=1 i=0
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But also as

GCD{p,q) = \,Py V T-'
7 = 1 i = l

= (r1(P)vS"'(P))v v V T-'

Thus

,; P V V

v V

< [ h
J

v V js~
\

\p) v V
j=\ i = l

= h(T) + h(S).

Equality holds iff T~'(P) and S~\P) are VH, Vjl, T~'(P)S'j(P) conditionally
independent. Hence they are, and the result follows. •

Let fi € Mo and A be a /it-complete, T and S invariant, cr-algebra. We want to
relate h^(T, A) and hfi(S, A).

THEOREM 3.7. For fi. € J<0, and any T and S invariant algebra A,

Note: All we assume is p and q^l.

Proof. As hfi(T, P)=h-(T, A) + h-(T, P\A) and hfi(S, P) = h^S, A) + h^(S, P\A) it
is sufficient to show

Select «,, m, tending to oo with

log (a)

Thus

«i - mt

4="<l-l and

.log (1-1)
log(p) '

For /e VT=o r ~ ' ( p ) . <P"1(/)c[0,1) is an interval of length q~lp~"~\ and for any
atom ge Vr=o5~'(P), *>"'(g)c[0,1) is an interval of length p~lq~m~\

Thus any atom of V"i0 T~\P) is contained in the union of at most three atoms
;

( "l mi \

V T~\P) V S~\P) v A Ulog(3)
7=0 7=0 /
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M V s~'(p) V T~J(P)vA <log(3)h

\j=o

-hJ\}s-J

\j = 0

V

V T~J(P) v A) <2 log (3)
/ IJ=0 )l

Thus

converges to 0 in i. But the limit is also

D
log (q) "

Notice that under GCD(p, q) = 1 we will reduce the possibilities for h(T, P) and
h(T, Q)>0 down to Lebesgue measure. Even in this case, when A is a nontrivial
algebra, Theorem 9 has content.

4. Completion of the Result:
Fix an element fieJi0. We construct a factor algebra $f by denning a sequence of
probability density valued functions. $f will be minimal tr-algebra for which they
are measurable.

For a point f e f , <p{y) = x e [0,1). There are p" points

) with»i,xi+- , ^ ( ) s ( ^
P P \ P

One of these points is <p{T~"(y)). This is the one we call x, = x,(y).
For /x-a.e. yeY, for all « and t, we can compute

This is just the jl-conditional expectation that the MT-allowed name (i0, if,...,) of
<p(y) will extend to

(i_n, »_„+,,..., io. i i , . . . ) . the My--allowed name of x,(j;)+—(mod 1).

Thus for each such y and M we obtain a distribution on the points

(o,^r,.. -,?-pr) given by 8(y, n)(^J = 8(y, t, n).

This is the probability that <p(y) extends under T~" to a point rotated by t/p"
from <p(T-(y)).
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The following are easily checked.

LEMMA 4.1

(i) 8{y,n-l)(^r)= I 8(y,n)l±) andso8(y,n)
\P / smodp" ' = < \P I

determines 8(y,k) for all k < n.
(ii) Ifyx and y2 agree on the positive horizontal axis (coordinates (n, 0), n >0), then

S(yi, n) and 8(y2, n) differ by a translation (mod 1) by

(iii) IfGCD(pq) = l, then by Corollary 3.6,

(? ) D
Definition. We say a point y is symmetric if there are points j>, 5* j>2 with
(i) <p(yi) = <p(Pi) = <P(9), and
(ii) for alln>0, m > 0,

LEMMA 4.2. //" GCD(p, q) = \ then the set of symmetric points is both T and S
invariant, hence of jl-measure 0 or 1.

Proof. For T invariance, the necessary points for T(y) are T(yx) and T(y2).
For S invariance, as

, n)(-p) = S(Tm(y,), n)[^mod

S(yx) and S(y2) are the needed points. •

We now want to show that if /t-a.e. point is symmetric, then fj. is Lebesgue measure.

LEMMA 4.3. If

" a
a = I —, a, e Z with all - p < a, < p,

i = iP

and an # 0 f/jen if a = u/v in least terms, v s 2".

Proof. For n = 1 this is clear. If a = u/v in least terms, all prime divisors of v divide
p. Thus

"~lai+1 u'
ap= X —- = ~; a n d «

i = l P V

has at least one fewer term in its prime decomposition than v. Hence D > 2 I / S 2 "

by induction. •

LEMMA 4.4. If y is a symmetric point, then 8(y, n) converges weakly to Lebesgue
measure on [0,1).
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Proof. Let j>t # y2 be the two points of the definition and — i0 the first index with

We know that 8(y, n) is invariant under a shift, mod 1, by

an = <p{T-n{y2))-<p{T-%yi))

_ " p2(-i,Q)-yi(-i,o)
i=\ p

If n>i0, as j'2(-io,0)^i'i(-io,C), by Lemma 4.3, an is a fraction, in least terms,
with denominator >2"~i°+1. Thus the group of shifts (mod 1) preserving 8(y, n) is
of order at least 2"~'0+1, and its minimal element dn < l/2"~'0+1. For any continuous
/ on [0,1), /(0) =/(!) , this forces

lim [ fd(8(y,n)) =

and hence the result. D

THEOREM 4.5. If fi-a.e. ye Y is symmetric, then fi = m is Lebesgue measure.

Proof. Let Ra represent addition of a (mod 1) on [0,1) and let fj. = <p{jl).
T0-invariance of /A implies

For /I-a.e. j , as y is symmetric,

converges weakly in n to m. Hence /x = m. D

Thus what remains to be seen is that if /2-a.e. y is not symmetric, then T and S
are of zero entropy.

Let dK be the minimal T and S invariant cr-algebra for which all the functions
8(y,n) are measurable.

Now 8(y, n) determines 8(y, k),k<n and 8(T'k{y), n -k) for k< n by Lemma
4.1.

If GCD(p, q) = \, 8{y,n) determines 8(S'(y),n) for all leZ.
Hence letting 3€n be the minimal cr-algebras for which 8(2n + l,T'"(y)) is

measurable, the $fn's are S-invariant and refine in n to 3€.

LEMMA 4.6. IfGCD(p, q) = \, then the action ofS on 3€n is periodic, i.e. there is ajn

and for all Ae%n, SJ-(A) = A

Proof. Let jn be such that

qi"t = t mod (pln+i)

for all 0< t<p2n+1. By Lemma 4.1, (iv), for /I-a.e. y,

and SJ" is the identity on
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COROLLARY 4.7. The dynamical system (S, 3if, p.) has rational pure point spectrum on
all its ergodic components and hence h^(S, %€) = 0.

On each algebra %?„, (S,3€n) is periodic, hence on each ergodic component is a
finite rotation. Thus on the ergodic components of (5, 3€), we have a rational pure
point spectrum. In fact, as (T, 5) acts ergodically on 3€, all components have the
same point spectrum, and so all components are isomorphic. •

LEMMA 4.8. If /2-a.e. ye. Y is not symmetric then

T(P)c2ifv V T-'(P).
i = 0

The map <p{y) is V^=o T~'(P) measurable. Suppose y is such that knowing (p{y)
and 8{T"(y),2n + \) for all n is not enough to determine the element of T(P)
containing y, i.e. is not enough to determine <p(T~l(y)). This means, for all n > 0
there are points y^ and y2 with

(1) <p(Pi) = <p{y2) = <p{y) and
(2) 5{T"{yx),2n + \) = 8{T"{y2),2n + \) but
(3) <f{T-\y,))^<p{T-\y2)).

Among the points satisfying (1), call pi and y2 n-equivalent if they satisfy (2).
These equivalence classes are closed and nested in n. There are only p choices for
(piT'1 (_?,)) so we can intersect over a sequence of equivalence classes to obtain a
pair of points yv, y2 satisfying (1), (2) and (3) for all n. This forces y to be symmetric.
Hence the result. •

THEOREM 4.9. IfGCD(p, q) = 1 and fie Jtobut fi^m, then h^(T, P) = h^S, P) = 0.

Proof. As GCD(p, q) = \, the symmetric points for (L have measure 0. Thus

M r, P) = M

A P V T-\P)y^€ )d(L

= hfi(T, %) by Lemma 4.8.

But now

=rMr\K(T,p) = h(s,p). n
log(p)

COROLLARY 4.10. If \i eJi0, n^m, then both To and So are /i-a.s. invertible.

Proof. As h^T, P) = 0, for xe [0,1) <p~1{x) is /i-a.e. a single point.

To1W = <pr-V"'(x). •
This completes our work. We are left with two questions. How far can this work

be extended from GCD(p, q) = \ toward the general non-lacunary subgroup? Are
there 0-entropy non-atomic invariant measures? On the first question we can make
a trivial extension.
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406 D. J. Rudolph

COROLLARY 4.11. / / GCD(u, v) = 1, u, v*\ and p = u">, vm\ q = un*v"h where
« 1 m 2 - m 1 n 2 ^ 0 , then Theorem 4.9 holds for p and q.

Proof. In the Z2-action generated by u and v, p and q generate a cofinite subgroup.
If jjL is invariant for xp and xq, averaging over a fundamental domain yields a
measure v invariant for xu and xv. The linear relations (Lemma 3.9) among
entropies holds for all four maps (Theorem 3.9). Thus if h^ > 0, v = m. But as m is
ergodic for xp and xq, fi, = m. •
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