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Folate, a water-soluble B vitamin, is a cofactor in one-carbon metabolism and is essential for DNA synthesis, amino acid interconversion, meth-

ylation and, consequently, normal cell growth. In animals with existing pre-neoplastic and neoplastic lesions, folic acid supplementation increases

the tumour burden. To identify processes that are affected by increased folic acid levels, we compared HT29 human colon cancer cells exposed to a

chronic supplemental (100 ng/ml) level of folic acid to cells exposed to a normal (10 ng/ml) level of folic acid, in the presence of vitamin B12 and

other micronutrients involved in the folate–methionine cycle. In addition to higher intracellular folate levels, HT29 cells at 100 ng folic acid/ml

displayed faster growth and higher metabolic activity. cDNA microarray analysis indicated an effect on cell turnover and Fe metabolism. We fully

confirmed these effects at the physiological level. At 100 ng/ml, cell assays showed higher proliferation and apoptosis, while gene expression anal-

ysis and a lower E-cadherin protein expression indicated decreased differentiation. These results are in agreement with the promoting effect of folic

acid supplementation on established colorectal neoplasms. The lower expression of genes related to Fe metabolism at 100 ng folic acid/ml was

confirmed by lower intracellular Fe levels in the cells exposed to folic acid at 100 ng/ml. This suggests an effect of folate on Fe metabolism.

Cell turnover: Gene expression: Iron metabolism: Folate

Folates are important cofactors in a large number of metabolic
processes, such as amino acid interconversion, nucleotide
synthesis and methylation. For this, different C1-forms of tet-
rahydrofolate are present in the cell. For example, 10-formyl-
tetrahydrofolate is the C1-donor in de novo biosynthesis of
purines. In the conversion reaction of uracil into thymidine
by thymidilate synthase, 5,10-methylenetetrahydrofolate is
the C1-group donor1,2. 5,10-Methylenetetrahydrofolate is
also part of the methylation cycle, which supplies cells with
S-adenosyl methionine (SAM). SAM is the universal methyl
donor for a wide range of substrates, such as lipids, hormones,
chromosomal DNA and proteins3. A shortage of folates leads
to impaired activity of these metabolic processes, resulting in
several diseases, possibly including colon cancer4 – 7. Although
the essential role of folate in basic cellular processes was lar-
gely established over 30 years ago and has been extended by
more recent folate-depletion studies4,7,8, little information is
available on cellular adaptation to different extracellular
steady state levels of folic acid. This information is essential
to allow evaluation of effects of chronic sub-optimal and elev-
ated folic acid levels. Elevated folic acid levels need attention,
since in tumour-prone animals both folate deficiency and folic
acid supplementation promote the progression of established
neoplasms9 – 13.

We chose to use the HT29 colon cancer cell line; because
this is a tumour-derived and commonly used human colon epi-
thelial cell line. To achieve a steady-state condition, a 3-week
exposure time was used. The cells were exposed to pteroyl-
monoglutamic acid, the folate used in fortified foods
and supplements. Normally, serum folate levels are in the
range of 3–10 ng/ml, while with supplementation values of
100 ng/ml can be obtained8,14. Therefore, we exposed the
cells to pteroylmonoglutamic acid at concentrations of 10
and 100 ng/ml. To ensure that vitamin B12 deficiency would
not disturb the results, a normal human serum level of vitamin
B12 at 500 pg/ml was used in each exposure. Our exposure
conditions are physiologically relevant and contrast with
most in vitro studies, which used full folate depletion and/or
supraphysiological folate concentrations (4000 ng/ml)15 – 18,
and did not include vitamin B12.

Experimental methods

Cell culture

The human colon cancer cell line HT29 (ATCC, Manassas,
VA, USA) was grown, in duplicate, on Dulbecco’s modified
Eagle’s medium (DMEM) without folic acid (Invitrogen,
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Breda, The Netherlands), supplemented with pteroylmonoglu-
tamic acid at 10 or 100 ng/ml for three passages. Vitamin B12

was added to DMEM, since this is the only micronutrient that
is involved in the folate–methionine cycle which is not pre-
sent in DMEM. Cells were seeded in 75 cm2 culture flasks
at respectively 80 000 and 25 000 cells/cm2, to avoid growth-
phase differences. Cells in both conditions were harvested
near the exponential phase19 – 21, and grown at 378C in air
with 5 % CO2 and 100 % relative humidity. The growth
medium was supplemented with NaHCO3 (3·7 g/l; Sigma, St
Louis, MO, USA), non-essential amino acids (1 £ ; ICN, Zoe-
termeer, The Netherlands), fetal calf serum (5 %; Invitrogen;
this provides a final medium concentration of 0·66 ng
50-methyltetrahydrofolate/ml (1·2 nmol/l)), penicillin (5000
units; Sigma) streptomycin (5 mg/l; Sigma) and methylcobala-
min (vitamin B12; 500 pg/ml; Sigma). Folate concentrations in
the media were verified by HPLC analysis, as described
below. Culture media were replaced every 2 d. Cells were
split at 70–80 % confluence and harvested at 90 % confluence.
Differences in cell growth were measured by re-plating 2·5 £

106 cells (10 or 100 ng PGA/ml) in 75 cm2 cell-culture flasks
after being in culture for 3 weeks and determination of the
amount of cells per flask after 3 d of culture (in triplicate),
using the Coulter Counter (Beckman, Mijdrecht, The Nether-
lands). Total RNA was extracted using TRIZOL according to
the supplier (Invitrogen). mRNA was isolated from total RNA
by poly(A)þ selection using oligod(T) Sephadex (mRNA
purification kit; Pharmacia, Roosendaal, The Netherlands).
Concentrations were determined spectrophotometrically at
A260nm and all samples were checked on 1 % tri(hydroxy-
methyl)-aminomethane-acetate-EDTA–agarose gels. Samples
were stored at 2808C for cDNA microarray analysis. From
nine flasks of each exposure, the cells were trypsinised and
the cell pellets were stored at 2808C for folate, Fe, SAM
and S-adenosyl homocysteine (SAH) determination. Before
storage a sample was taken from each cell pellet, and used
to determine the protein content (in duplicate) using the Bio-
Rad Detergent Compatible protein assay (Bio-Rad, Veenen-
daal, The Netherlands).

Analysis of folate metabolism

5-Methyl tetrahydrofolate concentrations were measured in
triplicate using the HPLC method of Konings et al.22.
Twenty volumes (200ml) of extraction buffer (50 mM-2-(N-
cyclohexylamino)ethanesulfonic acid–N-(2-hydroxyethyl)-
piperazine-N0-2-ethanesulfonic acid (CHES–HEPES; pH
7·85) with mercaptoethanol and ascorbic acid) were added to
the cells. The mixture was heated for 5 min in a boiling
water-bath and cooled. To each extract 50ml of rat plasma
conjugase was added and incubated for 4 h at 378C. This mix-
ture was treated further according to Konings et al.22. The size
of the affinity column was adapted to the sample volume.
SAM and SAH were determined in triplicate using the
HPLC method of Melnyk et al.23. Instead of coulometric
detection, UV detection at 260 nm was used. The method
was adapted for cultured cells by addition of a thaw–freeze
cycle for three times, at the beginning of the procedure. Cell
lysis by thaw–freezing cycle was checked on a sample
by microscopical observation of tryphan blue incorporation.

The CV for multiple injections (n 10) of the same sample
within a run was 4·7 % for SAH and 3·4 % for SAM.

Analysis of parameters for cell turnover

Reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-
zolium bromide (MTT) by mitochondrial succinate dehydro-
genase was used as a marker for metabolic activity
(viability) of the cells (two independent replicate determi-
nations of n 36) as described by Huveneers Oorsprong
et al.24. Intracellular ATP production was determined (two
independent replicate determinations of n 30), as a marker
of cellular energy status, by the CellTiter-Glo Luminescent
Cell Viability Assay (Promega, Leiden, The Netherlands).
5-Bromo-20-deoxy-uridine (BrdU) incorporation into the
DNA of growing cells was measured (two independent repli-
cate determinations of n 36) as a marker of proliferation
(BrdU Labelling and Detection Kit II; Boehringer Mannheim,
Roche Diagnostics, Almere, The Netherlands). Caspase 3 and
7 activities were measured (two independent replicate deter-
minations of n 36) as a marker of apoptosis (Apo-One Homo-
geneous Assay; Promega). After each assay, a sample was
taken from every sample and used to determine the protein
content by the Bio-Rad Detergent Compatible protein assay
(Bio-Rad). Total protein was used to correct for differences
in cell numbers between samples. E-cadherin was measured
as a marker of differentiation (two independent replicate
determinations of n 2). Whole-cell lysates were prepared
by 5 min boiling of cell pellets with 1 ml 200 mM-sucrose,
20 mM-tri (hydroxymethyl)-aminomethane (pH 7·4), 1 mM-
DTT and protease inhibitors (Roche Diagnostics). Protein
concentration was determined using the Bio-Rad Detergent
Compatible protein assay (Bio-Rad). Determination of actin
and E-cadherin protein expression was achieved by SDS-
PAGE (Criterion Precast system; Bio-Rad) and Western
blotting. Proteins were transferred to Protran nitrocellulose
membrane (Schleicher and Schuell, ‘s Hertogenbosch, The
Netherlands) before immunodetection with antibodies directed
against actin (Santa Cruz, 1:200, SC-10 731) and E-cadherin
(1:200, M3612; DakoCytomation, Copenhagen, Denmark).
Horseradish peroxidase-conjugated anti-goat (V8051) and
anti-mouse (W4021) (Promega; 1:7500 and 1:2500) were
used for the colour detection with tetramethylbenzidine-
stabilised substrate for horseradish peroxidase (Promega).
Densitometric determination of actin and E-cadherin bands
was performed with Imagemaster 1D (Pharmacia).

Analysis of gene expression

cDNA microarray analysis (array construction, mRNA labelling
and hybridisation) was performed as described25. Indirect label-
ling of mRNA was used, by incorporation of aminoallyl dUTP in
the cDNA and subsequent chemical coupling to Cy5 monofunc-
tional dye. A standard reference sample, consisting of a pool
of mRNA from all exposures, was used and coupled to Cy3
monofunctional dye. Before hybridisation, the Cy3- and Cy5-
labelled samples were mixed 1:1 (v/v) and hybridised to a
cDNA microarray. This cDNA microarray contains 1056, dupli-
cate, Caco-2-derived cDNA (A.A.C.M. Peijnenburg, unpub-
lished results) and 192 control sequences and known genes
selected for functional relevance in folate metabolism, folate
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transport, DNA repair and carcinogenesis. All cDNA were
sequenced and annotated by means of BLAST searches in
NCBI. Redundant clones were removed from the dataset, leav-
ing 1026 unique annotations. Density values multiplied by the
area of each spot, and the background (surrounding entire tem-
plate) were collected using Arrayvision (Imaging Research,
London, ON, Canada). Before data correction, background sub-
traction was performed. If the variation was less than 30 %, the
median value was taken from the duplicate clones of the dupli-
cate microarrays, otherwise this clone was discarded from
further analysis. These values were used for principle com-
ponent analysis (GeneMath, Applied Maths, St Marthens-
Lathem, Belgium), to find variances between treatments.

Analysis of intracellular iron

Intracellular Fe concentration was analysed, in triplicate, using
atomic absorption spectrometry (PerkinElmer SIMAA 6100,
with graphite furnace and Zeeman background correction; Per-
kinElmer, Waltham, MA, USA). Sample preparation was done
for the cell lines as follows. Millipore filtered water (0·5 ml)
was added to the cell pellet and mixed and the cell suspension
was sonicated for 15 min. A 10ml sample was stored at
2208C for protein concentration (in duplicate) using the
Bio-Rad Detergent Compatible protein assay (Bio-Rad,
Veenendaal, The Netherlands). Cells suspensions were
digested after addition of 1·0 ml 70 % HNO3 (Baker, Philips-
burg, NJ, USA) by 6 h incubation at 658C, followed by an
overnight incubation at room temperature and subsequent 6 h
incubation at 658C. Millipore filtered water (1·0 ml) was
added and additionally incubated at 658C overnight. Mixtures
were sonicated for 5 min and an eleven-time dilution was pre-
pared. Finally, the atomic absorption was measured at
248·3 nm. The CV for multiple injections (n 10) of the same
sample within a run was 4·1 %.

Statistical analysis

Statistical comparisons were made using an unpaired, two-
tailed Student’s t test with a confidence level of 95 %
using SPSS 10.0 software for windows (SPSS Inc., Chicago,
IL, USA).

Results

When adapting the HT29 cells from normal culture media
(4000 ng folic acid/ml) to the different folic acid concen-
trations, a striking difference in growth was observed during
the second passage of culture. The cells grown on 100 ng
folic acid/ml exhibited a 2·4-fold (P¼0·005) higher growth
rate measured as cell-number increase than cells cultured on
10 ng folic acid/ml (Table 1). This was confirmed by analysis
of MTT conversion, a parameter of metabolic activity that is
often taken as a parameter of proliferation. A 2·1-fold
(P¼0·008) higher MTT conversion was obtained at 100 ng
folic acid/ml. Increased metabolic activity of cells grown at
100 ng/ml was confirmed by 6·3-fold (P¼0·0002) higher intra-
cellular ATP levels. Cell growth was stopped when the cells
were split after one passage of full depletion of folic acid
(data not shown).

Analysis of folate metabolism

We determined the three most common cellular folate metab-
olites; 5-methyltetrahydrofolate, SAM and SAH26,27. All three
metabolites were present in higher concentrations in cells
exposed to folic acid at 100 ng/ml than at 10 ng/ml (Table 1).
Intracellular 5-methyltetrahydrofolate levels, a measure for
intracellular folate status, increased 3·2-fold (P¼0·03), SAM
levels increased 6·8-fold (P¼0·04) and SAH levels increased
2·2-fold (P¼0·12).

Analysis of gene expression

To gain more insight in the long-term effect of folic acid
exposure we used a relatively small cDNA microarray repre-
senting 2200 genes, to investigate genes involved in folate
metabolism, colorectal cancer and the cell cycle. Expression
of ten genes was higher in HT29 at the 100 ng folic acid/ml
condition (Table 2), the expression of six genes was found
to be higher at folic acid exposure of 10 ng/ml. Strikingly,
none of these genes is related to folate metabolism. The
expression of three tumour-related genes was higher at folic
acid exposure of 100 ng/ml. Nine genes involved to cell-
cycle processes were affected. More specifically, the
expression of four genes engaged in increasing proliferation
was up regulated in the 100 ng folic acid/ml condition, while
the expression of two genes that up regulate apoptosis was
also higher. In total, four genes that are involved in down
regulation of differentiation were found for the 100 ng/ml
compared with the 10 ng folic acid/ml condition. Surprisingly,
the expression of two genes linked to Fe metabolism was
found to be decreased at folic acid exposure of 100 ng/ml.
Below, we further assessed the effects on cell turnover and
Fe metabolism.

Analysis of parameters for cell turnover

To verify the observed differences in cell turnover we used
different physiological assays and Western blot analysis
rather than quantitative real-time RT-PCR (Q-PCR), since
the responses measured using Q-PCR are not necessarily of
physiological relevance28. Cell turnover is a resultant of pro-
liferation, apoptosis and differentiation; often in folate
research only one cell turnover parameter is examined2,4,29,30.
The cells grown on 100 ng folic acid/ml had 2-fold (P¼0·01)
higher proliferation and also a 3·2-fold (P¼0·007) higher rate
of apoptosis. Differentiation was analysed by determination of
E-cadherin protein expression using immunoblotting. In the
100 ng folic acid/ml exposure a 4·6-fold (P¼0·04) lower
E-cadherin protein level was found as compared with the
10 ng folic acid/ml exposure (Table 1).

Analysis of intracellular iron

To confirm the effect of folic acid on Fe metabolism we deter-
mined intracellular Fe concentrations. A 1·5-fold (P¼0·02)
lower intracellular Fe level was found in the 100 ng folic
acid/ml as compared with 10 ng folic acid/ml exposure.
A lowering of ferritin protein was also detected (data not
shown).
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Discussion

A chronic exposure of folic acid at 100 ng/ml compared with a
10 ng/ml exposure resulted in higher concentrations of intra-
cellular 50-methyltetrahydrofolate, of SAM and of SAH, in
higher cell growth and in lower differentiation and in lower
intracellular Fe levels in the HT29 colon cancer cell line.

Only a small number of genes were affected. This is in
agreement with other microarray-based papers that have inves-
tigated the effect of folic acid on gene expression. The papers
that studied cell lines all compared folate depletion and supra-
physiological folate exposure. Although extreme differences
in folate concentration were used, also under these conditions
only a relative small number of genes (3·40 %) responded,
except for the study of Novakovic et al.18 in which 5–24 %
response was found. Remarkably among the differentially
expressed genes we did not find any gene involved in folic
acid metabolism. In agreement with this, Crott et al.31, using
colonic rat mucosa, and Jhaveri et al.17, using nasopharyngeal
epidermoid carcinoma cells, also found that folate depletion
did not affect the expression of any folate-related genes.
This seems in contrast with Courtemanche et al.16, who
used non-epithelial cells. In primary human T lymphocytes
these authors found that folate deficiency resulted in down
regulation of genes involved in folate metabolism, in particu-
lar the folate transporter. The use of a different cell type may
explain the differences between the studies. This is supported
by a recent study which specifically examined the expression
of genes involved in folate metabolism in the colon cancer cell
lines Caco-2 and HCT116 and showed an effect of folate
deficiency on folate metabolism gene expression, with clear
differences between the two cell lines15. Besides the use of
different cell types, a possible explanation for this difference
could be the length of exposure and the different cut-offs
used in gene selection. Courtemanche et al.16 also reported
higher expression of DNA repair, as was true for Novakovic
et al.18, and mitochondrial genes. The effect on mitochondrial
genes points to an alteration of cellular energy metabolism.
This agrees with physiological observations in the present
study, which showed an effect of folate on ATP content and

MTT conversion. Mitochondrial folate metabolism is of phys-
iological relevance, since one-carbon units are required for the
synthesis of formate, glycine and f-met-tRNA in mitochon-
dria. Furthermore, mitochondria play an important role in car-
cinogenesis32,33. Due to the limited size of our cDNA
microarray we cannot gain insight into the processes lying
underneath. The precise role of folate on mitochondrial physi-
ology and cellular energy metabolism is not well investigated,
which is an area that deserves further attention.

Cell proliferation and apoptosis are essential features in gut
renewal, but excess cell proliferation is associated with car-
cinogenesis and generally considered as one of the early
events in colon cancer9,34. Recently, animal studies have
indicated that timing and dose of folate intervention may
be of critical importance in protection from colon carcino-
genesis9 – 11,13. It was observed that folate supplementation
seems to enhance established neoplasms and deficiency has
an inhibitory effect9 – 11. This is in contrast to normal epi-
thelium, in which folate deficiency appears to increase neo-
plasm risk, whereas moderate folate supplementation
suppresses the development of tumours4,35 – 39. The observed
higher growth rate was accompanied by a higher rate of
both proliferation and apoptosis. This implies that the rate
of cell turnover, and therefore cell growth, is determined
by the balance between proliferation and apoptosis, and
that analysis of only one of these parameters is not a good
measure for the ultimate physiological effect. A key feature
in early and later stages in colon cancer is the inactivation
of the differentiation marker E-cadherin protein39 – 41. Disap-
pearance of E-cadherin protein expression is indicative of
increased colon cancer risk. Here, we showed that exposure
to a higher level of folic acid resulted in a lower level of
E-cadherin protein expression. Increased differentiation was
also found in methotrexate-treated HT29 cells30 and
increased cadherin-associated protein-b-catenin 1 gene
expression in folate-depleted HT29 cells18. Together with
our findings of enhanced cell growth and reduced differen-
tiation, results are supportive of the suggestion that the
dose of folic acid may be critical in protection of carcinogen-
esis or otherwise enhancement of cancers9,10,42.

Table 1. Parameters of growth, folate metabolism and cell turnover*

(Mean values and standard deviations)

10 ng folic acid/ml 100 ng folic acid/ml 100:10†

Mean SD Mean SD Ratio‡ P

Growth (106 number of cells) 5·68 1·86 13·86 0·41 2·44 0·0049
MTT conversion (Abs/mg protein) 0·0800 0·0071 0·1665 0·0136 2·08 0·0080
ATP (nmol/mg protein) 14·81 0·89 93·03 3·15 6·28 0·0002
50-Methyltetrahydrofolate (pg/mg protein) 0·02 0·00 0·08 0·01 3·23 0·0312
S-adenosyl methionine (mmol/mg protein) 11·14 0·96 76·06 9·08 6·83 0·0374
S-adenosyl homocysteine (mmol/mg protein) 6·83 0·52 14·72 2·11 2·15 0·1238
Proliferation (Abs/mg protein) 0·06 0·00 0·11 0·01 2·05 0·0100
Apoptosis (FU/mg protein) 497·36 57·59 1613·77 174·68 3·24 0·0070
E-cadherin (CDH1:actin ratio) 0·75 0·17 0·16 0·01 24·63 0·0410
Fe (ng/mg protein) 35·85 2·42 24·06 2·11 21·49 0·0181

MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; Abs, absorbtion; FU, fluorescence units.
* All parameters were normalised for protein content, except growth and E-cadherin. Data were analysed by an unpaired, two-tailed Student’s t test with a confidence level of

95 %.
† 100:10, -Fold change of 100 ng folic acid/ml:10 ng folic acid/ml.
‡ A negative ratio implies a higher expression at 10 ng folic acid/ml.
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We found that intracellular Fe levels are lower at exposure
to folic acid at 100 ng/ml, which shows an effect of folate on
Fe metabolism. We also found a lowering of total Fe by the
100 ng folic acid/ml exposure in the human colon cancer
cell line Caco-2 and in the SV-40 immortalised human
colon cell line CCD841CoTr (data not shown). This is most
probably not due to kinetic differences between the 10 ng/ml
and 100 ng/ml folic acid-exposed cells, since DMEM has an
excess of Fe. Previously, the converse, an effect of Fe status
on folate levels has been established. It was shown that Fe
deficiency resulted in folate deficiency in animals and
human subjects43 – 45. Also a direct interaction of Fe on
folate metabolism has been shown; reduction of free Fe by
chelation of Fe by either the chemical chelator mimosine46

or the biological chelator ferritin heavy chain (but not ferritin
light chain)44 resulted in up regulation of the translation rate
of cytoplasmic serine hydroxyl methyl transferase (cSHMT)
and increased folate catabolism. We did not find an effect of
folate levels on cSHMT mRNA expression (data not
shown), but we cannot exclude an effect on SHMT protein
levels. Our observation, that folate affects total cellular Fe
and the expression of ferritin light chain indicates a close
interaction between both micronutrients. This interaction
may have a function in the regulation of cellular single-
carbon metabolism. This warrants further research, not only
with respect to colon cancer risk, but also in view of the
important role of Fe and folate for the developing fetus47.
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