INTEGRALS INVOLVING PRODUCTS OF MODIFIED BESSEL FUNCTIONS OF THE SECOND KIND

$b y$ T. M. MACROBERT

(Received 14th December, 1954)
§ 1. Introductory. The formula to be proved is

$$
\begin{align*}
& \int_{0}^{\infty} e^{-i \lambda} \lambda^{k-1} K_{m}(\lambda) K_{n}(z / \lambda) d \lambda \\
& =\sum_{n,-n} \frac{\Gamma(k+m+n) \Gamma(k-m+n)}{\Gamma\left(k+n+\frac{1}{2}\right) 2^{k+1}} \Gamma\left(\frac{1}{2}\right) \Gamma(n) z^{-n} \\
& \times \sum_{r=0}^{\infty} r \frac{\left(\frac{1}{4}-\frac{1}{2} k-\frac{1}{2} n ; r\right)\left(\frac{3}{4}-\frac{1}{2} k-\frac{1}{2} n ; r\right)\left(\frac{1}{4} z^{2}\right)^{r}}{(1-n ; r)\left(1-\frac{1}{2} k-\frac{1}{2} m-\frac{1}{2} n ; r\right)\left(1-\frac{1}{2} k+\frac{1}{2} m-\frac{1}{2} n ; r\right)\left(\frac{1}{2}-\frac{1}{2} k-\frac{1}{2} m-\frac{1}{2} n ; r\right)\left(\frac{1}{2}-\frac{1}{2} k+\frac{1}{2} m-\frac{1}{2} n ; r\right)} \\
& \times F\left(\frac{1}{2} k+\frac{1}{2} m+\frac{1}{2} n-r, \frac{1}{2} k-\frac{1}{2} m+\frac{1}{2} n-r ; k+n+\frac{1}{2}-2 r ; 1-\zeta^{2}\right) \\
& +\underset{m,-m}{\sum} \Gamma\left(-\frac{1}{2} k-\frac{1}{2} m-\frac{1}{2} n\right) \Gamma\left(-\frac{1}{2} k-\frac{1}{2} m+\frac{1}{2} n\right) \Gamma(-m) 2^{-m-3}\left(\frac{1}{2} z\right)^{k+m} \\
& \times \sum_{r=0}^{\infty} \frac{\left(\frac{1}{4}+\frac{1}{2} m ; r\right)\left(\frac{3}{4}+\frac{1}{2} m ; r\right)\left(\frac{1}{4} z^{2}\right)^{r}}{r!\left(1+\frac{1}{2} k+\frac{1}{2} m+\frac{1}{2} n ; r\right)\left(1+\frac{1}{2} k+\frac{1}{2} m-\frac{1}{2} n ; r\right)\left(\frac{1}{2} ; r\right)\left(\frac{1}{2}+m ; r\right)(1+m ; r)} \\
& \times F\left(-r,-m-r ; \frac{1}{2}-m-2 r ; 1-\zeta^{2}\right) \\
& -\Sigma \Gamma\left(-\frac{1}{2} k-\frac{1}{2} m-\frac{1}{2} n-\frac{1}{2}\right) \Gamma\left(-\frac{1}{2} k-\frac{1}{2} m+\frac{1}{2} n-\frac{1}{2}\right) \Gamma(-m) 2^{-m-3}\left(\frac{1}{2} z\right)^{k+m+1} \\
& \times \sum_{r=0}^{\infty} r!\left(\frac{3}{2}+\frac{1}{2} k+\frac{1}{2} m+\frac{1}{2} n ; r\right)\left(\frac{3}{2}+\frac{1}{2} m ; r\right)\left(\frac{1}{4}+\frac{1}{2} m ; r\right)\left(\frac{1}{2} m-\frac{1}{2} n ; r\right)\left(\frac{3}{2} ; r\right)(1+m ; r)\left(\frac{3}{2}+m ; r\right) \\
& \times F\left(-\frac{1}{2}-r,-\frac{1}{2}-m-r ;-\frac{1}{2}-m-2 r ; 1-\zeta^{2}\right) \text {. } \tag{1}
\end{align*}
$$

The integral converges if $R(z)>0, R(\zeta)>-1$. The series on the right converge if $\left|1-\zeta^{2}\right|<1$. It will be assumed that ζ is interior to the right-hand loop of the curve $\left|\zeta^{2}-1\right|=1$. When $\zeta=1$ this formula reduces to one given by Ragab (1). Formula (1) expresses the integral in series of powers of z.

The formula (2)

$$
\begin{align*}
& \int_{0}^{\infty} \lambda^{l-1} K_{m}(\lambda) K_{n}(z / \lambda) d \lambda \\
& =\sum_{n,-n} \Gamma\left(\frac{1}{2} l+\frac{1}{2} m+\frac{1}{2} n\right) \Gamma\left(\frac{1}{2} l-\frac{1}{2} m+\frac{1}{2} n\right) \Gamma(n) 2^{l+2 n-3} z^{-n} \\
& \times F\left(; 1-n, 1-\frac{1}{2} l-\frac{1}{2} m-\frac{1}{2} n, 1-\frac{1}{2} l+\frac{1}{2} m-\frac{1}{2} n ; z^{2} / 16\right) \\
& +\underset{m,-m}{ } \Gamma\left(-\frac{1}{2} l-\frac{1}{2} m-\frac{1}{2} n\right) \Gamma\left(-\frac{1}{2} l-\frac{1}{2} m+\frac{1}{2} n\right) \Gamma(-m) 2^{-l-2 m-3} z^{l+m} \\
& \times F\left(; 1+m, 1+\frac{1}{2} l+\frac{1}{2} m+\frac{1}{2} n, 1+\frac{1}{2} l+\frac{1}{2} m-\frac{1}{2} n ; z^{2} / \mathbf{l} 6\right), \tag{2}
\end{align*}
$$

where $R(z)>0$, will be required in the proof.
Other formulae required are

$$
\begin{align*}
& F\binom{\alpha, \beta ; z}{\gamma}=\frac{\Gamma(\gamma) \Gamma(\gamma-\alpha-\beta)}{\Gamma(\gamma-\alpha) \Gamma(\gamma-\beta)} F\binom{\alpha, \beta}{\alpha+\beta-\gamma+1} \\
& +\frac{\Gamma(\gamma) \Gamma(\alpha+\beta-\gamma)}{\Gamma(\alpha) \Gamma(\beta)}(1-z)^{\gamma-\alpha-\beta} F\binom{\gamma-\alpha, \gamma-\beta ; 1-z}{\gamma-\alpha-\beta+1}, \tag{3}\\
& F(\alpha, \beta ; \gamma ; z)=(1-z)^{\gamma-\alpha-\beta} F(\gamma-\alpha, \gamma-\beta ; \gamma ; z) \tag{4}\\
& \text { and } \\
& \Gamma\left(\frac{1}{2}\right) \Gamma(2 z)=\Gamma(z) \Gamma\left(z+\frac{1}{2}\right) 2^{2 z-1} . \tag{5}
\end{align*}
$$

Formula (1) will be established in section 2. The case when $-1<R(\zeta)<0$ will be considered in section 3.
§ 3. Proof of the Formula. Expand the exponential function on the left of (1) in powers of $\zeta \lambda$, and apply (2) to each term, so getting

$$
\begin{align*}
& \sum_{n,-n} 2^{k+2 n-3} \Gamma(n) z^{-n} \sum_{p=0}^{\infty} \frac{(-2 \zeta)^{p}}{p!} \Gamma\left(\frac{k+p+m+n}{2}\right) \Gamma\left(\frac{k+p-m+n}{2}\right) \\
& \times F\left(; 1-n, 1-\frac{k+p+m+n}{2}, 1-\frac{k+p-m+n}{2} ; \frac{z^{2}}{16}\right) \\
& +\sum_{m,-m} 2^{-k-2 m-3} \Gamma(-m) z^{k+m} \sum_{p=0}^{\infty} \frac{\left(-\frac{1}{2} \zeta z\right)^{p}}{p!} \Gamma\left(\frac{-k-p-m-n}{2}\right) \Gamma\left(\frac{-k-p-m+n}{2}\right) \\
& \times F\left(; \mathbf{1}+m, \mathbf{1}+\frac{1}{2} k+\frac{1}{2} p+\frac{1}{2} m+\frac{1}{2} n, 1+\frac{1}{2} k+\frac{1}{2} p+\frac{1}{2} m-\frac{1}{2} n ; z^{2} / 16\right) . \tag{A}
\end{align*}
$$

Now in the inner summation in the first two lines of (A) the coefficient of $\left(z^{2} / 16\right)^{r}$ is

$$
\begin{aligned}
& \frac{1}{r!(1-n ; r)} \sum_{p=0} \frac{(-2 \zeta)^{p}}{p!} \Gamma\left(\frac{k+p+m+n}{2}-r\right) \Gamma\left(\frac{k+p-m+n}{2}-r\right) \\
& =\frac{1}{r!(1-n ; r)} \\
& \times\left[\begin{array}{l}
\Gamma\left(\frac{k+m+n}{2}-r\right) \Gamma\left(\frac{k-m+n}{2}-r\right) F\left(\frac{k+m+n}{2}-r, \frac{k-m+n}{2}-r ; \frac{1}{2} ; \zeta^{2}\right) \\
-2 \zeta \Gamma\left(\frac{k+m+n+1}{2}-r\right) \Gamma\left(\frac{k-m+n+1}{2}-r\right) F\left(\frac{k+m+n+1}{2}-r, \frac{k-m+n+1}{2}-r ; \frac{3}{2} ; \zeta^{2}\right)
\end{array}\right] .
\end{aligned}
$$

Here apply formula (3), and the expression in the bracket becomes

$$
\left.\begin{array}{rl}
\begin{array}{rl}
\Gamma\left(\frac{1}{2} k+\frac{1}{2} m+\frac{1}{2} n-r\right) \Gamma\left(\frac{1}{2} k-\frac{1}{2} m+\frac{1}{2} n-r\right) \Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{2}-k-n+2 r\right) \\
\Gamma\left(\frac{1}{2}-\frac{1}{2} k-\frac{1}{2} m-\frac{1}{2} n+r\right) \Gamma\left(\frac{1}{2}-\frac{1}{2} k+\frac{1}{2} m-\frac{1}{2} n+r\right)
\end{array} \\
& \times F\left(\frac{1}{2} k+\frac{1}{2} m+\frac{1}{2} n-r, \frac{1}{2} k-\frac{1}{2} m+\frac{1}{2} n-r ; 1-\zeta^{2}\right. \\
\frac{1}{2}+k+n-2 r
\end{array}\right) .
$$

On applying (4) to the hypergeometric functions in the last two lines it is seen that the expressions in the second and fourth lines cancel ; while the expressions in the first and third lines reduce to

$$
\begin{aligned}
& \Gamma\left(\frac{1}{2} k+\frac{1}{2} m+\frac{1}{2} n-r\right) \Gamma\left(\frac{1}{2} k+\frac{1}{2} m+\frac{1}{2} n+\frac{1}{2}-r\right) \Gamma\left(\frac{1}{2} k-\frac{1}{2} m+\frac{1}{2} n-r\right) \Gamma\left(\frac{1}{2} k-\frac{1}{2} m+\frac{1}{2} n+\frac{1}{2}-r\right) \Gamma\left(\frac{1}{2}\right) \\
\times & \frac{1}{\pi^{2}}\left\{\cos \left(\frac{k+m+n}{2} \pi\right) \cos \left(\frac{k-m+n}{2} \pi\right)-\sin \left(\frac{k+m+n}{2} \pi\right) \sin \left(\frac{k-m+n}{2} \pi\right)\right\} \\
\times & \frac{\pi}{\cos (k+n) \pi} \Gamma\left(\frac{1}{2}+k+n-2 r\right)
\end{aligned}\binom{\frac{1}{2} k+\frac{1}{2} m+\frac{1}{2} n-r, \frac{1}{2} k-\frac{1}{2} m+\frac{1}{2} n-r ; 1-\zeta^{2}}{\frac{1}{2}+k+n-2 r} . .
$$

From this, making use of formula (5), the first part of the right-hand side of (1) is obtained.
Again, in the inner summation in lines 3 and 4 of (A) the coefficient of $\left(z^{2} / 16\right)^{r}$ is

INTEGRALS INVOLVING PRODUCTS OF MODIFIED BESSEL FUNCTIONS 131

$$
\frac{\Gamma\left(-\frac{1}{2} k-\frac{1}{2} m-\frac{1}{2} n\right) \Gamma\left(-\frac{1}{2} k-\frac{1}{2} m+\frac{1}{2} n\right)}{r!(1+m ; r)\left(1+\frac{1}{2} k+\frac{1}{2} m+\frac{1}{2} n ; r\right)\left(1+\frac{1}{2} k+\frac{1}{2} m-\frac{1}{2} n ; r\right)} F\binom{-r,-m-r ; \zeta^{2}}{\frac{1}{2}},
$$

and, from (3), the hypergeometric function is equal to

$$
\frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{2}+m+2 r\right)}{\Gamma\left(\frac{1}{2}+r\right) \Gamma\left(\frac{1}{2}+m+r\right)} F\binom{-r,-m-r ; 1-\zeta^{2}}{\frac{1}{2}-m-2 r},
$$

since $1 / \Gamma(-r)=0$. This gives the second part of the right-hand side of (1).
Finally, in the inner summation in lines (3) and (4) of (A) the coefficient of $z\left(z^{2} / 16\right)^{r}$ is

$$
-\frac{1}{2} \zeta \frac{\Gamma\left(-\frac{1}{2} k-\frac{1}{2} m-\frac{1}{2} n-\frac{1}{2}\right) \Gamma\left(-\frac{1}{2} k-\frac{1}{2} m+\frac{1}{2} n-\frac{1}{2}\right)}{r!(1+m ; r)\left(\frac{3}{2}+\frac{1}{2} k+\frac{1}{2} m+\frac{1}{2} n ; r\right)\left(\frac{3}{2}+\frac{1}{2} k+\frac{1}{2} m-\frac{1}{2} n ; r\right)} F\binom{-r,-m-r ; \zeta^{2}}{\frac{3}{2}},
$$

the hypergeometric function being equal to

$$
\frac{\Gamma\left(\frac{3}{2}\right) \Gamma\left(\frac{3}{2}+m+2 r\right)}{\Gamma\left(\frac{3}{2}+r\right) \Gamma\left(\frac{3}{2}+m+r\right)} F\binom{-r,-m-r ; 1-\zeta^{2}}{-\frac{1}{2}-m-2 r} .
$$

On applying (4) the final part of (1) is obtained.
§3. Evaluation of the Integral for other values of the Parameter. If $0<R(\zeta)<1$, while ζ lies within the right-hand loop of the curve $\left|\zeta^{2}-1\right|=1$, and assuming that $R(z)>0$, it can be seen, on replacing ζ by $-\zeta$ in the above proof, that

$$
\begin{align*}
& \int_{0}^{\infty} e^{\zeta \lambda} \lambda^{k-1} K_{m}(\lambda) K_{n}(z / \lambda) d \lambda \\
& =\frac{\cos m \pi}{\pi} \sum_{n,-n} \Gamma(k+m+n) \Gamma(k-m+n) \Gamma\left(\frac{1}{2}-k-n\right) 2^{-k-1} \Gamma\left(\frac{1}{2}\right) \Gamma(n) z^{-n} \\
& \times \sum_{r=0}^{\infty} r \frac{\left(\frac{1}{4}-\frac{1}{2} k-\frac{1}{2} n ; r\right)\left(\frac{3}{4}-\frac{1}{2} k-\frac{1}{2} n ; r\right)\left(\frac{1}{4} z^{2}\right)^{r}}{(1-n ; r)\left(1-\frac{1}{2} k-\frac{1}{2} m-\frac{1}{2} n ; r\right)\left(1-\frac{1}{2} k+\frac{1}{2} m-\frac{1}{2} n ; r\right)\left(\frac{1}{2}-\frac{1}{2} k-\frac{1}{2} m-\frac{1}{2} n ; r\right)\left(\frac{1}{2}-\frac{1}{2} k+\frac{1}{2} m-\frac{1}{2} n ; r\right)} \\
& \times F\left(\frac{1}{2} k+\frac{1}{2} m+\frac{1}{2} n-r, \frac{1}{2} k-\frac{1}{2} m+\frac{1}{2} n-r ; k+n+\frac{1}{2}-2 r ; 1-\zeta^{2}\right) \\
& +\sum_{n,-n} 2^{k+2 n-2} \Gamma\left(\frac{1}{2}\right) \Gamma(n) \Gamma\left(k+n-\frac{1}{2}\right) z^{-n}\left(1-\zeta^{2}\right)^{\frac{1}{2-k-n}} \\
& \times \sum_{r=0}^{\infty} \frac{\left(z^{2} / 64\right)^{r}\left(1-\zeta^{2}\right)^{2 r}}{r!(1-n ; r)\left(\frac{3}{4}-\frac{1}{2} k-\frac{1}{2} n ; r\right)\left(\frac{5}{4}-\frac{1}{2} k-\frac{1}{2} n ; r\right)} \\
& \times F\left(\frac{1}{2}-\frac{1}{2} k-\frac{1}{2} m-\frac{1}{2} n+r, \frac{1}{2}-\frac{1}{2} k+\frac{1}{2} m-\frac{1}{2} n+r ; \frac{3}{2}-k-n+2 r ; 1-\zeta^{2}\right) \\
& +\Sigma \Gamma \Gamma\left(-\frac{1}{2} k-\frac{1}{2} m-\frac{1}{2} n\right) \Gamma\left(-\frac{1}{2} k-\frac{1}{2} m+\frac{1}{2} n\right) \Gamma(-m) 2^{-m-3}\left(\frac{1}{2} z\right)^{k+m} \\
& \times \sum_{r=0}^{\infty} \frac{\left(\frac{1}{4}+\frac{1}{2} m ; r\right)\left(\frac{3}{4}+\frac{1}{2} m ; r\right)\left(\frac{1}{4} z^{2}\right)^{r}}{r!\left(1+\frac{1}{2} k+\frac{1}{2} m+\frac{1}{2} n ; r\right)\left(1+\frac{1}{2} k+\frac{1}{2} m-\frac{1}{2} n ; r\right)\left(\frac{1}{2} ; r\right)\left(\frac{1}{2}+m ; r\right)(1+m ; r)} \\
& \times F\left(-r,-m-r ; \frac{1}{2}-m-2 r ; \mathbf{l}-\zeta^{2}\right) \\
& +\sum_{m,-m} \Gamma\left(-\frac{1}{2} k-\frac{1}{2} m-\frac{1}{2} n-\frac{1}{2}\right) \Gamma\left(-\frac{1}{2} k-\frac{1}{2} m+\frac{1}{2} n-\frac{1}{2}\right) \Gamma(-m) 2^{-m-3}\left(\frac{1}{2} z\right)^{k+m+1} \\
& \times \sum_{r=0}^{\infty} \frac{\left(\frac{3}{4}+\frac{1}{2} m ; r\right)\left(\frac{5}{4}+\frac{1}{2} m ; r\right)\left(\frac{1}{4} z^{2}\right)^{r}}{\left(\frac{1}{2}+\frac{1}{2} k+\frac{1}{2} m+\frac{1}{2} n ; r\right)\left(\frac{3}{2}+\frac{1}{2} k+\frac{1}{2} m-\frac{1}{2} n ; r\right)\left(\frac{3}{2} ; r\right)(1+m ; r)\left(\frac{3}{2}+m ; r\right)} \\
& \times F\left(-\frac{1}{2}-r,-\frac{1}{2}-m-r ;-\frac{1}{2}-m-2 r ; 1-\zeta^{2}\right) \text {. } \tag{6}
\end{align*}
$$

Note. If in (6) $\zeta=1$ and $R(k \pm n)<\frac{1}{2}$, while $R(z)>0$, the integral is convergent, and its value is obtained by putting $\zeta=1$ on the R.H.S. Then the second expression on the right vanishes and the three hypergeometric functions reduce to unity.

REFERENCES

(1) Ragab, F. M., Proc. Glasg. Math. Ass., 2 (1954), 85.
(2) MacRobert, T. M., Proc. Glasg. Math. Ass., 1 (1953), 187.

The University
Glasgow

