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ABSTRACT. The importance of studying the radiocarbon content of dissolved inorganic carbon (DI14C) in the oceans
has been recognized for decades. Starting with the GEOSECS program in the 1970s, 14C sampling has been a part of
most global survey programs. Early results were used to study air-sea gas exchange while the more recent results are
critical for helping calibrate ocean general circulation models used to study the effects of climate change. Here we
summarize the major programs and discuss some of the important insights the results are starting to provide.
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Radiocarbon in dissolved inorganic carbon (DI14C) in seawater has long been recognized as an
important tracer for studying ocean processes. DII4C is reported as Δ14C in per mille units as
defined in Stuiver and Polach (1977). The earliest ocean measurements from the 1950s focused
on deep ocean circulation rates (Bien et al. 1960; Broecker et al. 1960). Early studies of the
surface ocean were thought to be complicated by the known lack of steady-state in the
atmospheric radiocarbon content due to the atmospheric 14C decrease since the Industrial
Revolution (the Suess effect: e.g., Suess 1953; Keeling 1979; Stuiver and Quay 1981) and
the sharp increase in 14C since the atmospheric weapons tests in the 1950s and 1960s
(the bomb spike, e.g., Rafter 1965; Nydal 1968). At the time, it was understood how useful
the bomb spike would be for studying air-sea gas exchange in the future (Bien et al. 1960)
and as a global carbon cycle tracer experiment. Reidar Nydal championed the collection
and analysis of surface ocean radiocarbon starting in the mid-1960s (Nydal et al. 1984),
amassing a data set of over 500 analyses between 1966 and 1981. The early work
demonstrated the power of DI14C to study ocean processes but was limited in scope
because of the challenges of collecting the samples and making the measurements.

Until the advent of accelerator mass spectrometry (AMS) in the early 1990s, up to 250 L of
seawater was required to obtain a precise radiocarbon measurement, i.e., a measurement with a
precision of ± 2–4‰ in the deep ocean. Two samplers in use until the early to mid 1990s were
Gerard barrels (Bien et al. 1960; Broecker et al. 1960) and keg samplers (Young et al. 1969)
(Figure 1). The former has a capacity of ∼250 L, and the latter, repurposed beer kegs, had a
capacity of up to∼60 L. Gerard samples were acidified on the ship using 40 mL of concentrated
H2SO4 and sparged for about four hours (depending on sample temperature) using CO2-free air
or N2. Extracted CO2 was precipitated as either BaCO3, SrCO3, or dissolved in KOH or NaOH
and transferred to shore-based laboratories for analysis and counting using specialized gas
proportional (Östlund et al. 1962) or liquid scintillation (Tamers 1960) counters. The
amount of time required to collect the Gerard samples coupled with the lengthy shipboard
extraction procedure severely limited the numbers of samples that could be collected and
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analyzed. Regardless, the GEOSECS data collected during the 1970s provide an
extraordinarily valuable baseline for the more extensive subsequent surveys.

The handling and difficulty of ensuring good recoveries also made it challenging to use these
samples for DI13C measurements of adequate precision and accuracy to be oceanographically
meaningful; therefore, separate samples were used for these analyses (Kroopnik 1985). The
reduction in sample size afforded by AMS (from 250 L to 0.5 L) made it possible to collect
samples at sea, preserve them with HgCl2, and ship them back to laboratories for analysis.
Until recently, the preferred extraction method for both DI14C and DI13C has been
sparging with CO2-free gases, usually N2 (Bard 1987; Quay 1992; McNichol 1994). Newer
methods include headspace analysis (Gao et al. 2014) and membrane transfer techniques
(Gospodinova et al. 2016). Once the gas has been extracted, standard techniques are used
for the analysis of radiocarbon (Vogel et al. 1987; Roberts et al. 2010; Longworth et al.
2015). Shipboard-based analysis using non AMS techniques to measure radiocarbon at sea,
at least for waters containing bomb-produced carbon, allowing researchers to walk off the
ship with data, will bring radiocarbon on par with chlorofluorocarbons (CFCs) for wider
utilization within the oceanographic community. Much progress is needed but cavity-ring
down systems similar to those in use for DI13C (Su et al. 2019) hold promise for the future
(Galli et al. 2016; Fleisher et al. 2017).

The first global sampling program to include DI14C was the Geochemical Ocean Sections
Study (GEOSECS) in the mid-1970s (Östlund and Stuiver 1980; Stuiver and Östlund 1980,
1983). A major force in the measurement of DI14C in the GEOSECS program and many of
the programs that followed was Wally Broecker. As noted in a memoir (Broecker 2012),
his interest was piqued during a conversation with Henry Stommel. Specifically, Broecker
recalled, “Toward the end of the 1960s, two unique opportunities arose which led me to
temporarily abandon my desire to plunge ever more deeply into paleoclimate. One was the

A CB

Figure 1 Samplers used to collect water for radiocarbon analysis: A. Gerard barrel, B. Keg sampler, C. Niskin
bottles. A and B use the entire volume of water for the analysis while only 500 mL are collected from the Niskin
bottle.
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creation by the National Science Foundation of an initiative called IDOE (International
Decade of Ocean Exploration) and the other was an invitation to participate in a
limnological research program being launched in Canada. In 1968, during a visit to Woods
Hole, Henry Stommel, a legendary figure in physical oceanography, took me aside and
said, ‘Wally, you guys measure radiocarbon here and there in the ocean, but if we are to
properly use the results to pin down the rates of transport, we need a systematic survey
along transects from one end of the ocean to the other.’ I asked, ‘how many stations along
each transect and how many depths at each station?’ He replied, ‘50 stations and 20
depths.’ ”

The GEOSECS goal was to increase the general knowledge of ocean geochemistry and to
estimate the deep-ocean transport rates. Sampling consisted of a single section along the
center of each major ocean basin. The GEOSECS Program introduction states, “As man
[sic] becomes increasingly aware of the ocean as a source of food, a disposal area for
nuclear and industrial waste products, a strategic realm for national security and a
controlling factor in the earth’s climatic regime, he also recognizes how very little he knows
about the sea.” Data from the early programs up through the original World Ocean
Circulation Experiment (WOCE) occupations are stored in easily accessible internet
locations (e.g., CLIVAR and Carbon Hydrographic Data Office [CCHDO], National
Centers for Environmental Information [NCEI], Ocean Carbon Data System [OCADS])
and summarized in the Global Ocean Data Analysis Project (GLODAP) database (Key
et al. 2004). Sample numbers cited here reflect those in GLODAPv2.2020 (Olsen et al.
2020) and include data reported through 2015 (mostly samples from the Climate
Variability and Predictability [CLIVAR] and the Global Ocean Ship-Based Hydrographic
Investigations Program [GO-SHIP] programs). During GEOSECS, 2218 DI14C values from
125 stations were reported. Subsequent large programs were the Transient Tracers in the
Ocean (TTO, 1981–1983, 937 values from 101 stations; Brewer et al. 1985; Östlund and
Rooth 1990) and the South Atlantic Ventilation Experiment (SAVE, 1987–1989, 955 values
from 77 stations) in the Atlantic Ocean, as well as the Indien Gaz Ocean (INDIGO,
1985–1987, 233 samples; Östlund and Grall 1991, 430 values from 20 stations) project in
the Indian and Southern Oceans. The primary goal of these programs was to extend the
two-dimensional description of the tracer distributions into three dimensions so that the
properties could be mapped on density surfaces. Much of this earlier work used the fact
that, in the 1960s and by GEOSECS in the 1970s, ocean DI14C was controlled by air-sea
exchange and had not penetrated deeply enough to be a good tracer analog for the uptake
of anthropogenic CO2.

During the 1990s the WOCE program was carried out “to survey the global distribution of
ocean variables with a view to greatly improving estimates of the circulation of heat, water
and chemicals around the world ocean, and their exchange with the atmosphere (Woods
1985).” The advent of AMS greatly increased the number of radiocarbon samples that
could be collected and measured (see below) and 17,676 samples were measured as part of
this program. Because the highest precision was needed in the deep water and the AMS
technique was new, large volume samples were collected in the deep waters and small
volume samples were collected in the surface and thermocline waters. The United States
WOCE program collected and analyzed the majority of these samples at a laboratory
funded and built primarily for this program (Jones et al. 1990) referred to as the National
Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS). Other countries whose
laboratories measured radiocarbon included Japan (primarily the Japanese Agency for
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Marine-Earth Science and Technology) and Germany. WOCE was followed by the CLIVAR
programs in the first decade of the 2000s. These programs were designed to better
understanding climate variability and predictability on seasonal to centennial time scales,
identifying processes responsible for climate change, and developing predictive capabilities
(http://www.clivar.org). The most recent program is GO-SHIP, a program that has a goal
of providing the measurements needed to understand and document large-scale ocean water
property distributions, their changes, and their drivers in a changing global environment
(http://www.go-ship.org). As of 2015, CLIVAR, GO-SHIP, and other smaller programs
have added 14,085 measurements to the global database.

Results from these programs and sample analyses have contributed greatly to our
understanding of the oceans. DI14C is affected by biology and carbonate chemistry, but by
normalizing to 13C and time, the biological effect is minimized. This allows 14C, reported as
Δ

14C (or strictly Δ as per Stuiver and Polach 1977), to be used as a physical tracer for
both anthropogenic carbon and as a water mass tracer to elucidate dynamics. Monitoring
of the oceanic 14C transient in the upper ocean has provided important metrics of surface-
to-deep exchange rates predicted by ocean models, and, specifically, deep water formation
rates and processes in key locations where continued penetration of anthropogenic CO2

into the interior and abyssal ocean is occurring. Changes in ocean 14C can now be used to
track the arrival of anthropogenic CO2 in the abyssal ocean (Graven et al. 2012), where the
DIC changes are still small (< 2 μmol kg-1) and difficult to detect using back-calculation
approaches (e.g., ΔC* [Gruber et al. 1996] and variants thereof). The radiocarbon
distribution and change have been used to study mixing, ventilation rates, rates of
production of abyssal waters, shallow upwelling rates, and deep ocean residence times
(Broecker et al. 1978, 1998; Broecker 1979; Toggweiler and Samuels 1993; Toggweiler and
Key 2001; Matsumoto and Key 2004; Roussenov et al. 2004; Schlitzer 2007), deep ocean
biogeochemistry and oxygen utilization rates (Broecker et al. 1991; Key 2001; Keller et al.
2002; Sarmiento et al. 2007), air-sea gas exchange (Broecker and Peng 1974; Wanninkhof
1992; Sweeney et al. 2007), thermocline ventilation rates (Gnanadesikan et al. 2004), as a
proxy for anthropogenic CO2 in the ocean (Broecker et al. 1980), to estimate deep water
mass ages for anthropogenic CO2 uptake and carbon studies (Sabine et al. 1999, 2002a,
2002b, 2004; Feely et al. 2002; Chung et al. 2003, 2004; Lee et al. 2003), and to evaluate
ocean general circulation model (OGCM) performance (Maier-Reimer and Hasselmann
1987; Toggweiler et al. 1989a, 1989b; Guilderson et al. 2000; Key 2001; Orr et al. 2001;
Key et al. 2004; Matsumoto et al. 2004).

An elegant example of the power of 14C analyses is provided by Toggweiler et al. (2019a,
2019b). Their 14C assessment combined surface water Δ

14C data from biogenic carbonate
archives, primarily reef-building corals, and DIC samples from the WOCE/CLIVAR
programs to place a constraint on the volume of water upwelled in the major upwelling
centers of the global ocean and to provide insights on the mechanism of upwelling and
forcing. The regional (and when combined, global) upwelling indicated by the spatial range
of upwelling induced surface water Δ14C deficits exceeds that which would be indicated by
the surface wind (Ekman) forcing alone. In the Pacific, where the Δ

14C deficit stretches
across the basin, Ekman-based forcing indicates an upwelling volume of ∼2Sv off the coast
of Peru and the Costa Rican Dome, whereas the Δ

14C budget indicates more than 10Sv.
Similar differences occur in the other major upwelling regions. The Δ

14C surface deficit
upwelling estimates are consistent with inverse modeling estimates in terms of the volume
of water that upwells.
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The inverse models, however, use large amounts of diapycnal mixing to transform relatively
dense Antarctic Circumpolar Water (ACC) into lighter water. The newly formed “lighter” or
less dense water can then be shunted to the surface by denser water pushing through the ACC
into mode and interior water masses. In contrast, theΔ14C data imply nearly direct exposure of
interior water via upwelling of mode and intermediate waters at the western basin margins.
If upwelling is geographically limited to these upwelling sources, less diapycnal mixing is
needed to transform interior and mode waters to waters that are more easily mixed into the
surface. Toggweiler et al. posit that the additional volume, beyond that required by Ekman
forcing, upwelled in these regional locations and required to balance the surface water
DI14C distribution is a “push” associated with the global thermohaline circulation: i.e., the
classic “conveyor belt” initially coined by Arnold Gordon and made famous by Wally
Broecker. The reduced impact of diapycnal mixing will require improved physics in ocean
models that predict anthropogenic CO2 uptake.

The Ocean Carbon Model Intercomparison Project (OCMIP) was one of the first major
collaborative efforts between transient tracer experts and ocean modelers to explore DI14C
in a coordinated, meaningful, and mechanistic way. The goal was to understand the
processes that caused differences in model simulations, predictions and to improve model
capabilities. Radiocarbon and CFC data were used as tracers. The OCMIP model
predictions of the CFC distribution were much better than for DI14C. This is largely
because the CFC distribution is strongly dependent on surface ocean temperature that the
models reproduce reasonably well, although biases in mixed layer depth propagate into
CFC inventory biases (e.g., Long et al. 2013). Both natural and bomb radiocarbon provide
model constraints not available from any other tracer. Figure 2 compares OCMIP results
with WOCE 14C data from section P16 (Key et al. 1996; Stuiver et al. 1996). Although all
of the models reproduce the general shape of the contours, the concentrations vary widely.
The model physics required to reproduce the 14C distribution are much more difficult and
involve the entire water column. Even cursory examination points out significant
discrepancies in all model results, e.g., a too diffuse thermocline, and remarkable model to
model differences. One conclusion was that some models could reasonably reproduce the
sparse GEOSECS data, but none could adequately simulate the WOCE results (Orr et al.
2001): i.e., continued circulation and movement of Δ14C showed flaws in model dynamics
and their predictive transport skill.

In recent decades (post 1995), air-sea exchange exerts less influence on ocean DI14C because the
air-sea 14C gradients are now very small. In some regions such as the equatorial Pacific the flux
is likely from the ocean back into the atmosphere (Figure 3a). This means that, for samples
collected since mid-WOCE, the dominant control on oceanic DI14C has been surface-to-
deep exchange, similar to the situation for anthropogenic CO2 (Graven et al. 2012). In fact,
in recent decades anthropogenic CO2 uptake and oceanic 14C uptake are strongly
correlated in ocean models (Figure 3b). After the formal portion of OCMIP, model-data
Δ

14C comparisons degenerated back to single model or at best two data-model
comparisons (e.g., Galbraith et al. 2011; Graven et al. 2012), including eddy resolving
models (e.g., Lachkar et al. 2007). OCMIP led to model specific developments and
advancements. At Princeton, a series of sensitivity studies using a coarse model (Modular
Ocean Model, or MOM) lead to the MOM model doing better at reproducing deep water
radiocarbon in addition to a better understanding of thermocline ventilation processes
(Gnanadesikan et al. 2002, 2004; Galbraith et al. 2011). Sensitivity experiments such as
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Figure 2 OCMIP-2 results. All of the model results and the data are colored and scaled identically and the
portion of the section containing bomb radiocarbon has been masked.
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these and data-model comparisons (e.g., Guilderson et al. 2000) have shed light on the
challenges of accurately modeling ocean dynamics in regions with significant vertical fluxes.

Largescale coupled models have improved through the application of subgrid scale
parameterization that impacts horizontal movement and mixing. Yet, issues remain with
the models’ representation of vertical dynamics as well as the incomplete understanding of
the coupling with overlying wind-field and eddy-scale processes. This is slowly leading the
modeling community away from “model democracy” where every model is equally viable,
to focusing on models that achieve certain observation-based metrics better than others
(e.g., Beadling et al. 2020). One metric that integrates atmosphere-ocean coupling, vertical
dynamics, and the surface ocean’s radiative balance is the model sea surface temperature
(SST) field and how big and where any model-data bias occurs. SST bias in the
Geophysical Fluid Dynamics Laboratory (GFDL) CM2Mc Earth System model (Figure 4)
is representative of many earth system and OGCMs used in CMIP (c.f., fig 1 in Wang
et al. 2014). The general statements that model cloud biases and a bias in the position
and/or intensity of major wind systems (e.g., the Southern Ocean westerlies and western
boundary wind systems) impact the surface radiative budget and are thus the cause of the
observed model-data SST bias, although accurate, do not quite capture model failures.
A cloud-forced radiative imbalance leading to SST biases does not directly explain the

A

B

Figure 3 A. Surface ocean DI14C (blue diamonds) at 32°S in the Pacific at 4 time points
compared to atmospheric record (red dots). B. Relationship between global ocean CO2 and
14C uptake in a collection of ocean models in the 1960s (left) and in the 1980s (right).
(Figure adapted from Graven et al. 2012.)
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models’ failures to accurately recreate the volume of water upwelling (and theΔ14C values and
“regional deficits”) in these regions (c.f., Toggweiler et al. 2019a, 2019b). These regions are
sources and sinks of nutrients and atmospheric CO2, and have large impacts on ocean
biogeochemistry. Model reproduction of decadal change is notoriously more difficult than
reproducing a single snapshot of property distributions. Continued data-model comparisons
using radiocarbon can lead to insights into inaccuracies in how mesoscale eddies are treated
in the models and their effect on mixing as well as understanding the transfer of properties
such as energy from the surface to the deep ocean. Small changes in the parameterization
of mesoscale eddies can have a large impact on climate sensitivity (Fox-Kemper et al.
2019). Moving beyond “tuning exercises” the tracer data in the Repeat Hydrography
Sections represent an opportunity to improve modeling of vertical dynamics and interior,
deep circulation and, therefore, to increase models’ ability to predict the sources and sinks
of nutrients and carbon in surface water.

There is a recognition that the climate system has tipping or bifurcation points where the
system can rapidly shift to an alternative state but will not return to the original state even
when the forcing perturbation is removed (c.f., IPCC 2019). Acting much like a bath-tub
drain, the Southern Ocean has been a significant modifier of anthropogenic atmospheric
CO2 and heat: the formation of interior and deep waters removes atmospheric CO2 from
the surface ocean (and thus from the atmosphere) and at the same time moves heat away
from the surface (Purkey and Johnson 2013; Johnson and Lyman 2020). Largescale
changes in the overlying wind (Ekman) forcing has the ability to alter the circulation in
such a manner to decrease the uptake of heat and CO2. However, teasing out natural
multi-decadal variability associated with the Southern Annular Mode and its teleconnection
to the Pacific Decadal Oscillation from changes directly forced by anthropogenic-induced
climate change will be difficult in this sparsely sampled, yet incredibly important region.

Figure 4 SST error or bias in the GFDL CM2Mc Earth System model
relative to observations (after Galbraith et al. 2011). Similar biases in
space and amplitude are observed in nearly all of the CMIP models
(Wang et al. 2014). At the western boundaries, SST biases are
accompanied by biases in upwelling volume. In the Southern Ocean
the SST biases are accompanied by insensitivity of overturning rates
with increased winds.
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The Southern Ocean Carbon and Climate Observations andModeling Program (SOCCOM) is
currently working to “unlock (sic) the mysteries of the Southern Ocean,” at least in the upper
2000 m. Flexibility in the funding model for the radiocarbon portion of GO-SHIP has allowed
the collection of DI14C samples at selected SOCCOM float sites. The well-documented
poleward movement and intensification of the southern hemisphere westerlies observed in
2000–2010s (e.g., Fyfe et al. 2007; Lin et al. 2018) have continued with an increase in the
intensity of the 90th percentile winds (Young and Ribal 2019). This change has the
potential to erode surface waters thus exposing subsurface or interior water with higher
concentrations of CO2. This will reduce the ability of these surface waters to take up
anthropogenic CO2 (e.g., Gray et al. 2018 Keppler and Landschützer 2019). Will deeper
mixing associated with the winds and reduced salinity due to Antarctic glacial ice melting
increase the stability of the Southern Ocean to yield a “new” mode of Southern Ocean
circulation (e.g., Bronselaer et al. 2020)? This could have grave implication for the climate
system as a whole and for future climate change scenarios.

Radiocarbon has a large dynamic range in the ocean. It is one of tools the oceanographic and
modeling communities have to monitor changes in the structure of the Southern Ocean. In
particular, the vertical and horizontal gradients of Δ

14C are sensitive to the competing
effects of the air-sea 14C disequilibrium isotope flux and the exhumation of low-Δ14C
interior water. Repeated meridional Southern Ocean sections frequent enough to
distinguish sub-decadal variability associated with the Southern Annular Mode from
secular changes across regions most important to upwelling, interior water formation, and
air-sea CO2 exchange will be a powerful diagnostic of the state of the Southern Ocean and
a necessary model benchmark to elucidate biases.
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