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Abstract
Accurate mortality forecasting is crucial for actuarial pricing, reserving, and capital planning, yet the tra-
ditional Lee-Carter model struggles with non-linear age and cohort patterns, coherent multi-population
forecasting, and quantifying prediction uncertainties. Recent advances in deep learning provide a range of
tools that can address these limitations, but actuarial surveys have not kept pace. This paper provides
the first concise view of deep learning in mortality forecasting. We cover six deep network architec-
tures, namely Recurrent Neural Networks, Convolutional Neural Networks, Transformers, Autoencoders,
Locally Connected Networks, and Multi-Task Feed-Forward Networks. We discuss how these architec-
tures tackle cohort effects, population coherence, interpretability, and uncertainty in mortality forecasting.
Evidence from the literature shows that carefully calibrated deep learning models can consistently outper-
form the Lee-Carter baselines; however, no single architecture resolves every challenge, and open issues
remain with data scarcity, interpretability, uncertainty quantification, and keeping pace with the advances
of deep learning. This review is also intended to provide actuaries with a practical roadmap for adopting
deep learning models in mortality forecasting.
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1. Introduction
Accurate mortality forecasts are crucial for actuarial science because they guide life-insurance
pricing, reserving, and public-policy planning. Traditional stochastic models, most notably the
Lee-Carter framework (Lee & Carter, 1992) and its extensions, have long been used to project
mortality trends, yet they struggle to capture complex non-linear trends, cohort effects, and cross-
population heterogeneity.

Deep learning methods appear capable of addressing these limitations. By learning complex
interactions directly from data, deep neural networks can capture non-linear temporal trends, age-
specific patterns, and cohort-specific effects that traditional models may miss (Richman, 2021).
Promising results have been shown in the literature, but two practical challenges remain. First,
time series are often limited in historical data, which is not ideal for deep neural networks. Second,
insurers and regulators require transparency regarding factors driving any projections (EIOPA,
2021). A growing number of studies are attempting to overcome these challenges by incorporating
high-resolution regional data and exogenous variables, and using explainable deep methods to
make their black-box models more transparent.

However, existing actuarial reviews of approaches to mortality forecasting have not kept
pace. The existing reviews focus on the Lee–Carter extensions (Basellini et al., 2022) and
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Figure 1. Timeline of applications of key deep learning architectures to mortality forecasting.

pandemic-related extrapolations (Nalmpatian et al., 2024). Richman (2021) presents a wide range
of applications of artificial intelligence in actuarial analysis, but only briefly covers mortality
forecasting, whereas deep learning approaches in mortality modeling have since seen substantial
advances.

This review closes that gap with an up-to-date, mortality-focused review of deep learning
models in mortality forecasting. We organize the review by neural network types, as a net-
work architecture shapes both its performance and interpretability. We discuss Recurrent Neural
Networks (RNNs) in Section 2.1, Transformer models in Section 2.2, Autoencoders (AEs) in
Section 2.3, Convolutional Neural Networks (CNNs) in Section 2.4, Locally Connected Networks
(LCNs) and Multi-Task Feed-Forward Networks (Multi-Task FNNs) in Section 2.5. We then out-
line the remaining challenges and future directions in Section 3. Lastly, we conclude this survey
in Section 4.

2. Deep learning methods in mortality forecasting
We begin the review with a timeline in Figure 1 based on our understanding of the earliest doc-
umented use of each architecture, which shows how each of the main deep learning architectures
entered mortality forecasting to resolve a specific weakness from its predecessors. AEs were
applied to mortality forecasting in 2018 for non-linear dimension reduction. RNNs were used for
mortality forecasting in 2019, since their sequential structure can replace the Lee-Carter simple
random walk projection to learn long-range non-linear time dependencies. However, as RNNs
model a one-dimensional sequence, they miss the cohort relationships. CNNs were adopted in
2021 for mortality forecasting, treating the age-period mortality grid as a matrix so the model can
more clearly identify the local interactions between specific ages and years, and thus reveal cohort
effects that RNNs cannot. That same year, Feed-Forward Neural Networks (FNNs) were applied
to multi-population forecasting using a country-embedding layer. Transformers were applied
to mortality forecasting in 2022 to address vanishing gradient limitations from RNNs through
the attention mechanism. Variational Autoencoders (VAEs) were also applied to mortality
forecasting in 2022 to provide a full probability distribution of mortality rates, allowing direct
risk-based capital and solvency position assessment that actuaries need to perform. Additionally,
FNNs, such as LCN, have been used to capture localized trends, and multi-head FNNs have been
used to provide controlled, cluster-based multi-population mortality forecasts for countries with
divergent trends.

Actuaries need to understand interpretability and uncertainty of models, and we provide a
high-level overview in Table 1 of these deep learning methods. Interpretability refers to how well
model components map to actuarial concepts; uncertainty indicates point forecasts (P), prediction
intervals via resampling or quantile regression (PI), or full predictive distributions (PD).

Note that the uncertainty types reported in Table 1 are those produced by default in the cited
studies; for the architectures with “P,” prediction intervals can be further obtained via integrating
additional steps such as resampling.
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Table 1. Qualitative comparison of interpretability and uncertainty of deep learning models in mortality forecasting.
Abbreviations: P= point estimates; PI= prediction intervals; PD= predictive distribution

Architecture Interpretability Uncertainty

RNN/LSTM (Marino et al., 2023; Nigri et al., 2019) Interpretable if forecasting Lee-Carter time index P/PI


Transformer (Roshani et al., 2022) Typically low interpretability; post-hoc
explanations possible

P

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AE (Hainaut, 2018) Interpretable if decoder mirrors Lee-Carter P


VAE (Miyata & Matsuyama, 2022) Interpretable if decoder mirrors Lee-Carter PD
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CNN (Perla et al., 2021) Typically low interpretability; post-hoc
explanations possible

P

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LCN / LocalGLMNet (Richman &Wüthrich, 2023) Interpretable with GLM-like coefficient P


Multi-task FNN (De Mori et al., 2025) Typically low interpretability; post-hoc
explanations possible

P

Figure 2. Data flow in an LSTM unit at time step t. The input xt and previous hidden state ht−1 pass through three gates
(forget, input, and output) to compute the new cell state ct and hidden state ht . Yellow boxes denote activations σ and tanh;
and blue circles refer to element-wise multiplication and addition. Adapted from Ingolfsson (2021).

2.1. Sequence modeling: Recurrent Neural Networks (RNNs)
Recurrent Neural Networks (RNNs) are a natural fit for sequential data and thus have been applied
to mortality time series. The RNN processes a time series one step at a time, carrying forward
a summary of what it has learnt from previous years to the next step. In mortality modeling,
this sequential structure can be the Lee-Carter time index. However, RNNs suffer from vanishing
gradients in long sequences, where older information gradually fades. Long Short-Term Memory
(LSTM) networks resolve this by maintaining an additional cell state, which allows information to
be preserved and managed throughout the entire sequence. The cell state uses gate mechanisms
to decide what to store, update, and discard (Hochreiter & Schmidhuber, 1997). Figure 2 shows a
unit structure of LSTM. At each time step t, an LSTM cell updates its internal memory and output
by using the current input xt , the previous hidden state ht−1, and the previous cell state ct−1. This
architecture preserves both short-term and long-term dependencies whilst still being capable of
learning non-linear temporal patterns in mortality data. Figure 3 shows recent studies that have
applied RNNs and LSTMs to mortality forecasting.

The Lee–Carter model (Lee & Carter, 1992) models the mortality rates as

ln (mx,t)= αx + βx kt + εx,t , (1)

where αx denotes the average log-mortality at age x, βx is the age-specific sensitivity to the time
index kt , and εx,t is the residual error term. The log of mortality ln (mx,t) is first centered by sub-
tracting αx, and then applying Singular Value Decomposition (SVD) to the resulting age–time
matrix. The leading singular vectors give βx and kt . Finally, kt is forecasted via a random walk or
an ARIMA model, and recombined with αx and βx to produce mortality forecasts.
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Figure 3. Tree of sequence modeling (RNN/LSTM) methods in mortality forecasting.

The Lee-Carter model assumes a constant Gaussian error variance on the log-mortality
rates, yet the error is much larger when death counts are low. To address this, Brouhns et al.
(2002) reframed the model as a Poisson Generalized Linear Model (GLM), namely the Poisson
Lee-Carter, for the death counts as

Dx,t ∼ Poisson
(
Ex,t eαx+βxkt), (2)

where the exposure Ex,t is the the person-years lived at age x in year t. The familiar Lee-Carter
parameters αx, βx, and kt are now estimated by maximum-likelihood in a Poisson GLM, rather
than by SVD. After maximizing the likelihood, the projected period index kt (from a randomwalk
or ARIMA model) is substituted back to give future death counts.

The ARIMAmodels used in the Lee-Carter frameworkmay fail to capture non-linear and com-
plex temporal dependencies in mortality trends. Hence, Nigri et al. (2019) introduced LSTM to
replace the standard ARIMA-based projection of kt . Mortality rates are reconstructed through
the Lee-Carter formula, with LSTM projected kt achieves superior out-of-sample accuracy across
six countries using the Human Mortality Database (HMD) (Human Mortality Database, 2025).
Beyond a plain LSTM, Chen & Khaliq (2023) explored alternative variants of RNN architectures,
comparing LSTM, Bidirectional LSTM (Bi-LSTM), and Gated Recurrent Unit (GRU) for fore-
casting kt on the HMD United States data. They found all three deep learning models achieved
comparable performance to Lee–Carter, with the Bi-LSTM performing marginally better due to
its bidirectional processing capturing both past and future information.

Although RNN variants can extract rich temporal patterns, reliable calibration of these net-
works’ parameters becomes difficult when mortality data is scarce in calendar years. Lindholm &
Palmborg (2022) tackled this problem by combining a traditional Lee-Carter framework with a
residual learning LSTM. They first fit a standard Poisson Lee–Carter model to obtain the baseline
time index trends, then train the LSTM only on the residuals. The LSTM only had to learn the
remaining small non-linear deviations, which is more stable than trying to relearn the whole mor-
tality pattern from limited data. Because short series can give an unrealistic validation result, they
proposed three ways of splitting the data. The Last Observation and Random-Time splits take cal-
endar years away from the already short series, so the network sees even fewer observations during
training. Sub-Cohort Population instead splits individuals to be training or validation, so the full
calendar span is retained to avoid further shortening the series. Applied to HMD populations, the
method matches a random walk index performance when trends are linear but outperforms the
random walk.

The RNN-based methods we have discussed so far are all on single populations for forecasting
in isolation and ignore coherent relationships between populations. Coherent multi-population
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architectures can be used to link related populations and prevent unrealistic long-term diver-
gence. Traditionally, the Augmented Common Factor (ACF) model (Li & Lee, 2005) extended
Lee–Carter tomultiple populations by combining a set of common factors and population-specific
adjustments. Deep neural networks can achieve coherence by sharing information across multiple
populations within a single architecture. Bravo (2021) introduced a simple three-layer LSTM to
jointly forecast Portugal mortality for both genders. The LSTM treats calendar year as the time
dimension, and at each time step, it injects the age-specific mortality rate with a gender indica-
tor. The network produced smooth, coherent mortality projections across both genders over the
entire forecasting horizon and significantly outperformed Lee-Carter for males.

Much of the mortality forecasting literature is focused on point estimations, but actuaries often
need calibrated intervals or tail risk understanding for risk assessment. Hence,Marino et al. (2023)
embedded an LSTM into the Lee-Carter framework and obtained prediction intervals by repeat-
edly resampling death counts via a Poisson bootstrap. For each sample, they refit the Lee-Carter
model and retrain the LSTM on the updated time index, and then use the distribution of these
forecasts to form the interval. The method not only yields more accurate point forecasts but
also provides more reliable long-term intervals than the traditional method in the three HMD
countries separately.

A growing trend in mortality forecasting is to incorporate external covariates, such as environ-
mental, pollution, and fine-grained regional data into mortality forecasting (Dimai, 2024). This
means actuaries can understand the explicit risk drivers for mortality prediction, which enables
them to support scenario testing for pricing and reserving decisions. Robben et al. (2024) intro-
duced a two-stage machine learning framework, first isolating seasonal trends with a Serfling
model, followed by a machine learning model (XGBoost) on weather and pollution anomalies
(European Centre for Medium-Range Weather Forecasts (ECMWF), 2023; Eurostat, 2024) to
capture residual spikes. Building on this, Zheng et al. (2025) introduced MortFCNet, a simple
deep architecture combining GRU and fully connected networks to predict multi-population
weekly death rates based on region-specific weather inputs. The GRU, a lighter RNN variant, is
used to capture temporal dependencies in weekly mortality and weather sequences. It also has
a downstream fully connected (feed-forward) MLP head, which transforms the GRU’s final hid-
den state into region-specific death-rate predictions. Unlike Serfling-based methods and gradient
boosting models, which depend on predefined Fourier terms and manual feature engineering,
MortFCNet learns patterns directly from raw time-series data, hence showing superior prediction
performance to existing methods over 200 fine-grained regions.

In summary, RNNs became effective for mortality forecasting once the domain knowledge
(e.g., the Lee–Carter structure) was integrated, the data limitations were tackled with sophisti-
cated training methods (e.g., ensembles or boosting), multi-population extensions enforced the
coherence, the interpretability was enhanced with interval estimations, and external covariates
were used to help capture short-term mortality volatilities. While RNNs excel at learning tem-
poral dynamics, plain (ungated) RNNs can struggle with very long forecasting horizons due to
vanishing gradient; separately, cohort effects across age groups are not captured by default and
require explicit cross-age links (e.g., shared latent factors or cohort covariates).

2.2. Attentionmechanisms: transformers
Transformers followed RNNs into mortality forecasting to address the vanishing gradient limita-
tion, because the self-attention mechanism in Transformers allows every time point to weigh all
others and capture long-term dynamics (Vaswani et al., 2017).

Figure 4 shows the flow of information in a 1-D self-attention module. The input time series
(e.g, the Lee-Carter time index kt) is linearly projected via the weightmatricesWQ,WK , andWV to
obtain the matrices of queries Q, keys K, and values V . The matrix multiplication QK� measures
the similarity between every pair of time points. Applying a softmax to each row converts these
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Figure 4. Diagram of a 1-D self-attention module for projecting the mortality time index kt . The input sequence is projected
by WQ, WK , and WV to queries Q, keys K, and values V . Soft-maxed similarity scores QK� provide attention weights that
re-scale V , then the weighted result passes through an output-projection layer (viaWo) to produce an output that highlights
the most relevant information. Adopted from Zhang et al. (2019).

Figure 5. Tree of attention-based (Transformers) methods in mortality forecasting.

scores into attention weights that sum to one for each query time step. Each time step is then
updated by a weighted sum of theV vectors across all times, so highly similar parts of the sequence
exert greater influence. The resulting vectors then pass through an output-projection layerWo to
realign dimensionality. This adaptive mechanism highlights the most relevant information before
the resulting representation is passed to the next stage of the Transformer (Zhang et al., 2019).
Recent studies of Transformers for mortality forecasting are shown in Figure 5.

Roshani et al. (2022) were among the first to incorporate a Transformer self-attention network
within a two-step Poisson–Lee–Carter framework, using it to forecast the Lee–Carter time index
kt . They applied this approach to 11 HMD populations. The Transformer showed clear improve-
ment over the LSTM and ARIMA baselines, particularly for longer forecasting horizons. However,
the two-stage process propagates estimation error from the Lee–Carter fit into the Transformer
stage.

To close this gap, Wang et al. (2024) replaced the two-step process with a single-stage
Transformer that forecast mortality rates for each of the eight HMD countries. An embedding
layer first extracts the spatial age structure, while positional encoding is used to preserve the cal-
endar order of the sequence. The multi-head self-attention block then allows each age-specific
mortality rate to attend to every other across time, capturing long-range temporal dependencies
that RNNsmaymiss, and a feed-forward network to predict mortality rate. Empirical tests showed
that the Transformer outperformed the traditional Lee-Carter model and deep baselines (RNN,
LSTM, and CNN) in predictive accuracy across all countries, particularly for older populations.
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Figure 6. VAE probabilistic reconstruction. The encoder transforms X(t) into a latent probabilistic space with mean μ and
scale s, fromwhich z is sampled by using noise ε. The decoder then reconstructs X̂(t) from z (Miyata & Matsuyama, 2022).

However, because a separate model is fitted for each country, parameters are not shared across
populations, leaving cross-country information unexploited.

Hence, Shen et al. (2024) extended Transformers to share information explicitly across coun-
tries by introducing GT-A. The GT-A combines Graph Convolutional Networks (GCNs) to create
cross-country links, with Transformers to forecast mortality rates for European HMD countries.
First, Principal Component Analysis (PCA) is used to reduce the age dimension, then a K-means
is used to cluster countries according to Dynamic Time Warping (DTW) similarities. These clus-
ters form the graph nodes, with edges capturing spatial and demographic relationships, forming
an adaptive adjacency matrix. The matrix supplies the weights that GCN use when propagating
information between nodes, capturing spatial links among clusters, while the Transformer models
the temporal patterns within each node. In such a way, GT-A produces lower forecast errors than
both the Lee-Carter and other neural baselines on 16 HMD populations.

In summary, Transformers enteredmortality modeling because their self-attention inspects the
entire age–period surface at once. It detects long-term links that recurrent and traditional time-
series models often miss. Despite the benefits, transformer models only deliver point estimations
without uncertainty quantification.

2.3. Latent-variable modeling: autoencoders
In mortality forecasting, AEs have also received attention, as methods such as Variational
Autoencoder (VAE) can provide direct probabilistic forecasts that Transformers and other deep
methods struggle to provide for actuaries to better assess risks. AEs are unsupervised neural
networks designed to decompose high-dimensional inputs into latent representations and then
reconstruct the original data from them. An AE, therefore, has two blocks, an encoder to non-
linearly embed the input data into a low-dimensional latent space and a decoder to reconstruct
the original data from this compressed representation. In mortality research, plain AEs can be
used to reduce the age-period mortality source into a set of interpretable latent factors, but they
return a point forecast. The VAE advances this idea by treating the latent representation as a
probability distribution instead of a single deterministic vector. During training, the VAE learns
both a mean and a variance for each latent dimension, allowing it to generate multiple plausible
outcomes rather than a single point estimate (Kingma &Welling, 2014).

Figure 6 illustrates how a VAE probabilistically reconstructs mortality data. The age-specific
average αx from Lee-Carter is first subtracted from the log-mortality rate log (mx,t) to form the
input vector X(t). The encoder maps X(t) to a Gaussian distribution of mean μ and standard
deviation s, and a latent vector z= μ + s� ε is sampled. The decoder reconstructs X̂(t) from z,
which then adds back αx to recover the reconstructed log-mortality rates. Because the latent vector
z is sampled from the latent probabilistic space, the decoder’s output X̂(t) is a random variable;
repeated sampling of z generates a PD rather than a single point forecast. Recent studies of AE for
mortality forecasting as shown in Figure 7.
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Figure 7. Tree of latent-variable modeling (Variational autoencoders) methods in mortality forecasting.

The deterministic point-forecast plain neural network autoencoder (AE) was first applied
to mortality forecasting by Hainaut (2018). This encoder compresses mortality data into low-
dimensional latent factors, which are then projected forward via a simple random walk; the
decoder subsequently reconstructs the full age-specific mortality rate. Importantly, the decoder
fdec transforms the one-dimensional latent index κt into an age-profile fdec(x, κt), which mir-
rors Lee–Carter’s βxkt , so the resulting curve over age is a familiar and interpretable sensitivity
pattern. Results from France, the UK, and the US show that the AE significantly outperformed
Lee-Carter, confirming that latent factors better summarize mortality trends whilst maintaining
the interpretability.

Continuing the theme of interpretability, Tanaka & Matsuyama (2025) developed an inter-
pretable neural network for cause-of-death mortality forecasting. The model is a one-dimensional
convolutional autoencoder (CAE) that replaces the traditional Lee–Carter tensor factorization.
The encoder compresses high-dimensional cause-of-death data (World Health Organization,
2025) into a low-dimensional latent representation. By constraining the latent layer to one dimen-
sion, the CAE learns Lee-Carter-like time index κt , then the decoder converts it into a cause (c)
and age-specific sensitivity curve similar to the βx,c, where the mapping from κt to fdec(x, c, κt)
remains directly interpretable. Here, fdec(x, c, κt) denotes the decoder that maps age x, cause c,
and the time index κt to the reconstructed log-mortality. The CNN enables parameter sharing
and modeling the relationship between different causes of death. Tested in Japan, the United
Kingdom, and Germany, Tanaka & Matsuyama (2025) show that the CAE outperforms tensor
factorization benchmarks while maintaining interpretability. However, AE models provide only
point estimations.

AEs are useful for interpretable point estimations, but VAEs provide built-in probabilistic latent
representations that plain AEs and Transformers lack. Miyata & Matsuyama (2022) embedded a
VAE inside the Bayesian state-space (BSS) framework, with uncertainties handled by the BSS and
the non-linear using a neural network decoder. Specifically, they formulated the log-mortality by
keeping a latent factor zt that evolves as a drifted random walk (similar to the Lee-Carter time
index κt), and the Lee-Carter structure αx + βxκt is replaced with a neural network decoder fθ (zt)
which maps the latent factor to age-specific mortality rates. Because the BSS backbone already
provides endogenous randomness, the model outputs internally calibrated confidence intervals,
and the VAE estimator delivers without the heavyMarkov ChainMonte Carlo (MCMC) sampling,
such as random seeds, required by other neural networks. Empirical tests on HMD data show that
the VAE achieves forecast errors at least as low as, and in several cases lower than, the standard
Lee–Carter benchmark while providing the interval coverage.

In summary, applying AEs in mortality forecasting combines deep learning, probabilistic
uncertainty modeling, and interpretable latent representations. This approach manages the black-
boxes criticism by providing an interval estimation and by revealing interpretable latent factors to
enhance the interpretability, but the current architecture designs do not capture cohort effects, as
the latent time process is simplified to keep the estimation manageable.
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Figure 8. Data flow in a CNN block. The input is a 2D mortality matrix. The matrix is processed by sliding over a set of filters
that the network learns during training, passing through an activation, and then being downsampled by max pooling. The
resulting features are flattened and fed into a dense layer to produce the final mortality rate output (GeeksforGeeks, 2025;
Podareanu et al., 2019).

2.4. Spatial grid modeling: Convolutional Neural Networks (CNNs)
CNNs followed RNNs to capture cohort effects between age groups, which was also a limitation
of the AEs. CNNs use learnable filters that move across small neighborhoods of a matrix, enabling
them to recognize local spatial and temporal patterns. In mortality forecasting, the input can be
mortality rates arranged as a two-dimensional matrix, with rows representing years and columns
representing age groups. Unlike RNNs, which process one year at a time, CNN filters slide across
adjacent ages and years to capture the diagonal cohort effects. As these convolutions are shift-
invariant, patterns such as sudden mortality spikes learnt in one part of the grid transfer to other
ages and cohorts, which allows better generalizations (Zhang et al. 2022).

Figure 8 illustrates that, in a CNN, the input passes through several layers in sequence and
each layer transforms the input in specific ways to help the network learn useful patterns. The
input here is a mortality matrix for a country, where rows represent years and columns represent
age groups. Each convolutional layer applies learnable filters, performing a weighted sum and
outputs a new value into the feature map. The max pooling layer then downsamples the feature
maps by keeping the most prominent value (maximum) to reduce dimensionality. The resulting
features are then passed to dense layers to predict the mortality rate (LeCun et al., 1998). Recent
applications of CNN methods in mortality forecasting are shown in Figure 9.

Both Perla et al. (2021) and Wang et al. (2021) employed CNNs for age–period multi-
population mortality forecasting. Perla et al. (2021) implemented a one-dimensional (1D) CNN
along each age’s time series, capturing temporal patterns in mortality improvements. Their results
show that even a simple CNN outperforms traditional stochastic models on HMD and the US
Mortality Database (UMD) (University of California, Berkeley 2025). However, processing each
age separately prevents the 1D CNN from learning interactions across age or cohorts across the
full mortality grid. By contrast, Wang et al. (2021) framed mortality data as a two-dimensional
(2D) matrix (ages by years). This allows the CNN to scan both age and time, detecting local
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Figure 9. Tree of spatial grid modeling (CNN) methods in mortality forecasting.

patterns such as cohort effects. Their two-dimensional model captures dependency structures that
a 1D approach might miss by incorporating these neighborhood interactions. Out-of-sample tests
on 41 HMD populations confirm superior performance to traditional models. Notably, Wang et
al. (2021) also showed that the framework can be extended to multi-population data.

Since CNNs capture local spatial dependencies but struggle to capture the long-range temporal
dynamics important for mortality improvements, later studies have paired them with sequence
models, such as LSTM networks. Zhang et al. (2022) therefore proposed a hybrid LSTM–CNN
model for multi-population mortality forecasting, enabling the network to learn shared informa-
tion across 21 HMD populations. In this architecture, the LSTM captures long-term temporal
dependencies (mortality improvement trends), while the CNN extracts local age–period features
via 2D convolutions. By merging these components, the model embeds an age–period–cohort
structure within the network. On HMD data, the model produced the most accurate long-term
forecasts, outperforming stand-alone CNNs, stand-alone LSTMs, and traditional benchmarks.

Overall, CNNs excel at detecting local age-period patterns, and when compared with LSTMs,
they further improve long-range accuracy. However, the shared kernels of CNNs impose shift
invariance, assuming that the same pattern reappears everywhere on the mortality surface. This
can blur location-specific cohort variations.

2.5. Locally connected &multi-task neural networks
LCNs can retain convolutional strengths while capturing position-specific mortality patterns that
the standard CNNs miss. FNNs are neural networks in which information flows in a single direc-
tion without any cycles or loops. The CNN described above is an FNN, and an LCN is a CNN
variant without weight sharing. As illustrated in Figure 10, the fully connected feed-forward
network (FFN) links every unit in one layer to every unit in the next, and ignores any spatial infor-
mation. The CNNs discussed earlier process inputs by having each neuron in a convolutional layer
look only at a small patch of the input to capture local patterns, and then share the same learnable
filter across all positions. In contrast, LCNs preserve local connectivity, where each unit only con-
nects to a restricted set of units and uses distinct filters for each region. Figure 11 illustrates recent
studies of LCNs and other FNNs in mortality forecasting.

Scognamiglio (2022) tackled the multi-population shortcomings of the Lee-Carter model by
using neural networks. Their architectures mirror the Lee-Carter setup by simultaneously learn-
ing the parameters (age intercept, sensitivity, and time index) for each population. They explored
three networks, Fully Connected Layer (FCL), LCN, and CNN, and found LCN to be the most
effective for its local connectivity. The pooling across multiple HMD populations produced
smoother parameters and achieved better accuracy than the traditional Lee-Carter calibration.
This shows LCNs can improve forecasts while retaining the model’s age-period interpretability.

Pursuing the same balance of accuracy and interpretability, Richman & Wüthrich (2023)
proposed LocalGLMNet, an FNN with a skip connection that preserves the additive form of
a Generalized Linear Model (GLM) while allowing weights to be learnt non-linearly. The skip
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(a) (b) (c)

Figure 10. Comparison of a locally connected layer versus a fully connected and a convolutional layer. In (a) the fully con-
nected structure, each of the three output units is connected to all input units; in (b) the locally connected structure, each
output unit has its own set of weights; and in (c) the convolutional structure, there is a single shared filter applied across all
positions. The figures are adapted from Scognamiglio (2022).

Figure 11. Tree of locally connected andmulti-task network methods in mortality forecasting.

connection sends each input straight to the final output layer, so the prediction is an intercept
plus the sum of feature-wise products between inputs and a learnt weight. If the weights remain
constant across inputs, the model reduces to the ordinary GLM.

LocalGLMNet was introduced for tabular insurance data. Building on that foundation, Perla
et al. (2024) extended the LocalGLMNet (Richman &Wüthrich, 2023) and applied it to mortality
grids; they (i) replaced the FCL with LCN so GLM coefficients can vary by age and time for each
population smoothly, and capture localized patterns, (ii) used a denoising AE to filter measure-
ment noise in the data, and (iii) added regularization to further enhance the forecast accuracy. On
the HMD populations, the regularized LocalGLMNet surpassed both locally connected convolu-
tion benchmarks and the Lee–Carter model. Moreover, they applied a fine-tuned transfer-learned
LocalGLMNet variant, which demonstrated superior accuracy when the model was trained on
HMD and applied to the UDM datasets. Although the refined LocalGLMNet delivered more
accurate point forecasts, it offers no information about forecast uncertainties that actuaries need.

Responding to the gap above, Corsaro et al. (2024) recognized that insurers need the full dis-
tribution of mortality outcomes beyond just the mean mortality rate. Hence, they introduced a
jointly calibrated neural network quantile Lee–Carter model that learns all populations simul-
taneously. They fitted a shared embedding-based network to produce each population’s age
intercept ax and sensitivities βx instead of separate SVD or quantile regressions for each pop-
ulation. A two-layer feed-forward network (LCN followed by FCN) trained the time index kt .
The network is trained separately for each quantile (0.05, 0.10, 0.50, 0.90, 0.95). Results on HMD
populations show that the jointly calibrated model outperformed both the traditional Lee-Carter
average model and the single-population quantile models fitted separately. Additionally, multi-
population extreme-quantile forecasts are more reliable than single-population models fitted
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separately. However, although Corsaro et al. (2024) took a step towards distributional informa-
tion by providing quantile curves, each predicted quantile remains a point prediction, and the
method does not quantify the model or parameter uncertainty.

Extending Lee-Carter models to handle diverging population trends, Perla & Scognamiglio
(2023) proposed the Locally Coherent Multi-Population Neural Network, which combines a
learnable country embedding with a relaxed coherence assumption. In this model, each coun-
try is represented by a learnt low-dimensional vector (the country embedding); hence, countries
with similar age-period patterns cluster naturally in the latent space. The relaxed coherence refers
to allowing separate clusters to share their own trends. Within each cluster, FCN layer is used
to refine the age intercept and sensitivities, preserving the Lee-Carter interpretability whilst cap-
turing local non-linearities. The model yields lower out-of-sample MSE than single-population
Lee–Carter models and the fully-coherent ACF benchmark.

The above studies are concentrated on retaining an explicit Lee-Carter or GLM structure and
estimating their covariates. Studies have also applied FNNs to learn directly from the mortality
surface. Richman & Wüthrich (2021) proposed a single-task FNN for multi-population forecast-
ing. The approach was to train an FNN across all populations simultaneously, with combined data
from various ages, years, genders, and countries, to predict the mortality rate for a single combi-
nation of inputs. The hidden layers are shared by all countries, and a country-embedding layer is
used to distinguish different countries. This allows the model to learn shared mortality patterns
across populations. While the model outperformed Lee-Carter and its variants for populations
with similar trends, the accuracy deteriorated when mortality patterns diverged.

To address the performance drop of using single-task networks when mortality patterns
diverge, De Mori et al. (2025) proposed a hierarchical multi-task design to have a controlled way
for pooling countries that have similar mortality trends. They first explicitly clustered 17 HMD
populations with K-means to group countries with similar life expectancy changes. Embedded
inputs (year, age, sex, and country) are passed through three fully connected dense layers that
learn representations common to every country. Subsequently, a cluster-specific dense layer is
added to capture the pattern within clusters. This design draws strength from countries with larger
datasets and achieves lower out-of-sample errors than both single-task networks and Lee-Carter
benchmarks.

In summary, LCNs bridge FFNs and CNNs, capturing location-specific mortality patterns
while limiting the number of parameters. When embedded in the Lee-Carter framework or an
interpretable LocalGLMNet, LCN consistently demonstrated superior accuracy. Multi-task feed-
forward network models share information across populations to reduce overfitting and improve
accuracy.

3. Remaining challenges and future directions
3.1. Remaining challenges
Current deep learning models for mortality forecasting still face several important limitations.
First, uncertainty quantification remains weak, as most recurrent, convolutional, Transformer,
LCNs, andMulti-Task FNNs yield only point forecasts, offering no built-in measures of predictive
uncertainty. Plain VAEs improve this, where the encoder outputs the Gaussianmean and variance.
The Bayesian VAEs byMiyata &Matsuyama (2022) produced a probabilistic latent representation
by capturing the parameter uncertainty. To manage model complexity, they modeled the latent
factors as a one-dimensional random walk, with independent residuals and a single-neuron final
layer. However, the simple structure cannot capture cohort effects or be used for multi-population
forecasting.

Second, interpretability is important for actuarial decision-making; however, interpretability
is limited and varies across architectures. For example, the filters of a CNN excel at captur-
ing localized patterns, but these features do not readily translate into global age-period-cohort
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narratives familiar to actuaries. Furthermore, architectures like Transformers (Shen et al., 2024)
remain largely opaque, failing to provide time index and age-period sensitivities analogous to
Lee-Carter.

Third, multi-population mortality forecasting is still imperfect. For example, recent multi-task
and graph-based models in mortality modeling (De Mori et al., 2025; Shen et al., 2024) rely on
heuristic K-means clustering to assign countries to groups. Although K-means aims to minimize
within-cluster variation (MacQueen, 1967), and thus echoes the idea of Li & Lee (2005) that reduc-
ing heterogeneity can improve multi-population forecasting, the method is unsupervised and not
linked to forecasting loss. As a result, the clustering outcomemay not reflect demographic similar-
ity and may not guarantee predictive accuracy improvement. Moreover, the relationship between
countries in multi-population mortality forecasting often ignores temporal changes in mortality
trends over time. For example, Shen et al. (2024) modeled country relationships by GCN, and
Robben et al. (2024) adopted an adjacent matrix in the penalty to incorporate smoothness across
neighboring regions; although the methods explored spatial relationships, these relationships are
assumed to be static.

Fourth, data scarcity at extreme ages or in small regions continues to undermine model sta-
bility, even when information is pooled across populations. For example, Richman & Wüthrich
(2023) noted that model weights become unpredictable for older age groups, and accuracy is lower
for smaller populations.

Fifth, some areas in mortality forecasting are under-explored with deep learning, for exam-
ple, deep learning models for cause-of-death mortality forecasting (Tanaka & Matsuyama, 2025).
In addition, many recent and advanced deep learning methods and architectures, such as diffu-
sion models (Ho et al., 2020) and Mamba (Gu & Dao, 2023), are still unexplored in mortality
forecasting.

Finally, marginal gains in predictive accuracy offer limited actuarial value if they come at the
expense of interpretability or make uncertainty quantification impractical. Actuarial work relies
not only on point forecasts, but also on well-calibrated, explainable measures of uncertainty,
particularly under regulatory frameworks.

3.2. Future directions
These shortcomings point to several directions for future work. First, to address the weak uncer-
tainty quantification, Monte Carlo sampling from the latent space could be used to generate the
confidence interval from the plain VAE, as similarly suggested for future work by Apellániz et al.
(2024) in the survival analysis. Moreover, hierarchical Bayesian methods could be combined with
deep learning for multi-population mortality forecasting with uncertainty quantification.

Second, to tackle the limited interpretability, tailored interpretability tools, such as SHapley
Additive exPlanations (SHAP) values (Lundberg & Lee, 2017), could be adapted to mortality grids
to map deep network components back to interpretable actuarial age, period, and cohort factors,
making the motivation behind forecasting easier to explain.

Third, for multi-population mortality forecasting, instead of the heuristic grouping, a cluster-
ing layer can be constructed to cluster the populations under the supervision of the prediction
loss. Moreover, to cover both the relationship between countries/regions and the dynamic tempo-
ral changes of mortality data (e.g., to induce a temporal index into the spatial adjacency matrix),
spatio-temporal deep models can be explored.

Fourth, to overcome the data scarcity when forecasting the mortality rates, it can be help-
ful to integrate external covariates such as vaccination coverage, socioeconomic indicators, or
environmental factors (Wang et al., 2024).

Fifth, it merits further exploration of deep learning models for cause-of-death mortality fore-
casting, for example, by using multi-task deep learning models and graph neural networks to
model the relationship between causes. It is also worthwhile to explore the latest deep learning
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methods and architectures, such as Mamba and diffusion models, for mortality forecasting,
because they have shown promising performance in modeling time series and spatio-temporal
data in other areas like computer vision and pattern recognition. For example, Mamba-type selec-
tive state-space models offer efficient long-context sequence modeling (linear time); when paired
with cohort information, they could better capture slow cohort trends and help stabilize forecasts
for data-sparse ages, small regions, and rare causes. Conditional/score-based diffusion models
yield samples from an approximate PD, enabling principled uncertainty quantification (viaMonte
Carlo quantiles).

Finally, although these future directions mitigate specific shortcomings, they do not yet resolve
the overarching challenges of actuarial modeling. The development of actuarial models should
balance predictive performance, complexity, uncertainty, and interpretability.

4. Conclusion
Deep learning is reshaping mortality forecasting by matching the design of deep neural networks
with key actuarial characteristics. RNNs model serial dynamics, CNNs capture local age–period
structures on mortality grids, Transformers capture longer-range age–cohort links, AEs pro-
duce full PD via latent spaces, LCNs capture localized mortality trends, and multi-task FNNs
pool information across countries to stabilize sparse data sets. As research moves from single-
population point forecasts to coherent multi-population, distributional projections, transparency,
and domain-driven design become vital. No single network dominates every setting, but when
aligned with data context and actuarial insight, deep learning outperforms traditional stochastic
approaches, signaling a promising direction for mortality forecasting.
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