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Covering Maps and Periodic Functions on
Higher Dimensional Sierpinski Gaskets

Huo-Jun Ruan and Robert S. Strichartz

Abstract. We construct covering maps from infinite blowups of the n-dimensional Sierpinski gasket

SGn to certain compact fractafolds based on SGn. These maps are fractal analogs of the usual covering

maps from the line to the circle. The construction extends work of the second author in the case n = 2,

but a different method of proof is needed, which amounts to solving a Sudoku-type puzzle. We can use

the covering maps to define the notion of periodic function on the blowups. We give a characterization

of these periodic functions and describe the analog of Fourier series expansions. We study covering

maps onto quotient fractalfolds. Finally, we show that such covering maps fail to exist for many other

highly symmetric fractals.

1 Introduction

The purpose of this paper is to extend to the n-dimensional Sierpinski gasket SGn the

results of [S4] for SG2. Let {qi}n+1
i=1 be n + 1 points in R

n that span a nondegenerate

simplex, and denote by K = SGn the attractor in R
n of the iterated function system

(IFS) {Fi}n+1
i=1, where Fix =

1
2
(x + qi). We regard the points {qi} as boundary points

of K , not because they are topologically boundary points, but because they play the

role of boundary points in the analytic theory of Kigami (see [Ki, S3]). A fractafold

without boundary F modeled on K is a finite or countable union of copies of K where

each boundary point of each copy is identified with exactly one other such boundary
point. Note that a neighborhood of an identified boundary point is isometric to a

neighborhood of a nonboundary point in K (for example F1K ∩ F2K). Thus every

point in F has a neighborhood isometric to an interior neighborhood of K . In this
way the fractafold is the analog of a flat manifold. The fractafold is compact if and

only if the number of copies of K is finite. The theory of fractafolds based on SG2 was

introduced in [S2].
A special class of noncompact fractafolds are the infinite blowups Kω defined by

an infinite word ω (see Section 2 for the construction), where the large scale struc-
ture mirrors the small scale structure [S1, T]. When n = 1 we obtain the real line

in this manner. The main question we address is the following: do covering maps

π : Kω → F exist for some compact fractafolds, and can we describe the covering
maps explicitly? Here we want covering maps in a geometric sense, local isometry,

rather than just a topological sense. One reason for this is that a covering map allows

us to define periodic functions on Kω to be lifts of functions on F via the covering
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map. Note that Kω does not admit nontrivial isometries, so we cannot define peri-
odic functions via analogs of translations.

In the case n = 2, such covering maps are constructed in [S4] for a fracatafold
F0 consisting of 4 copies of SG2. Then, by a simple process of subdivision, this leads

to an infinite family πk : (SG2)ω → Fk of covering maps, where Fk consists of 4 · 3k

copies of SG2. Another set of covering maps is also obtained by taking the quotient
of F0 under a finite group of fixed point free isometries, and then subdividing. It is

conjectured that these are all the possible covering maps.

We cannot simply mimic the construct in [S4] for general n for the following

reason: the construction used a slightly different IFS {F̃i} whose attractor is still SG2,

but where all F̃i are local inverses of a single expanding map. Such an IFS “with twists”
exists for SGn only when n is even. We use a different method here that works for all n.

The fractafold F0 consists of n + 2 copies {Yi}n+1
i=0 of SGn, with each boundary point

of Yi identified with a boundary point of Y j for j 6= i. To describe the covering map

π0 : Kω → F0 we need to place a label L(C) in each 0-cell (isometric to SGn) in Kω that

tells which copy Yi it gets mapped to (the exact mapping is then determined by the
condition that it must be an isometry on the cell and by the labels of all neighboring

0-cells). The key condition that we require is that the labels of L(C) and its n + 1

neighbors must contain all values in {0, 1, . . . , n + 1} exactly once. This reduces the
construction of the covering map to the solution of a Sudoku-type puzzle! It turns

out that the description of the labeling is easier if we simultaneously label cells of
larger size. The details are given in Section 2. Once we have the single covering map

π0 : Kω → F0, we easily obtain an infinite family of covering maps πk : Kω → Fk

where the fractafolds Fk are obtained inductively from F0 by subdivision (smaller
cells in F0 become larger cells in Fk).

In Section 3 we give two characterizations of periodic functions, extending the
results of [S4] for n = 2. The first is relatively straightforward and requires that the

function be essentially the same on all cells with the same label. The second requires

that the function be invariant under certain transformations of central cycles in all
large cells. In the case n = 2 these transformations are in fact isometries of certain

subsets of Kω, but this is not the case in general.

The fractafold F0 has an isometry group which is isomorphic to the permutation

group on n + 2 letters. Any subgroup G̃ that acts without fixed points on F0 yields a

quotient fractafold F0/G̃ and a covering map from Kω to F0/G̃. The periodic func-
tions associated to this covering map are just the periodic functions associated to F0

that are invariant under the action of G̃. In [S4] we identified one such a subgroup

when n = 2. In Section 4 we characterize such subgroup in terms of the associated
permutation subgroup: every nonidentity permutation must have either zero or one

fixed point, and the remaining cycles must all have the same odd length. We give

a number of examples. There is at least one in every dimension, but the simplest
type of example depends on the parity of n. The problem of enumerating (up to

conjugacy) all examples appears to be very challenging.

In Section 5 we discuss the analog of Fourier series for our periodic functions.

These functions may be expanded in periodic eigenfunctions of the Kigami Laplacian

on SGn, using the method of spectral decimation of Fukushima and Shima [FS].
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This is a rather straightforward extension of the n = 2 case in [S4], so we keep the
discussion brief.

It is natural to ask if similar covering maps can be constructed for other highly

symmetric self-similar fractals. In Section 6 we show that in most cases the answer is

no. We explain in detail why there are no covering maps for the pentagasket, but it
is clear that the same reasoning applies to other fractals. In fact we know of no other

fractals where it is reasonable to expect covering maps to exist.

There is another approach to our problem that is based on the theory of self-

similar groups [GS, N]. This will be treated in a forthcoming paper by Grigorchuk,
Nekrashevych, and Šuniḱ.

2 Definition of Covering Map

Let n ≥ 2 be a positive integer. Let K = SGn ⊂ R
n generated by n + 1 maps

Fix =
1
2
(x + qi) where {qi}n+1

i=1 span a nondegenerate simplex.

Denote Ω = {1, 2, . . . , n + 1} and Ω
′
= Ω ∪ {0}. For m ≥ 1, define

Ω
m

= {i1i2 · · · im | i j ∈ Ω for all 1 ≤ j ≤ m}

to be the set of all words with length m. Define Ω
∗

=
⋃∞

m=1 Ω
m to be the set of all

words with finite length. Define

Ω
∞

= {i1i2 · · · i j · · · | i j ∈ Ω for all j}

to be the set of all words with infinite length. For any I ∈ Ω
m, we define |I| = m.

For any i1i2 · · · im ∈ Ω
∗, we write Fi1i2···im

for Fi1
◦ Fi2

◦ · · · ◦ Fim
and define

Ki1i2···im
= Fi1i2···im

(K), qi1i2···im
= Fi1i2···im−1

(qm).

Figure 2.1: The figures of K, B1(K) and B12(K).

For any i1i2 · · · ik ∈ Ω
∗, we define

Bi1i2···ik
(x) = F−1

ikik−1···i1
(x) = F−1

i1
◦ F−1

i2
◦ · · · ◦ F−1

ik
(x), x ∈ R

n.
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Then Bi1i2···ik
(x) is a linear map with derivative 2k. It is easy to check that for k ≥ 2,

Bi1i2···ik
(x) = Bi1i2···ik−1

(Bik
(x)) = 2Bi1i2···ik−1

(x) − Bi1i2···ik−1
(qik

), x ∈ R
n.

See Figure 2.1 for an example, n = 2. For any word ω = ω1ω2ω3 · · · ∈ Ω
∞, we define

Kω =

∞⋃
m=1

Bω1ω2···ωm
(K).

Kω is called an infinite blow-up of K .
Let ω ∈ Ω

∞. If for at least two i’s in Ω, there are infinite many j such that ω j = i,

then ω is called nondegenerate. Throughout the paper, we always suppose that ω is
nondegenerate.

Let [ω]m = ω1ω2 · · ·ωm denote the truncation of ω of length m. For any ω ′ ∈ Ω
∗,

we call B[ω]m
(Fω ′K) a cell of Kω , and the set of all n + 1 vertices of the cell are called

the boundary of the cell, denoted by ∂B[ω]m
(Fω ′K). For k = |ω ′| − m we define k to

be the order of B[ω]m
(Fω ′K), denoted by ord(B[ω]m

(Fω ′K)). We also call B[ω]m
(Fω ′K)

a k-cell of Kω , or a k-cell for short.
Let C and C̃ be two cells of Kω . C̃ is called a k-subcell of C if C̃ ⊂ C and ord(C̃) = k.

If C̃ ⊂ C and ord(C̃) = ord(C) + 1, we call C̃ a child cell of C and call C the parent

cell of C̃. We also use U (C) to denote the parent cell of C and define U m+1(C) =

U (U m(C)) for positive integer m.

Let C be an m-cell for some integer m. By the definition of Kω, there exists a point

pC ∈ R
n such that C = 2−mK + pC . Define the translation TC by

TC (x) = 2−mx + pC , x ∈ R
n.

For any ω ′ ∈ Ω
∗, we define Cω ′ = TC (Kω ′). See Figure 2.2 for an example with

n = 2.

The following fact is straightforward.

Lemma 2.1 Let C be a cell of Kω. Then, for any ω ′, ω ′′ ∈ Ω
∗, we have Cω ′ω ′ ′ =

(Cω ′)ω ′ ′ .

Proof Suppose ord(C) = m and |ω ′| = k. By definition, we have

Cω ′ω ′ ′ = 2−mKω ′ω ′ ′ + pC , (Cω ′)ω ′ ′ = 2−m−kKω ′ ′ + pCω ′

and

(2.1) Cω ′ = 2−mKω ′ + pC = 2−m−kK + pCω ′
.

Note that there exists a point oω ′ ∈ R
n such that Fω ′(x) = 2−kx + oω ′ . We then have

Kω ′ = Fω ′(K) = 2−kK + oω ′ . Thus, by (2.1), we have

2−m
(
2−kK + oω ′

)
= 2−m−kK + pCω ′

so that pCω ′
= pC + 2−moω ′ . It follows that

Cω ′ω ′ ′ = 2−mKω ′ω ′ ′ + pC = 2−mFω ′(Kω ′′) + pC

= 2−m(2−kKω ′ ′ + oω ′) + pC = 2−m−kKω ′′ + pCω ′
= (Cω ′)ω ′ ′ .
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Figure 2.2: TC , Kω and Cω .

Figure 2.3: A fractafold, n = 2.

Definition 2.2 Let F be any compact fractafold without boundary. Then the map

π : Kω → F is called a large locally isometric covering map if every 0-cell C in F

has a connected neighborhood U such that π is an isometry from each connected

component of π−1(U) onto U. In what follows, we shall simply write covering map

for such maps.

Now suppose F is the specific fractafold consisting of n + 2 copies of K , each

denoted by Yi for i ∈ Ω
′, and each glued to all the others at boundary points such

that

(i) Yi ∩ Y j is a singleton for any i 6= j,

(ii) and Yi ∩Y j ∩ Yk = ∅ for any distinct i, j, k.

See Figure 2.3 for an example with n = 2. Note that {Yi} are the only subsets of

F isometric to K , so any covering map must map each 0-cell C in Kω to one of the
Yi . Define the label L(C) to be that i. So each covering map defines a labeling, and

each labeling may be used to define a covering map provided the conditions of the

following lemma hold.
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Lemma 2.3 There is a one-to-one correspondence between covering maps and label-

ings satisfying the following.

(2.2) For every 0-cell C, all values in Ω
′ occur exactly once among the labels of C and

the n + 1 neighboring 0-cells in Kω .

Proof Suppose we have a covering map and any 0-cell C with L(C) = i. Then each

boundary point v of C is mapped to a boundary point π(v) of Yi , and each boundary
point of Yi also belongs to a distinct Y j for j 6= i. If π(v) ∈ Y j then π(C( j))=Y j , where

C( j) is the neighboring 0-cell of C glued at v. Thus L(C( j)) = j, and we obtain all

labels in Ω
′ among C and {C( j)}. Moreover, the isometry π : C → Yi is determined

by the images π(v) of the boundary points of C, and these images are determined by

the labeling, π(C ∩C( j)) = Yi ∩ Y j .

Conversely, given a labeling with the property (2.2), we can define π|C to be the

isometry C → YL(C) such that π(C ∩ C ′) = YL(C) ∩ YL(C ′) for all n + 1 neighboring
0-cells C ′. It is easy to verify that π is a covering map.

We will show that covering maps exist by constructing labeling satisfying (2.2). It

will simplify matters if we extend the labels to all cells of nonpositive level.

Suppose there exists a labeling satisfying (2.2). Then for any (−1)-cell C, L(Ci)
takes different values in Ω

′ for different i ∈ Ω. Thus, we can define the label L(C)

to be the unique value in Ω
′ \ {L(Ci)}i∈Ω. We call this the complementary method to

label (−1)-cells.

Now we suppose that C and C ′ are two distinct (−1)-cells and Ck ∩ C ′
ℓ 6= ∅ for

some k, ℓ ∈ Ω. Note that C ′
ℓ and Ci , i ∈ Ω \ {k} are the n + 1 neighboring 0-cells

of Ck in Kω , so we know from (2.2) that L(C ′
ℓ) is the unique value in Ω

′ \ {L(Ci)}.

Thus L(C ′
ℓ) = L(C) by the definition of L(C). Similarly L(C ′) = L(Ck). We also

have a direct result L(C) 6= L(C ′) since L(C) 6= L(Ck). We call L(C ′
ℓ) = L(C),

L(C ′) = L(Ck) and L(C) 6= L(C ′) the intersection property of labeling.

Denote by (2.2)m the properties analogous to (2.2), if it holds for any (−m)-cell

C. We also require that the n + 1 neighboring cells of C have the same order as C in
(2.2)m.

By the above, we know that (2.2)0 holds.

Using intersection property of labeling, for every (−1)-cell C ′ in Kω, the labels of
its n + 1 neighboring (−1)-cells are L(C ′

1), . . . , L(C ′
n+1). This means that (2.2)1 holds.

Then for any (−2)-cell C, L(Ci) takes different values in Ω
′ for different i ∈ Ω. Thus,

we can define the label L(C) by the complementary method, i.e., to be the unique
value in Ω

′ \ {L(Ci)}.

Now we suppose that C and C ′ are two distinct (−2)-cells and Ck ∩ C ′
ℓ 6= ∅ for

some k, ℓ ∈ Ω. Using the same method as above, by (2.2)1, we can show that the

intersection property of labeling still holds.

Continuing this procedure, we can define the label for any cell C with nonpositive

order by the complementary method with (2.2)m holding for any m ≥ 0 and with
the intersection property of labeling. That is, we have following lemma.

Lemma 2.4 Let L be a labeling satisfying (2.2).Then we can label any cell with non-

positive order by the complementary method with (2.2)m holding for any m ≥ 0.
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Furthermore, suppose C and C ′ are two distinct cells with the same nonpositive order

and Ck ∩ C ′
ℓ 6= ∅ for some k, ℓ ∈ Ω. Then L(C) = L(C ′

ℓ), L(C ′) = L(Ck) and

L(C) 6= L(C ′).

We can represent each (−1)-cell of Kω by an (n + 1)-gon in the plane. Each vertex
represents one 0-cell, marked with the cell’s label. These cells are all connected to

each other, and to one other 0-cell outside the (−1)-cell. We write the label of the

(−1)-cell in parenthesis in the center of the cell. For example, n = 3, we may have a
(−1)-cell as in Figure 2.4.

( 0 )

  2

3

1

4

Figure 2.4: Labels in a (−1)-cell.

Suppose this (−1)-cell lies in a (−2)-cell as in Figure 2.5. Then we can use the

intersection property to label all subcells of the (−2)-cell with nonpositive order as
in Figure 2.6.

( 0 )

  2

3

1

4

  

  

Figure 2.5: A (−2)-cell.

( 0 )

  2

3

1

4

( 1 )

  0

3

2

4

( 3 )

  0

2

1

4

( 4 )

  0

3

1

2

( 2 )

Figure 2.6: A totally labeled (−2)-cell.

Note that if there exists a labeling satisfying (2.2), then we can define labels from
smaller to larger cells by the complementary method. The following interesting

lemma shows that we can determine labels from the opposite direction.

Lemma 2.5 Let L be a labeling satisfying (2.2), with any cell with nonpositive or-

der labeled by the complementary method. Then L satisfies the recurrent property of

labeling: L(Ci j) = L(C j) if i 6= j and L(Cii) = L(C) for any cell C with ord(C) ≤ −2.
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Proof If i 6= j, since qi j = q ji = Ki ∩ K j = Ki j ∩ K ji , we have Ci j ∩ C ji =

TC (qi j) 6= ∅. Thus L(Ci j) = L(C j) by the intersection property of labeling. It

follows that

{L(Ci j)| j ∈ Ω \ {i}} = {0, 1, . . . , n + 1} \ {L(Ci), L(C)},

which implies that L(Cii) = L(C).

We call C ′ an equalsize neighboring cell of C if C ′ is a neighboring cell of C with

ord(C ′) = ord(C). The following lemma can be viewed as the inverse lemma of

Lemma 2.5.

Lemma 2.6 Let L be a labeling which assigns any cell with nonpositive order a value

in Ω
′. Suppose L satisfies the recurrent property and

(2.3) L(Ci) takes different values in Ω
′ for any (−1)-cell C.

Then L satisfies (2.2).

Proof Suppose that C ′ and C ′ ′ are any two distinct (−1)-cells with C ′
k ∩C ′ ′

ℓ 6= ∅ for

some k, ℓ ∈ Ω. It suffices to prove that we have the intersection property of labeling,

i.e., L(C ′ ′
ℓ ) = L(C ′), L(C ′

k) = L(C ′ ′) and L(C ′) 6= L(C ′ ′).
Suppose C ′ and C ′ ′ have same parent cell, say C. Then there exist α, β ∈ Ω such

that C ′
= Cα and C ′ ′

= Cβ . Since Cαβ ∩Cβα = Cα ∩Cβ = TC (qαβ) as in the proof

of Lemma 2.5, we know from ∅ 6= C ′
k ∩C ′ ′

ℓ = Cαk ∩Cβℓ = TC (Kαk∩Kβℓ) that qαβ =

Kαk ∩ Kβℓ, which implies that k = α, ℓ = β. Thus k 6= ℓ, C ′
= Cℓ and C ′ ′

= Ck. It

follows that L(C ′ ′
ℓ ) = L(Ckℓ) = L(Cℓ) = L(C ′). Similarly L(C ′

k) = L(C ′ ′). Since C ′

and C ′ ′ have the same parent cell, they have different labels by (2.3).

Now, suppose m ≥ 2 is the minimal positive integer such that U m(C ′) = U m(C ′ ′).

Using the same discussion as above, we have

(2.4)
L(U m−1(C ′)) = L(U m−2(C ′ ′)), L(U m−1(C ′ ′)) = L(U m−2(C ′)),

and L(U m−1(C ′)) 6= L(U m−1(C ′ ′)).

In order to prove the intersection property in this case, we introduce following
claim.

Claim A Let C be a cell of Kω. If one equalsize neighboring cell of C is not con-

tained in U 2(C), then the labels of C and U 2(C) are equal.

Proof of Claim A Denote C̃ = U 2(C). Note that for any i, j ∈ Ω with i 6= j, the n+1

equalsize neighboring cells of C̃i j are C̃it , t ∈ Ω \ { j} and C̃ ji which are all subcells

of C̃ . Hence there exists i ∈ Ω such that C = C̃ii so that L(C) = L(C̃ii) = L(C̃) by
the recurrent property.

Note that for any 0 ≤ i < m, U i(C ′) has an equalsize neighboring cell U i(C ′ ′)
and U i(C ′ ′) is not contained in U i+2(C ′) if i + 2 < m. Then we know from Claim A

that

L(C ′) = L(U 2(C ′)) = · · · = L(U 2r(C)), if 2r < m.
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Similarly

L(C ′ ′
ℓ ) = L(U (C ′ ′)) = · · · = L(U 2t+1(C ′ ′)), if 2t + 1 < m.

It follows that L(C ′) = L(U m−1(C ′)) if m is odd, and L(C ′) = L(U m−2(C ′)) if m is
even. Similarly, L(C ′ ′

ℓ ) = L(U m−2(C ′ ′)) if m is odd, and L(C ′ ′
ℓ ) = L(U m−1(C ′ ′)) if

m is even. Thus L(C ′) = L(C ′ ′
ℓ ) always holds by (2.4). Similarly L(C ′ ′) = L(C ′

k). We
also have L(C ′) 6= L(C ′ ′).

Now we will prove the existence and uniqueness of covering maps.

Theorem 2.7 Let (α0, α1, . . . , αn+1) be a permutation of (0, 1, . . . , n + 1) and C be a

(−1)-cell. Then, there exists a unique covering map π : Kω → F such that π(Ci) = Yαi
,

1 ≤ i ≤ n + 1.

Proof First, we will prove the uniqueness. By Lemma 2.3 and Lemma 2.5, it suffices
to show that there exists at most one labeling L defined on any cells of nonpositive

order with (2.2) holding, with the recurrent property, with L(Ci) = αi for 1 ≤ i ≤
n + 1 and such that L(C̃) is the unique value in Ω

′ \ {L(C̃i)}i∈Ω for any cell C̃ with

negative order.

Define Cm
= U m−1(C) for m ∈ Z

+. We remark that C1
= C. Define tm ∈ Ω

by Cm−1
= Cm

tm
for any m. Then by Lemma 2.1, for any ω ′ ∈ Ω

∗ we have Cm−1
ω ′ =

(Cm
tm

)ω ′ = Cm
tmω ′ .

Clearly, C1
= C must be labeled by α0. For any m ≥ 2, from the recurrent

property, we have

(2.5)
L(Cm) = L(Cm

tmtm
) = L(Cm−1

tm
),

L(Cm
i ) = L(Cm

tm i) = L(Cm−1
i ), i 6= tm.

If m = 2, we can obtain L(C2) and {L(C2
i )}i∈Ω\{t2} by (2.5). On the other hand,

C2
t2

= C1. Thus, all {L(C2
i j)}i∈Ω\{t2}, j∈Ω are determined by the recurrent property.

Note that C2
i j = C1

j if i = t2, so we have already obtained labels for all subcells of C2.

Generally, suppose for some k ≥ 2, we have already defined labels for all subcells of

Ck with nonpositive order. We can obtain L(Ck+1) and {L(Ck+1
i )}i∈Ω\{tk+1} by (2.5).

On the other hand, Ck+1
tk+1

= Ck. Thus, by the recurrent property, we can obtain

L(Ck+1
iω ′ ) for any i ∈ Ω \ {tk+1}, ω ′ ∈ Ω

∗ with 1 ≤ |ω ′| ≤ k. Note that Ck+1
iω ′ = Ck

ω ′ for

i = tk+1, so we have already obtained labels for all subcells of Ck+1.

By induction, the labels of all cells of Kω are determined.

Now we will prove that the labeling L defined as above is suitable to define a cov-
ering map π satisfying π(Ci) = Yαi

, 1 ≤ i ≤ n + 1. By Lemma 2.3 and Lemma 2.6,

and noting that L satisfies the recurrent property by the definition of labels above,

it suffices to prove that V (C̃) is a permutation of Vn for any (−1)-cell C̃ , where

Vn = (0, 1, . . . , n + 1) and V (C̃) = (L(C̃), L(C̃1), . . . , L(C̃n+1)).

From (2.5) and Cm
tm

= Cm−1, it is easy to see by induction that for any m ≥ 1,

V (Cm) = V (C1), so that V (Cm) is a permutation of Vn.
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Let m ≥ 2. For any i ∈ Ω, if i = ωm, then Cm
i = Cm−1 so that V (Cm

i ) = V (Cm−1)
is a permutation of Vn. If i 6= ωm, then L(Cm

ii ) = L(Cm) and L(Cm
i j ) = L(Cm

j ) for

j 6= i so that V (Cm
i ) is also a permutation of Vn. Continuing this procedure, we

know that for any ω ′ ∈ Ω
m−1, V (Cm

ω ′ ) is a permutation of Vn. Since m and ω ′ can be

arbitrarily chosen, we know that V (C̃) is a permutation of Vn for any (−1)-cell C̃ of

Kω.

Let F0 = F be our original fractafold of n + 2 copies of K . Let F1, F2, . . . be
the sequence of fractafolds obtained by subdivision: the 1-cells of Fk−1 become the

0-cells of Fk, or the k-cells of F become the 0-cells of Fk. Our goal is to construct a
commutative diagram of covering maps as Figure 2.7.

F0 F1
�

π ′
1

F2
�

π ′
2 · · ·�

Kω

?

π0

J
J
J
J

J
J
Ĵ

π1

Z
Z

Z
Z

Z
Z

Z
Z

ZZ~

π2 · · ·

Kω

Fk−1 Fk
�

π ′
k

S
S

S
SSw

πk

�
�

�
��/

πk−1

π ′
k ◦ πk = πk−1

Figure 2.7: The commutative diagram of covering maps.

To define the covering maps π ′
k : Fk → Fk−1 we follow the same procedure as in

the n = 2 case (see [S4]). The 0-cells in Fk (k-cells in F0) will be labeled Y j1, j2 ,..., jk+1

with consecutive values distinct ( j1 6= j2, j2 6= j3, . . .). For example, the 0-cell Y0

in F0 splits into 1-cells Y01,Y02, . . . ,Y0,n+1 in F0, which are 0-cells in F1. Similarly,
Y1 splits into Y10,Y12,Y13, . . . ,Y1,n+1, and Y01 ∩ Y10 intersect at a point. In general,

if Y j1 , j2,..., jk
is a 0-cell in Fk−1, then we replace it by n + 1 0-cells Y j1, j2 ,..., jk,i (for i 6=

jk) in Fk. All these n + 1 cells intersect each other at a point. In addition, each of
these intersects one additional 0-cell, determined as follows: Suppose Y j1,..., jk

and

Y j ′1 ,..., j ′
k

intersect in Fk−1, then Y j1 ,..., jk, j ′
k

intersects Y j ′1 ,..., j ′
k
, jk

in Fk. See Figure 2.8

and Figure 2.9. For this to make sense one needs the following lemma.

Lemma 2.8 If Y j1 ,..., jk
intersects Y j ′1 ,..., j ′

k
in Fk−1, then jk 6= j ′k.

Proof By induction on k. If k = 2, we know by definition that Y j1 , j2
and Y j ′1 , j ′2

intersect ⇔ either (i) j1 = j ′1 and j2 6= j ′2, or (ii) j1 = j ′2 and j ′1 = j2. Note that in
either case j2 6= j ′2.

Assume that the lemma holds when k = ℓ for some ℓ ≥ 2. We will prove the

lemma holds for k = ℓ + 1. Suppose Y j1 ,..., jℓ+1
and Y j ′1 ,..., j ′ℓ+1

intersect in Fℓ. Then by
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Figure 2.8: F0, n = 3, label i means the cell

is Y i .

Figure 2.9: F1, n = 3, label i j means the cell

is Y i j .

definition there are two possibilities:

(i) Y j1,..., jℓ+1
and Y j ′1 ,..., j ′ℓ+1

belong to same 0-cell in Fℓ−1,

i.e., ( j1, . . . , jℓ) = ( j ′1, . . . , j ′ℓ) and jℓ+1 6= j ′ℓ+1.
(i) Y j1,..., jℓ and Y j ′1 ,..., j ′

ℓ
intersect in Fℓ−1 and jℓ+1 = j ′ℓ, j ′ℓ+1 = jℓ.

By inductive assumption on k = ℓ, we know that jℓ 6= j ′ℓ so that jℓ+1 = j ′ℓ 6= jℓ =

j ′ℓ+1. Thus in either case jℓ+1 6= j ′ℓ+1.

We then define π ′
k by

(2.6) π ′
k(Y j1, j2 ,..., jk+1

) = Y j2 ,..., jk+1

and π ′
k|Y j1 , j2,..., jk+1

is a similarity for any 0-cell Y j1 ,..., jk+1
in Fk.

Lemma 2.9 If Y j1 ,..., jk+1
intersects Y j ′1 ,..., j ′

k+1
in Fk, then Y j2,..., jk+1

intersects Y j ′2 ,..., j ′
k+1

in

Fk−1.

Proof If k = 1. Let Y j1 , j2
and Y j ′1 , j ′2

intersect in F1. Then by Lemma 2.8, we know

that j2 6= j ′2 so that Y j2
intersect Y ′

j2
in F0.

Assume that the lemma holds when k = ℓ for some ℓ ≥ 1. We will prove the

lemma holds for k = ℓ + 1. Suppose Y j1 ,..., jℓ+2
intersects Y j ′1 ,..., j ′ℓ+2

in Fℓ+1. Then by
definition there are two possibilities:

(i) ( j1, . . . , jℓ+1) = ( j ′1, . . . , j ′ℓ+1) and jℓ+2 6= j ′ℓ+2.

(ii) Y j1,..., jℓ+1
intersects Y j ′1 ,..., j ′ℓ+1

in Fℓ and jℓ+2 = j ′ℓ+1, j ′ℓ+2 = jℓ+1.

In case (i), we have ( j2, . . . , jℓ+1) = ( j ′2, . . . , j ′ℓ+1) and jℓ+2 6= j ′ℓ+2 so that Y j2,..., jℓ+2

intersects Y j ′2 ,..., j ′ℓ+2
. In case (ii), by inductive assumption, we have Y j2 ,..., jℓ+1

intersects
Y j ′2 ,..., j ′

ℓ+1
. Combining this with jℓ+2 = j ′ℓ+1 and j ′ℓ+2 = jℓ+1, we obtain by definition

that Y j2,..., jℓ+2
intersects Y j ′2 ,..., j ′ℓ+2

. Thus, in either case Y j2 ,..., jℓ+2
intersects Y j ′2 ,..., j ′ℓ+2

in Fℓ.

This shows π ′
k is a covering map.

Now we will define covering maps πk : Kω → Fk. Note that π0 = π is a covering

map defined as above. Thus for each cell C of Kω with nonpositive order, we have
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already defined a corresponding label L(C). Fix a positive integer k. Let C be a 0-cell
of Kω. We define

(2.7) πk(C) = Y j1 , j2,..., jk+1
,

where ji = L(U k+1−i(C)) for any 1 ≤ i ≤ k + 1. In order to make πk well defined, we

need to show ji 6= ji+1 for any 1 ≤ i ≤ k. But this holds because L(C̃) 6= L(C̃i ) for

any cell C̃ with negative order and any i ∈ Ω.

By definition, we know that for any 0-cell C of Kω,

(2.8) πk−1(C) = Yℓ1,ℓ2 ,...,ℓk
,

where ℓi = L(U (k−1)+1−i(C)) = L(U k+1−(i+1)(C)) = ji+1. Using this equality, from
(2.6), (2.7), and (2.8), it is easy to check that π ′

k ◦ πk = πk−1. That is, the diagram in

Figure 2.7 commutes.

The following lemma shows that πk is a covering map for any positive integer k.

Lemma 2.10 If C and C ′ are two distinct 0-cells of Kω and C intersects C ′, then πk(C)

intersects πk(C ′).

Proof Let ji = L(U k+1−i(C)), j ′i = L(U k+1−i(C ′)) for any 1 ≤ i ≤ k + 1. Then
πk(C) = Y j1 , j2,..., jk+1

and πk(C ′) = Y j ′1 , j ′2 ,..., j ′
k+1

. Let t be the minimal integer i in

[1, k + 1] satisfying U k+1−i(C) 6= U k+1−i(C ′). Then t is well defined because i = k + 1
satisfies U k+1−i(C) 6= U k+1−i(C ′).

If t > 1, then ji = j ′i for any 1 ≤ i < t and jt 6= j ′t . Thus Y j1 ,..., jt
inter-

sects Y j ′1 ,..., j ′t
. If t = k + 1, then this means πk(C) intersects πk(C ′). Otherwise, we

have t < k + 1. Noting that U k+1−(t+1)(C) and U k+1−(t+1)(C ′) have different parent

cells, by the intersection property, we have L(U k+1−t (C)) = L(U k+1−(t+1)(C ′)) and

L(U k+1−t(C ′)) = L(U k+1−(t+1)(C)), i.e., jt = j ′t+1 and j ′t = jt+1 . Thus by definition,
Y j1,..., jt+1

intersects Y j ′1 ,..., j ′t+1
. Continuing this procedure, eventually, we can obtain

that Y j1 ,..., jk+1
intersects Y j ′1 ,..., j ′

k+1
so that πk(C) intersects πk(C ′).

If t = 1, then for any integer i ∈ [2, k + 1], U k+1−i(C) and U k+1−i(C ′) are dis-

tinct. Noting that U k−1(C) and U k−1(C ′) have different parent cells, by the inter-

section property, we have L(U k(C)) = L(U k−1(C ′)), L(U k(C ′)) = L(U k−1(C)) and
L(U k(C)) 6= L(U k(C ′)), i.e., j1 = j ′2, j ′1 = j2 and j1 6= j ′1. By definition, Y j1 , j2

intersects Y j ′1 , j ′2
. Then using the same method as in the case t > 1, we can obtain that

πk(C) intersects πk(C ′).

3 Characterization of Periodic Functions

Let π : Kω → F be a covering map. We call fω : Kω → R a periodic function on Kω if

and only if fω is continuous and there exists a continuous function f on F such that
fω = f ◦ π. The set of all periodic functions is denoted by Per(Kω). It is clear that

Per(Kω) is independent of the choice of covering map.
For any two 0-cells C and C ′ with the same label, we define hC,C ′ : C → C ′ by

hC,C ′(x) = (π|C ′ )−1 ◦ (π|C )(x), for any x ∈ C. See Figure 3.1. Since π|C ′ and π|C are

both isometries, we know that hC,C ′ is an isometry.
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Figure 3.1: The definition of hC,C ′ , where Yα = π(C) = π(C ′).

Definition 3.1 Let C and C ′ are two 0-cells with the same label. fω is called geo-

metrically equal on C and C ′, denoted by fω|C
g.e.∼ fω|C ′ , if

fω(hC,C ′(x)) = fω(x), ∀x ∈ C.

It is easy to check that
g.e.∼ is an equivalence relation.

Given two 0-cells C,C ′ with the same label, we know by the definition of hC,C ′(x)

that for any x ∈ C, π(hC,C ′(x)) = π(x). Thus if fω ∈ Per(Kω), we have fω|C
g.e.∼ fω|C ′ .

In fact, we have the following theorem.

Theorem 3.2 fω ∈ Per(Kω) if and only if fω|C
g.e.∼ fω|C ′ for any two 0-cells C and C ′

with L(C) = L(C ′).

Proof By the above discussion, we only need to prove the “if” part. Suppose

fω|C
g.e.∼ fω|C ′ for any two 0-cells C and C ′ with same label. We select n + 2 0-cells

C(1),C(2), . . . ,C(n+2) with L(C(i)) = i and define fi : Yi → R by

fi(x) = fω ◦ (π|C (i) )−1(x), ∀x ∈ Yi .

Then for any cell C with L(C) = i and any x ∈ C, by fω|C
g.e.∼ fω|C ′ , we have

(3.1) fω(x) = fω ◦ hC,C (i) (x) = fω ◦ (π|C (i) )−1 ◦ (π|C )(x) = fi(π(x)).

For {xi j} = Yi ∩ Y j , we will show

(3.2) fi(xi j) = f j(xi j).

Given two 0-cells C and C ′ with L(C) = i, L(C ′) = j and C ∩ C ′ is a singleton

{x∗}, then {π(x∗)} = Yi ∩ Y j = {xi j}. By (3.1), fi(xi j) = fi(π(x∗)) = fω(x∗) and

f j(xi j) = f j(π(x∗)) = fω(x∗) so that (3.2) holds. Thus, we can define

f (x) = fi(x), ∀x ∈ Yi .

By (3.1), fω = f ◦ π so that fω ∈ Per(Kω).
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In the following, we will define the notion of central cycle to characterize periodic
functions.

If n = 2, the central cycle of a (−n)-cell C can be easily defined [S4]: A central

cycle of a (−k)-cell C is a union of 3 · 2k−1 0-cells surrounding the inner deleted triangle

in C. For example, if ord(C) = −2, the cell sequence C13,C12,C21,C23,C32,C31 is a

central cycle of C, see Figure 2.2.

Theorem A ([S4]) A continuous function fω on Kω is in Per(Kω) if and only if its

restriction to every central cycle is invariant under ρ3, where ρ is defined to move each

cell to its neighbor, counterclockwise, translating along each of the three sides of the cycle,

and rotating around the three corners, conveyer-belt style.

Now the following question arises: How can we define the central cycle for higher
dimensional cases? Does the analog of Theorem A still hold for higher dimensional

cases?

Define (Ω1)0 = Ω0 = Ω. For m ≥ 2, we define

(Ωm)0 = {i1i2 · · · im| i1 ∈ Ω, i j 6= i1 for any j ≥ 2}.

Define (Ω∗)0 = ∪∞
m=1(Ωm)0. It is natural that the set of all elements of a central cycle

of (−m)-cell C should be {C ′
ω}ω ′∈(Ωm)0

. But how can we arrange the order for these

0-cells such that it looks like a cycle?
In order to answer this question, we first define a label for each word in {∅}∪Ω

∗.

Step 1. We define L(∅) = 0 and L(i) = i for any i ∈ Ω.

Step 2. For any ω ′ ∈ Ω
∗ ∪ {∅} and any i, j ∈ Ω, we define

(3.3) L(ω ′i j) =

{
L(ω ′ j), if i 6= j,

L(ω ′), if i = j.

For any (−m)-cell C with m ≥ 0, if we define a bijection σC : Ω
′ → Ω

′ by

σC (L(C)) = L(∅) and σC (L(Ci)) = L(i), then by the definition of label of words
in Ω

∗ and Lemma 2.5, we know that σC (L(C ′
ω)) = L(ω ′) for any ω ′ with |ω ′| ≤ m.

This implies the following lemma.

Lemma 3.3 Let C be a (−m)-cell with m > 0. Let Cω ′ and Cω ′ ′ be two subcells of

C with the same nonpositive order. Then L(Cω ′) = L(Cω ′ ′) if and only if L(ω ′) =

L(ω ′′).

By Lemma 3.3, we know from the properties of labels of cells that

(3.4) L(ω ′i) 6= L(ω ′ j) for any i 6= j

and the singleton

(3.5) {L(ω ′)} = Ω
′ \ {L(ω ′i)| i ∈ Ω}.

Lemma 3.4 For each ω ′ ∈ (Ωm)0, we have L(ω ′) ∈ Ω.
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Proof Fix any i1i2 · · · im−1 ∈ (Ωm−1)0. If im = i1, by (3.3), we have

L(i1i2 · · · im−1im) = L(i1i2 · · · im−2im) = · · ·
= L(i1im) = L(i1i1) = L(∅) = 0.

By (3.4), if im 6= i1, L(i1i2 · · · im−1im) 6= 0.

From Lemma 3.4 with (3.4), and (3.5), we know that

{L(ω ′ jk)| k ∈ Ω \ {i1}} = Ω \ {L(ω ′ j)},

for any fixed ω ′
= i1i2 · · · im−1 ∈ (Ωm−1)0 and j 6= i1. Using this property, we define

the word cycle with order m for any positive m as follows.

Step 1. If m = 1, we define the word sequence 1, 2, . . . , n + 1 to be the word cycle

with order 1. Define ω(1)
i = i for any i ∈ Ω.

Step 2. Suppose for m = k ≥ 1, we have the word cycle with order k as follows:

(3.6) ω(k)
1 , ω(k)

2 , . . . , ω(k)
#k ,

where #k = #(Ωk)0 = (n + 1)nk−1 and {ω(k)
i | 1 ≤ i ≤ #k} = (Ωk)0.

Now we construct the word cycle with order k + 1. For each 1 ≤ i ≤ #k, suppose

ω(k)
i = ω ′, then we replace ω(k)

i in (3.6) by ω ′ j1, ω
′ j2, . . . , ω

′ jn, where for 1 ≤ t ≤ n,
jt ∈ Ω is defined by L(ω ′ jt) ∈ Ω and

L(ω ′ jt ) ≡
{

L(ω ′) + t mod n + 1 if k is even,

L(ω ′) − t mod n + 1 if k is odd.

Note that from ω ′ ∈ Ω
k and L(ω ′ jt ) ∈ Ω, we have ω ′ jt ∈ (Ωk+1)0. Thus, after the

replacement, (3.6) will be changed to a word sequence with form

(3.7) ω(k+1)
1 , ω(k+1)

2 , . . . , ω(k+1)
#(k+1),

where #(k + 1) = #(Ωk+1)0 and {ω(k+1)
i | 1 ≤ i ≤ #(k + 1)} = (Ωk+1)0. We call the

word sequence in (3.7) the word cycle with order k + 1.

By induction, we have defined the word cycle with order m for any positive inte-

ger m.

Remark 3.5. It is easy to check that labels of words in the word cycle with order m

are:

1, 2, . . . , n + 1, 1, 2, . . . , n + 1, . . . , 1, 2, . . . , n + 1, if m is odd,

n + 1, n, . . . , 1, n + 1, n, . . . , 1, . . . , n + 1, n, . . . , 1, if m is even.
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Definition 3.6 Let C be a (−m)-cell in Kω with m ≥ 1. We call the sequence
Cω(m)

1
,Cω(m)

2
, . . . ,Cω(m)

#m
of 0-subcells of C the central cycle of C.

The following proposition shows that any two successive 0-cells in the central cycle

intersect. Thus Definition 3.6 really makes sense.

Proposition 3.7 Let C be a (−m)-cell in Kω with m ≥ 1. Then Cω(m)
i

intersects Cω(m)
i+1

for any 1 ≤ i ≤ #m, where we define ω(m)
#m+1 = ω(m)

1 .

Proof We will prove a stronger claim by induction on m:

(3.8)
Let C be a (−m)-cell in Kω with m ≥ 1. Then Cω(t)

i
intersects

Cω(t)
i+1

for any 1 ≤ t ≤ m and 1 ≤ i ≤ #t.

It is clear that when m = 1, Ci intersects Ci+1 for any 1 ≤ i ≤ n + 1, where we
define Cn+2 = C1.

Assume that (3.8) holds for some m = k ≥ 1. We will prove (3.8) holds for
m = k + 1. If t = 1, we know that Cω(t)

i
intersects Cω(t)

i+1
for any 1 ≤ i ≤ n + 1 as above.

Thus we can suppose 2 ≤ t ≤ k + 1 so that 1 ≤ t − 1 ≤ k.

If Cω(t)
i

and Cω(t)
i+1

have the same parent cell, then Cω(t)
i

intersects Cω(t)
i+1

. Otherwise,

suppose ω ′ and ω ′ ′ are two successive cells in word cycle with order t − 1. Let ω ′i be

the last word of word sequence to replace ω ′ and ω ′ ′ j be the first word of the word
sequence to replace ω ′′, that is, i, j ∈ Ω are defined by

(3.9) L(ω ′i) ≡
{

L(ω ′) + n mod n + 1 if t is even,

L(ω ′) − n mod n + 1 if t is odd.

and

(3.10) L(ω ′′ j) ≡
{

L(ω ′′) + 1 mod n + 1 if t is even,

L(ω ′′) − 1 mod n + 1 if t is odd.

It suffices to prove that Cω ′i intersects Cω ′ ′ j .

Without loss of generality, we suppose t is even. By Remark 3.5, we have L(ω ′ ′) ≡
L(ω ′) − 1 mod n + 1. Using (3.9) and (3.10), we know that L(ω ′i) = L(ω ′′) and
L(ω ′′ j) = L(ω ′). It follows from Lemma 3.3 that L(Cω ′i) = L(Cω ′ ′) and L(Cω ′ ′ j) =

L(ω ′). By inductive assumption, we know that Cω ′ intersects Cω ′ ′ . Thus by the
intersection property, we know that Cω ′i intersects Cω ′ ′ j .

Definition 3.8 A rotation R on any finite real number sequence α1, α2, . . . , αm is
defined by R(αi) = αi+1 for any 1 ≤ i ≤ m − 1 and R(αm) = α1.

Let C be a (−k)-cell of Kω with k > 0. Suppose

(3.11) Cω(k)
1

,Cω(k)
2

, . . . ,Cω(k)
#k

,
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is the central cycle of a cell C. We define the rotation ρ on the cell sequence (3.11) by
ρ(Cω(k)

i
) = Cω(k)

i+1
for any 1 ≤ i ≤ #k. We say that the restriction of fω to (3.11), the

central cycle of the cell C, is invariant under ρn+1, if

fω|C
ω

(k)
i

g.e.∼ fω|C
ω

(k)
i+n+1

for any 1 ≤ i ≤ #k, where we define Cω(k)
#k+ j

= Cω(k)
j

for 1 ≤ j ≤ n + 1.

Theorem 3.9 A continuous function fω is in Per(Kω) if and only if for any cell C with

deg(C) < 0, the restriction of fω to the central cycle of C is invariant under ρn+1.

Remark 3.10. When n > 2, the cells in a central cycle will also have intersections
other that those described in Proposition 3.7. The mappings ρ and ρn+1 will not

preserve these intersections, and so will not be local isometries on the subset of C

corresponding to the cells in the central cycle.

Proof First we prove the “only if” part. Given a (−k)-cell C with k ≥ 1, it follows

from Remark 3.5 that the labels of the word sequence

L(ω(k)
1 ), L(ω(k)

2 ), . . . , L(ω(k)
#k )

are invariant under Rn+1. Thus by Lemma 3.3, the labels of cell sequence

L(Cω(k)
1

), L(Cω(k)
2

), . . . , L(Cω(k)
#k

)

are invariant under Rn+1. By Theorem 3.2, the restriction of fω to the central cycle of

C is invariant under ρn+1.

Next we prove the “if” part. Suppose for any cell C with ord(C) < 0, the restric-

tion of fω to the central cycle of C is invariant under ρn+1. Then, by the proof of the
“only if” part, we know that fω|C ′

g.e.∼ fω|C ′ ′ for any 0-cells C ′,C ′ ′ with the same label

if they are in the central cycle of some cell with negative degree.

Definition 3.11 Two 0-cells C ′,C ′ ′ of Kω are called centrally linked, denoted by

C ′ c.l.∼ C ′ ′, if there exists a 0-cell sequence

C ′
= C(1),C(2), . . . ,C(t)

= C ′ ′

such that L(C(i)) are all equal, and for any 1 ≤ i < t , C(i) and C(i+1) are in the same

central cycle.

We will prove the following lemma in the rest of the section.

Lemma 3.12 C ′ c.l.∼ C ′ ′ for any two distinct 0-cells C ′, C ′ ′ in Kω with the same label.

By Lemma 3.12, for any two distinct 0-cells C ′, C ′ ′ in Kω with L(C ′) = L(C ′ ′), we

have fω|C ′

g.e.∼ fω|C ′ ′ . Using Theorem 3.2, we know that fω ∈ Per(Kω).
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In order to prove Lemma 3.12, we first show some properties of the notion “cen-
trally linked”.

Definition 3.13 Suppose ω ′, ω ′′ ∈ Ω
∗ have the same length and the same label.

If there exists a word I ∈ {∅} ∪ Ω
∗ such that ω ′

= Iω(1) and ω ′ ′
= Iω(2) with

ω(1), ω(2) ∈ (Ω∗)0, then ω ′ and ω ′′ are said to be strongly centrally linked with respect

to I, denoted by ω ′ s.c.l.∼ ω ′′ with respect to I, or ω ′ s.c.l.∼ ω ′′ for short.

Let ω ′, ω ′′ ∈ Ω
∗ with |ω ′| = |ω ′ ′|. ω ′ and ω ′′ are called centrally linked, denoted

by ω ′ c.l.∼ ω ′′, if there exists a word sequence ω ′
= ω(1), ω(2), . . . , ω(t)

= ω ′′ such that

ω(i) s.c.l.∼ ω(i+1) for any 1 ≤ i < t .

It is clear that if Cω ′ and Cω ′ ′ are two 0-subcells of C with ω
c.l.∼ ω ′′, then Cω ′

c.l.∼
Cω ′ ′ .

Definition 3.14 Let ω ′ ∈ Ω
∗. If

ω ′
= α1 · · ·α1︸ ︷︷ ︸

m1

α2 · · ·α2︸ ︷︷ ︸
m2

· · ·αr · · ·αr︸ ︷︷ ︸
mr

,

where all mi , 1 ≤ i ≤ r, are positive integers and αi 6= αi+1 for 1 ≤ i < r, then r

is called the complexity of the word ω ′, denoted by cpl(ω ′). We also denote ω ′ by
(α1 : m1; α2 : m2; . . . ; αr : mr) for simplicity.

Lemma 3.15 Let ω ′ ∈ Ω
∗ with cpl(ω ′) ≥ 4. Then, there exists a word ω ′ ′ ∈ Ω

∗

with cpl(ω ′′) = 3 such that ω ′ c.l.∼ ω ′ ′.

Proof It suffices to prove for any ω ′ ∈ Ω
∗ with cpl(ω ′) ≥ 4, there exists ω ′′ with

cpl(ω ′′) = cpl(ω ′) − 1 such that ω ′ c.l.∼ ω ′ ′.

Let ω ′
= (α1 : m1 ; . . . ; αr : mr). For 0 ≤ i ≤ r − 1, we define

ω(i)
= (α1 : m1 ; . . . ; αr−i : mr−i).

Define M = mr−1 + mr. Note that if mr is even, we can select ℓ ∈ Ω\{αr−1, αr−2}
and define ω ′′

= ω(2)(αr−1, M), ω ′′ ′
= ω(1)(ℓ, mr). Then ω ′ s.c.l.∼ ω ′′ ′ with respect to

ω(2)(αr−1 : mr−1 − 1) and ω ′ ′ ′ s.c.l.∼ ω ′′ with respect to ω(3)(αr−2 : mr−2 − 1) so that

ω ′ c.l.∼ ω ′′. Hence, in the following, we always suppose mr is odd.

Case I. If αr−2 6= αr. Then in the case that mr−1 is even, ω ′ s.c.l.∼ ω(2)(αr : M) with

respect to ω(3)(αr−2 : mr−2 − 1). In the case that mr−1 and mr−2 are odd,

ω ′ s.c.l.∼ ω(3)(αr−2 : mr−2 − 1 ; αr : 1 ; αr−1 : M)

s.c.l.∼ ω(3)(αr−2 : mr−2 − 2 ; αr−1 : 1 ; αr : M + 1)
s.c.l.∼ · · ·

s.c.l.∼ ω(3)αr−2αr−1(αr : mr−2 + M − 2)
s.c.l.∼ ω(3)(αr−2 : 2 ; αr : mr−2 + M − 2).
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Similarly, in the case that mr−1 is odd and mr−2 is even,

ω ′ c.l.∼ ω(3)αr−2αr(αr−1 : mr−2 + M − 2)
s.c.l.∼ ω(3)αr−2(αr : mr−2 + M − 1).

Case II. If αr−2 = αr and αr−3 = αr−1, we select ℓ ∈ Ω \ {αr−1, αr−2}. Then in the

case that M is even,

ω ′ s.c.l.∼ ω(2)(αr−1 : mr−1 − 1 ; ℓ : 1 ; αr : mr)

s.c.l.∼ ω(2)(αr−1 : mr−1 − 2 ; αr : 1 ; ℓ : mr + 1)
s.c.l.∼ · · ·

s.c.l.∼ ω(2)(ℓ : 1 ; αr : M − 1)
s.c.l.∼ ω(3)(ℓ : 1 ; αr−2 : mr−2 + M − 1).

where the last
s.c.l.∼ is respect to the word ω(4)(αr−3 : mr−3 − 1). Similarly, in the case

that M is odd, ω ′ c.l.∼ ω(2)(αr : 1 ; ℓ : M − 1) = ω(3)(αr−2 : mr−2 + 1 ; ℓ : M − 1) since
αr = αr−2.

Case III. If αr−2 = αr and αr−3 6= αr−1.

(III.1) If mr−2 is even, we can define ω ′′
= ω(3)(αr−1 : mr−1 ; αr−2 : mr−2 + mr).

(III.2) If mr−2 is odd and mr−1 is even, we can define ω ′′ just as in (III.1).

(III.3) If mr−2 and mr−1 are all odd, we select ℓ ∈ Ω \ {αr−3, αr−2}. Define

ω ′′
=

{
ω(4)(αr−3 : mr−3 − 1 ; αr−2 : 1 ; αr−3 : mr−2 + M) if mr−3 > 1,

ω(4)(αr−2 : 1 ; ℓ : M − 1 ; αr−3 : mr−2) if mr−3 = 1.

Then ω ′ s.c.l.∼ ω ′ ′. We remark that in the case of mr−3 = 1, ω ′ s.c.l.∼ ω ′′ w.r.t. ω(4).

Lemma 3.16 Let i, j, k be distinct elements in Ω. Let m0, m1, m2, m3 be positive in-

tegers. Let I = (i : m1 ; j : m2 ; k : m3) and J = (i : m1 ; j : m2 ; i : m3). Then each word

with one of the following forms can be centrally linked to a word in (Ω∗)0.

(i) I, where m3 is odd;

(ii) I or J, where m3 is even and m2 is odd;

(iii) γI, where m3 is odd and γ ∈ Ω \ {i, k};

(iv) γI or γJ, where m2, m3 are even and γ ∈ Ω \ {i};

(v) γJ, where m3 is odd and γ ∈ Ω \ {i};

(vi) γ(k : m0)I, where m3 is odd and γ ∈ Ω \ {k};

(vii) γ( j : m0)I, where m3 is even, m2 is odd and γ ∈ Ω \ { j}.

Proof Let ℓ = m1 + m2 + m3.
(i) Note that m3 is odd. If m2 is even, then

I
s.c.l.∼ (i : m1 − 1 ; j : 1 ; k : m2 + m3)

s.c.l.∼ (i : m1 − 2 ; k : 1 ; j : m2 + m3 + 1)
s.c.l.∼ · · ·

s.c.l.∼
{

k( j : ℓ − 1) if ℓ is odd,

j(k : ℓ − 1) if ℓ is even.
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Similarly, if m2 is odd,

I
s.c.l.∼ (i : m1 − 1 ; k : 1 ; j : m2 + m3)

s.c.l.∼ · · · s.c.l.∼
{

k( j : ℓ − 1) if ℓ is odd,

j(k : ℓ − 1) if ℓ is even.

(ii) Note that I
s.c.l.∼ J. The lemma holds for this case because

I
s.c.l.∼ (i : m1 − 1 ; k : 1 ; j : m2 + m3)

s.c.l.∼ · · · s.c.l.∼
{

j(k : ℓ − 1) if ℓ is odd,

k( j : ℓ − 1) if ℓ is even.

(iii) By the proof of (i),

γI
c.l.∼

{
γk( j : ℓ − 1)

s.c.l.∼ γk(i : ℓ − 1) if ℓ is odd,

γ j(k : ℓ − 1)
s.c.l.∼ γi(k : ℓ − 1) if ℓ is even.

(iv) Note that γI
s.c.l.∼ γJ. The lemma holds for this case because

γI
s.c.l.∼

{
γ(i : m1 ; j : m2 + m3) if γ 6= j,

γ(i : m1 ; k : m2 + m3) if γ 6= k,

(v) If γ 6= j, then γJ ∈ (Ω∗)0. If γ = j, we select j ′ ∈ Ω \ {i, j} and define

K = γ(i : m1). The lemma holds in this case because

J
s.c.l.∼ K( j : m2 − 1 ; j ′ : 1 ; i : m3)

s.c.l.∼ K( j : m2 − 2 ; i : 1 ; j ′ : m3 + 1)
s.c.l.∼ · · ·

s.c.l.∼
{

K j ′(i : m2 + m3 − 1) if m2 + m3 is even,

Ki( j ′ : m2 + m3 − 1) if m2 + m3 is odd,

(vi) If γ 6= j, by the proof of (i),

γ(k : m0)I
c.l.∼

{
γ(k : m0)k( j : ℓ − 1) if ℓ is odd,

γ(k : m0) j(k : ℓ − 1) if ℓ is even.

If γ = j, by the proof of (i),

γ(k : m0)I
c.l.∼

{
j(k : m0)k( j : ℓ − 1)

s.c.l.∼ j(k : m0)k(i : ℓ − 1) if ℓ is odd,

j(k : m0) j(k : ℓ − 1)
s.c.l.∼ j(k : m0)i(k : ℓ − 1) if ℓ is even.

(vii) Select k′ ∈ Ω \ {γ, j}. By the proof of (ii),

γ( j : m0)I
c.l.∼

{
γ( j : m0) j(k : ℓ − 1)

s.c.l.∼ γ( j : m0) j(k′ : ℓ − 1) if ℓ is odd,

γ( j : m0)k( j : ℓ − 1)
s.c.l.∼ γ( j : m0)k′( j : ℓ − 1) if ℓ is even.
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Using Lemmas 3.15 and 3.16, we can prove Lemma 3.12 as follows.

Proof of Lemma 3.12 Define Cm
= B[ω]m

(K) for any m ≥ 1. Let C ′,C ′ ′ be two

distinct 0-cells in Kω . Since ω is nondegenerate, we can select m large enough such
that C ′

= Cm
I

, and C ′ ′
= Cm

J
for some I, J ∈ Ω

m with cpl(I), cpl(J) ≥ 4. Fur-

thermore, by selecting m bigger, we can also suppose L(C ′) = L(C ′ ′) 6= L(Cm).
By Lemma 3.15, there exist ω ′, ω ′′ ∈ Ω

m such that cpl(ω ′) = cpl(ω ′′) = 3 and

C ′ c.l.∼ Cm
ω ′ , C ′ ′ c.l.∼ Cm

ω ′ ′ . Thus it suffices to prove that

(3.12) Cω ′

c.l.∼ Cω ′ ′ for any (−ℓ)-cell C in Kω with ℓ > 0 and any ω ′, ω ′′ ∈ Ω
ℓ

with cpl(ω ′) = cpl(ω ′ ′) = 3 and L(Cω ′) = L(Cω ′ ′) 6= L(C).

Define i0 ∈ Ω such that L(Ci0
) = L(Cω ′). Suppose

ω ′
= (α1 : m1 ; α2 : m2 ; α3 : m3), ω ′′

= (β1 : m ′
1 ; β2 : m ′

2 ; β3 : m ′
3),

where α2 6= α1, α3, β2 6= β1, β3 and mi, m ′
i , 1 ≤ i ≤ 3, are all positive integers

with
∑3

i=1 mi =
∑3

i=1 m ′
i .

From L(Ci0
) = L(Cω ′), we know that ω ′ has four possible forms:

(F1) m3 is odd and α1 6= α3. In this case, α3 = i0.
(F2) m3 is odd and α1 = α3. In this case, m1 is even and α1 = α3 = i0.

(F3) m3 is even and m2 is odd. In this case, α2 = i0.

(F4) m3 and m2 are even. In this case, m1 is odd and α1 = i0.

Similarly, ω ′′ has four possible forms as above, where all mi are replaced by m ′
i and

all αi are replaced by βi , respectively.

Case (I.1) If ω ′ and ω ′′ both have form (F1) or (F3), then ω ′ and ω ′ ′ both have

form (i) or (ii) in Lemma 3.16 so that Cω ′

c.l.∼ Cω ′ ′ .

Case (I.2) If ω ′ and ω ′′ both have form (F2), then

ω ′
= (i0 : m1 ; α2 : m2 ; i0 : m3), ω ′ ′

= (i0 : m ′
1 ; β2 : m ′

2 ; i0 : m ′
3),

where m3 and m ′
3 are odd. Since ω is nondegenerate, there exist γ 6= i0 and nonneg-

ative integer t such that C = C̃γ(i0:t). Note that γ(i0 : t)ω ′ and γ(i0 : t)ω ′′ both have

form (v) in Lemma 3.16, we have

(3.13) Cω ′ = C̃γ(i0:t)ω ′

c.l.∼ C̃γ(i0:t)ω ′ ′ = Cω ′ ′ .

Case (I.3) If ω ′ and ω ′′ both have form (F4), then

ω ′
= (i0 : m1 ; α2 : m2 ; α3 : m3), ω ′′

= (i0 : m ′
1 ; β2 : m ′

2 ; β3 : m ′
3),

where m2, m3, m ′
2, m ′

3 are even and m1, m ′
1 are odd. Let C̃, γ and t be defined as in

Case (I.2). Note that γ(i0 : t)ω ′ and γ(i0 : t)ω ′′ both have form (iv) in Lemma 3.16;

(3.13) holds.
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Case (II.1) If one of ω ′ and ω ′ ′ has form (F1) and the other has form (F2). Without
of loss generality, we suppose

ω ′
= (α1 : m1 ; α2 : m2 ; i0 : m3), ω ′′

= (i0 : m ′
1 ; β2 : m ′

2 ; i0 : m ′
3),

where m3 and m ′
3 are odd and α1 6= i0. Let C̃, γ and t be defined as in Case (I.2). Note

that γ(i0 : t)ω ′′ has form (v) in Lemma 3.16, and γ(i0 : t)ω ′ has form (vi) if t > 0,

has form (iii) if t = 0 and γ 6= α1, has form (i) if t = 0 and γ = α1. Thus, (3.13)
holds.

Case (II.2) If one of ω ′ and ω ′ ′ has form (F1) and the other has form (F4). Similarly

as Case (II.1), we can prove Cω ′

c.l.∼Cω ′ ′ .

Case (II.3) If one of ω ′ and ω ′ ′ has form (F3) and the other has form (F2). Without

of loss generality, we suppose

(3.14) ω ′
= (α1 : m1 ; i0 : m2 ; α3 : m3), ω ′ ′

= (i0 : m ′
1 ; β2 : m ′

2 ; i0 : m ′
3),

where m3 is even, m2 and m ′
3 is odd. If α3 = α1, we select ℓ ∈ Ω \ {α1, i0}, then

Cω ′

c.l.∼ C(α1:m1 ;i0:m2;ℓ:m3). Thus we can suppose α3 6= α1 in (3.14). Let C̃, γ and t

be defined as in Case (I.2). Note that γ(i0, t)ω ′′ has form (v) in Lemma 3.16, and

γ(i0 : t)ω ′ has form (vii) if t > 0, has form (iii) if t = 0 and γ 6= α1, has form (i) if

t = 0 and γ = α1. Thus, (3.13) holds.

Case (II.4) If one of ω ′ and ω ′ ′ has form (F3) and the other has form (F4). Similarly

as Case (II.3), we can prove Cω ′

c.l.∼ Cω ′ ′ .

Case (II.5) If one of ω ′ and ω ′ ′ has form (F2) and the other has form (F4). Without

of loss generality, we suppose

ω ′
= (i0 : m1 ; α2 : m2 ; i0 : m3), ω ′ ′

= (i0 : m ′
1 ; β2 : m ′

2 ; β3 : m ′
3),

where m3 is odd, m ′
2, m ′

3 are even. Let C̃, γ and t be defined as in Case (I.2). Note that
γ(i0 : t)ω ′ has form (v) in Lemma 3.16, and γ(i0 : t)ω ′′ has form (iv). Thus, (3.13)

holds.
Hence, (3.12) always holds, so the proof of Lemma 3.12 is complete.

More generally, we can define periodic functions in Perk(Kω) for any k ≥ 0 as lifts
of continuous functions on Fk via the covering map πk (so Per(Kω) = Per0(Kω)).

We have the containments Per0(Kω) ⊂ Per1(Kω) ⊂ Per2(Kω) ⊂ · · · . The functions

in Perk(Kω) for larger k have larger periods. It is easy to formulate analogs of Theo-
rem 3.2 and 3.9 to characterize functions in Perk(Kω), and the proofs are essentially

the same. We leave the details to the reader.

4 Symmetries and Other Covering Maps

Let σ be any permutation of Ω. Denote by Sσ the isometry K → K such that Sσ(qi) =

qσ(i) for any i ∈ Ω. Note that {qi}i∈Ω is the boundary of K and Sσ is an isometry, we

know that Sσ is uniquely determined by σ.
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Similarly, let θ be any permutation of Ω
′. Denote by Tθ the map F → F such that

TθY j = Yθ( j) and Tθ|Y j
is an isometry for any j ∈ Ω

′. For any i 6= j, we define xi j

as above to be the unique point in the set Yi ∩ Y j . It is clear that Tθ(xi j) = xθ(i)θ( j).
Furthermore, if we fix i ∈ Ω

′, then {xi j} j∈Ω ′\{i} is the boundary of Yi , so this tells

us how Tθ maps ∂Yi to ∂Yθ(i) and so determines a unique isometry Yi → Yθ(i). As a

result, Tθ is uniquely determined by θ.

All Tθ’s compose an isometry group which is isomorphic to the permutation

group on Ω
′. For any group of permutations G, we denote by G̃ the correspond-

ing group of isometries {Tθ | θ ∈ G}. If G̃ acts without fixed points on F (except

for the identity element), then F/G̃ is a fractafold, and there is a natural covering

map F → F/G̃. By composition we obtain a covering map Kω → F/G̃. Simi-

larly, if G̃k denotes the corresponding group acting on Fk, we have covering maps

Kω → Fk → Fk/G̃k. We do not know if these constitute all covering maps to com-
pact fractafolds even in the case n = 2 [S4]. Still, it would be interesting to classify

(up to conjugacy) all such groups G̃. Although we do not solve this problem here,

we reduce it to a classification problem for subgroups of the permutation group. In-

cidentally, we observe that there can exist pairs of groups G̃1 and G̃2 that are not

conjugate and yet the fractafolds F/G̃1 and F/G̃2 are isometric.

We begin by answering the following question.

Question 4.1 When does Tm
θ : F → F have fixed points for some m with Tm

θ 6= id?

Let W be a finite subset of Z and τ : W → W be a permutation. It is clear that τ
may be decomposed, in an essentially unique way, into disjoint cycles:

τ = (α1α2 · · ·αi)(β1β2 · · ·β j) · · · (· · · ).

This notation means that τ(α1) = α2, τ(α2) = α3, τ(αi ) = α1, and so on. See

[Arm, Pa] for details.

Definition 4.2 Let W be a finite subset of Z and τ : W → W be a permutation. We
say τ ∈ Type (I) if there exist two non-trivial cycles with different length, i.e.,

τ = (α1α2 · · ·αi)(β1β2 · · ·β j) · · · (· · · ) with 2 ≤ i < j.

We say τ ∈ Type (II) if every letter belongs to a non-trivial cycle and all cycle are of
equal length, i.e.,

τ = (α1α2 · · ·αs)(αs+1 · · ·α2s) · · · (αs(r−1)+1 · · ·αsr) with sr = #W and 2 ≤ s.

We remark that if τ : W → W has no fixed point, then τ must belongs to Type (I)

or Type (II).

Proposition 4.3 Suppose Sσ : K → K is an isometry and σ has no fixed point. Then

Sσ has a fixed point if and only if σ contains a 2-cycle, i.e., σ = (ab) · · · (· · · ).
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Proof By the definition of Sσ, we know that Sσ is an isometry and Sσ(qi) = qσ(i).
Thus Sσ maps Fi(K) to Fσ(i)(K). Since σ has no fixed point, Fi(K) ∩ Fσ(i)(K) is the

singleton {qi,σ(i)} = { 1
2
qi + 1

2
qσ(i)}. Thus all possible fixed points of Sσ must belong

to {qi,σ(i)}i∈Ω. Since

Sσ({qi,σ(i)}) = Sσ(Fi(K) ∩ Fσ(i)(K)) = Fσ(i)(K) ∩ Fσ(σ(i))(K) = {qσ(i),σ(σ(i))},

we know that qi,σ(i) is a fixed point of Sσ if and only if σ(σ(i)) = i, which is equivalent
to σ = (i, σ(i)) · · · (· · · ).

Proposition 4.4 Suppose Tθ : F → F and θ has no fixed point. Then Tθ has a fixed

point if and only if θ = (ab) · · · (· · · ).

Proof Since θ has no fixed point, each fixed point of Tθ must be one of the vertices

of Ya for some a, i.e., xab for some a, b. Thus Tθ has a fixed point if and only if
xθ(a),θ(b) = xab for some a, b. Again, note that since θ has no fixed point, this is

equivalent to θ = (ab) · · · (· · · ) for some a, b.

Now, we can answer Question 4.1.

Case I. Suppose θ has two fixed points a, b, then xab is a fixed point of Tθ.

Case II. If θ has exactly one fixed point, say θ(a) = a. Then Tθ(Ya) = Ya and

θ =

(
a α1 α2 · · · αn+1

a β1 β2 · · · βn+1

)

for some α1, . . . , αn+1, β1, . . . , βn+1 ∈ Ω
′ \ {a}. Define σ =

( α1 α2 ··· αn+1

β1 β2 ··· βn+1

)
, then

σ has no fixed point. We will call Tθ|Ya
∈ Type (I)( or Type (II)) if σ ∈ Type (I)( or

Type (II)). It is easy to see that Proposition 4.3 still holds if we replace Sσ and K with

Tθ|Ya
and Ka, respectively.

(II.1) If Tθ|Ya
∈ Type (I), then T i

θ|Ya
has a fixed point, hence so does Tm

θ .
(II.2) If Tθ|Ya

∈ Type (II) and s is even, then σs/2
= (α1αs/2+1) · · · (· · · ). By Proposi-

tion 4.3, T
s/2
θ |Ya

, hence T
s/2
θ has a fixed point.

(II.3) If Tθ|Ya
∈ Type (II) and s is odd, then Tm

θ |Ya
( 6= id) has no fixed point. On the

other hand, it is impossible for Tm
θ to have the form (bc) · · · (· · · ). Similarly as

in Proposition 4.4, Tm
θ ( 6= id) has no fixed point for any m.

Case III. If θ has no fixed point.

(III.1) If θ ∈ Type (I), then θi has at least i(≥ 2) fixed points. Thus T i
π has fixed

points.

(III.2) If θ ∈ Type (II) and s is even, then θs/2
= (α1αs/2+1) · · · (· · · ). By Proposi-

tion 4.4, T
s/2
θ has a fixed point.

(III.3) If θ ∈ Type (II) and s is odd, then Tm
θ ( 6= id) has no fixed point for any m.

Combining these results, we have the following theorem.

Theorem 4.5 Let Tθ : F → F be an isometry. Then, Tm
θ ( 6= id) has no fixed point for

all positive integer m if and only if one of the following conditions holds:

https://doi.org/10.4153/CJM-2009-054-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-054-5


Covering Maps and Periodic Functions on Higher Dimensional Sierpinski Gaskets 1175

(a) θ has exactly one fixed point a, and Tθ|Ya
∈ Type (II) with s odd,

(b) θ has no fixed point and θ ∈ Type (II) with s odd.

By Theorem 4.5, we define notions permissible permutation and permissible per-

mutation group as follows.

Definition 4.6 A permutation θ : Ω
′ → Ω

′ is called permissible if the following two

conditions are satisfied:

(1) θ has at most 1 fixed point;

(2) θ = (α1α2 · · ·αs)(αs+1 · · ·α2s) · · · (αs(r−1)+1 · · ·αsr) with s ≥ 2 and s odd.

A permutation group G on Ω
′ is called permissible if θ is permissible for all θ ∈ G

except θ = id.

It is clear that if θ is permissible, then G(θ), the permutation group generated by
θ, is permissible. Two permutations θ1, θ2 are called independent if θ1 6∈ G(θ2) and

θ2 6∈ G(θ1). It is natural to ask following question.

Question 4.7 When will two independent permissible permutations θ1, θ2 generate
a permissible group G(θ1, θ2)? More generally, what is the structure of a general

permissible group?

We will not discuss the question in detail in this paper. However, we will present
some examples.

Example 1 Suppose n is even. Then θ = (123 · · ·n(n + 1)) is permissible. The

isometry Tθ maps Y0 to itself and cyclicly permutes the other 0-cells Yi , i 6= 0. A

fundamental domain for the action of the group G̃(θ) consists of the union of Y1 and

Y01 (the 1-cell in Y0 that intersects Y1), with the identification of the other boundary
points of Y1 (not equal to Y0 ∩Y01) in pairs, and a similar identification of boundary

points of Y01. Since n is even, there are even number of boundary points in each cell
after one is deleted. We may subdivide Y1 into 1-cells Y1 j ( j 6= 1). Then we may

describe the 1-cell structure of the quotient fractafold F/G̃(θ) as follows: the n + 1
1-cells Y1 j are connected to each other, with an additional connection between Y1 j

and Y1,n+1− j for j ≥ 2. The cell Y10 is connected to Y01, and there are n/2 edges

connecting Y01 to itself. Figure 4.1 shows the case n = 4 with each 1-cell represented
by a point, and Figure 4.2 shows the same case with each 1-cell represented by a

pentagon.

Example 2 Suppose n is odd. Then θ = (012 · · ·n(n + 1)) is permissible. The
isometry Tθ cyclicly permutes the 0-cells Yi . For a fundamental domain we may take

the 0-cell K0, with boundary points identified in pairs (x0 j with x0,n+2− j). If we split

Y0 into 1-cells Y0 j ( j 6= 0), then all are connected by one edge, with a second edge
connecting Y0 j and Y0,n+2− j . The case n = 3 is shown in Figures 4.3 and 4.4.
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Figure 4.1: F/ eG(θ), n = 4. 1-cell represented

by a point.

Figure 4.2: F/ eG(θ), n = 4. 1-cell represented

by a pentagon.

Figure 4.3: F/ eG(θ), n = 3. 1-cell represented

by a point.

Figure 4.4: F/ eG(θ), n = 3. 1-cell represented

by a rectangle.

Example 3 Let n = 7. Then Ω
′

= {0, 1, . . . , 8}. Let θ1 = (012)(345)(678),
θ2 = (036)(147)(258), θ3 = (046)(137)(258).

Note that θ1θ2 = θ2θ1 = (048)(156)(237), and that all elements in G(θ1, θ2) can

be written as θi
1θ

j
2 (0 ≤ i, j ≤ 2). Since

θ2
1 = (021)(354)(687), θ2

2 = (063)(174)(285), θ2
1θ2 = (057)(138)(246),

θ1θ
2
2 = (075)(183)(264), θ2

1θ
2
2 = (084)(165)(273),

we know that #G(θ1, θ2) = 9 and G(θ1, θ2) is permissible.
We may identify the fractalfold F/G̃(θ1, θ2) as follows. The 0-cell Y0 gets mapped

to each 0-cell Y j for j 6= 0 by one of the 8 elements of G̃(θ1, θ2) not equal to the

identity. Moreover, there are 4 pairs of boundary points of Y0 that become identified.
For example, Tθ1

, maps y02 to y01, and its inverse Tθ2
1

maps y01 to y02. Thus y01 and

y02 are identified. Similarly, Tθ2
identifies y03 and y04, Tθ2

1θ2
identifies y05 and y07,

and Tθ2
1θ

2
2

identifies y04 and y08. Thus the quotient fractafold consists of a single 0-

cell with 4 identified pairs of boundary points, or equivalently 8 1-cells, each joined

to the other 7 as in SG7, with an additional 4 pairs of boundary points identified.
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We note that this is isometric to the quotient fractafold described in Example 2 (n =

7). However, since the groups of isometries are clearly not conjugate (they are not

isomorphic as groups), the covering maps from F to the isometric fractafolds are not
conjugate. The same is true for the covering map from Kω to the quotient fractafolds.

In other words, the uniqueness up to conjugacy in Theorem 2.7 does not extend to

all fractafolds.
On the other hand,

θ1θ3 = (036157248), θ3θ1 = (056147238), (θ1θ3)2
= (065283174)

and θ3(θ1θ3)2
= (345). That means θ1θ3 6= θ3θ1, and θ3(θ1θ3)2, hence G(θ1, θ2) is

not permissible.

Example 4 Let n = 5. Let θ1 = (0123456), θ2 = (124)(365). Then θ1 has no

fixed point while θ2 has exactly 1 fixed point. It follows from θ1θ2 = (026)(143) and
θ2θ1 = (013)(254) that θ1θ2 6= θ2θ1.

For any 0 ≤ i, k ≤ 6, we define an integer ai,k ∈ [0, 6] by ai,k ≡ ki mod 7. We

can check that for any 1 ≤ i ≤ 6,

θ2θ
i
1 = θ4i

1 θ2 = (ai,0ai,1ai,3)(ai,2ai,5ai,4), θ2
2θ

i
1 = θ2i

1 θ2
2 = (ai,0ai,1ai,5)(ai,3ai,6ai,4).

From this we know that G(θ1, θ2) = {θi
1θ

j
2 : 0 ≤ i ≤ 6, 0 ≤ j ≤ 2} = {θi

2θ
j
1 : 0 ≤

i ≤ 2, 0 ≤ j ≤ 6} is permissible and #G(θ1, θ2) = 21.
Now G(θ1, θ2) contains 7 pairs of permutations of the form (abc)(de f ), (cba)( f ed)

where one number in {0, 1, . . . , 6} is missing.

We can take a fundamental domain as Y01 ∪ Y03 since (124)(365) and its inverse
determine values on Y0k hence on Y0, and (0123456) then determines values on other

Y j . On Y01 we have one identification of vertices y012 ↔ y014 (action of Tθ2
) and 4

vertices are identified with vertices of Y03:

y013 = y031, (automatic),

y016 ↔ y034 and y015 ↔ y032, (action of Tθ2
),

y010 ↔ y030, (action of Tθ1
).

Similarly, we have y035 ↔ y036. See Figures 4.5 and 4.6.

5 Eigenfunction Expansions

We can expand functions on F in eigenfunctions of the Laplacian on F, and then lift

this to an eigenfunction expansion of periodic functions on Kω. In fact we can ex-

plicitly describe all the eigenvalues and eigenfunctions using the spectral decimation
method of Fukushima and Shima [FS] together with some ideas from [S2] and [Shi].

The same is true for any of the fractafolds obtained from F by subdivision.
We will briefly describe the spectrum for F. We may write it as a disjoint union

Λ = Λ
(0) ∪ Λ

(n+2) ∪ Λ
(n+3) ∪ Λ

(2n+2),
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Figure 4.5: n = 5. 1-cell represented by a

point.

Figure 4.6: n = 5. 1-cell represented by a

hexagon.

where Λ
(0) consists of the single eigenvalue λ = 0 with multiplicity one, with the

eigenspace consisting of the constant functions. Eigenvalues in the other series have

a “generation of birth” m0, and are determined by a sequence {λk} for k ≥ m0 of

eigenvalues of the graph Laplacian ∆k on the graph of vertices Vk, with λm0
= n +

2, n + 3 or 2n + 2 depending on the series. The eigenvalues in the sequence are related

by the equation

(5.1) λk = P(λk+1),

where P is the quadratic polynomial P(x) = x(n+3−x). Note that we can solve (5.1)

explicitly to obtain

λk+1 =
n + 3 + εk

√
(n + 3)2 − 4λk

2

for εk = ±1, so the value of λm0
and the choice of εk uniquely determines the se-

quence {λk}, and then

(5.2) λ = cn lim
k→∞

(n + 3)kλk

(the normalization factor cn =
n+1

n
arise from the normalization of the Laplacian

on K , which in turn arises from the relationship between the counting measure on
Vk and the probability measure on K). In order for the limit in (5.2) to exist we

must have εk = −1 for all but a finite number of values. We also have the following
conditions:

(i) if λ ∈ Λ
(2n+2), then εm0

= +1 so that λm0+1 = n + 1;

(ii) if λ ∈ Λ
(n+3), then m0 ≥ 1;

(iii) if λ ∈ Λ
(n+2), then m0 = 0.

We note that Λ
(n+3) ∪Λ

(2n+2) is contained in the set of eigenvalues of the spectrum
of ∆ on L2(Kω), which all have infinite multiplicity, and each eigenspace has a basis

of compactly supported eigenfunctions. This follows by a simple extension of the

arguments in [T] for the case n = 2. If we periodize these compactly supported
eigenfunctions, we obtain periodic eigenfunctions with the same eigenvalue.

The most interesting part the spectrum is thus Λ
(n+2), since the corresponding pe-

riodic eigenfunctions cannot be obtained by periodization. There are two interesting

properties of the value λ0 = n + 2. One is that it is a fixed point of the polyno-

mial P(x). The other is that it is an eigenvalue of the Laplacian on the cell graph
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of F (the complete graph on n + 2 vertices). Indeed if ϕ is any function on Ω
′ with∑n+1

i=0 ϕ(i) = 0, then−∆ϕ = (n+2)ϕ on Ω
′, and then ϕ̃(xi j) = ϕ(i)+ϕ( j) on V0

satisfies −∆0ϕ̃ = (n + 2)ϕ̃ on V0. In this way we explicitly exhibit λ0 = n + 2 as an
eigenvalue of ∆0 with multiplicity n + 1.

It is possible to compute the multiplicities of all the eigenvalues in Λ explicitly, but
we will not do so here. The case n = 2 is completely analyzed in [S4].

6 Nonexistence of Covering Maps on Other Fractals

In this section we will show that covering maps do not exist for many other fractals,

even those with enough symmetry to admit spectral decimation. Let K denote a self-
similar fractal, Kω a blowup, and F a compact fractafold without boundary. We will

assume that K is PCF, but a similar argument can be made for the Sierpinski carpet.

We will assume that the blowup is nondegenerate, and F has no boundary. We also
assume that two different 0-cells in Kω can intersect in at most one point.

Definition 6.1 Let C denote any m-cell in Kω. Then the valence v(C) is defined to

be the number of distinct m-cells (not equal to C) in Kω with nonempty intersection

with C.

In the case of SGn, the valences are all equal to n + 1. We conjecture that the

existence of covering maps is only possible when all valences are equal.

Lemma 6.2 Suppose there exists a covering map π : Kω → F, and suppose C ′,C ′ ′

are 0-cells in Kω such that π(C ′) = π(C ′ ′) = C is a 0-cell in F. Then v(C ′) = v(C ′ ′).

Proof By the definition of (large, locally isometric) covering map, there exist con-

nected neighborhoods U ,U ′,U ′′ of C,C ′,C ′ ′ such that π : U ′ → U and π : U ′ ′ →
U are (onto) isometries. Then (π|U ′ ′)−1 ◦ π : U ′ → U ′ ′ is an (onto) isometry. Since

v(C ′) = #{connected components of U ′ \ C ′}, and similarly for v(C ′ ′), they must

be equal.

In order to use the lemma freely, we will need to know that the only subsets of

F that are isometric to K are the 0-cells. This is easy to check in most fractals, but

it is not true in general (the interval and the von Koch curve are counterexamples).
Under this assumption, for each 0-cell C in F, the 0-cells in π−1(C) all have the

same valence. But we can say more: if C ′,C ′ ′ are two such 0-cells of valence v, and
C ′

1, . . . ,C ′
v and C ′ ′

1 , . . . ,C ′ ′
v are their neighboring 0-cells in Kω , then we can arrange

the ordering so that v(C ′
j) = v(C ′ ′

j ) for all j = 1, . . . , v. Indeed, let C1, . . . ,Cv

denote 0-cells in F intersecting C at distinct points (the cells {C j} do not have to be
distinct, however). We then apply the lemma to C ′

j ,C ′ ′
j ,C j . As a consequence we

obtain a lower bound for the number of cells in F, namely the number of different

values taken on by (v(C ′), {v(C ′
1), . . . , v(C ′

v)}). (The term in braces is an unordered
set.)

By iterating the above argument, considering neighbors of neighbors, and so on,

we obtain other, perhaps larger, lower bounds, for the number of 0-cells in F. If

these lower bounds grow without limit, then we obtain a contradiction, since for F
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Figure 6.1: Cells of order (−1) split into 0-cells, together with neighboring 0-cells. The valences

are labeled for both (−1)-cell and 0-cells.

to be compact it can have only a finite number of 0-cells. The estimates for these
lower bounds will depend on the fractal, and are sometimes quite complicated to

obtain. So we prefer a different iterative procedure involving cells of different orders.
(Incidently, the main idea used in this argument is not valid for SGn).

For simplicity we describe the argument for the case of the pentagasket. Let C ′,C ′ ′

be as in the lemma, and suppose C ′ ⊂ C ′
(−1) and C ′ ′ ⊂ C ′ ′

(−1) where C ′
(−1) and C ′ ′

(−1)

are (−1)-cells in Kω. The idea is that the isometry (π|U ′ ′)−1 ◦ π : U ′ → U ′′ extends

to an isometry of C ′
(−1) onto C ′ ′

(−1), and in particular v(C ′
(−1)) = v(C ′ ′

(−1)). On the
pentagasket, valences may assume the values 2 and 3. In Figure 6.1 we show the con-

figurations of (−1)-cells with these valences, showing the 0-cells inside and neighbor-

ing the (−1)-cell. Suppose v(C ′) = 2. If v(C ′
(−1)) = 3, then the two neighbors of C ′

have valence 3, whereas if v(C ′
(−1)) = 2, then at least one neighbor of C ′ has valence 2.

This already implies v(C ′ ′
(−1)) = v(C ′

(−1)) because we must have the same pattern of

valences among neighbors of C ′ and C ′ ′. In the case v(C ′
(−1)) = v(C ′ ′

(−1)) = 3, the
isometry could map C ′ onto either of the two 0-cells of valence 2 in C ′ ′

(−1). But in that

case the isometry is determined by the fact that neighboring 0-cells to C ′ have differ-
ent valence patterns ((3, 3, 2) versus (3, 2, 2)) for their neighbors. It is then clear how

to extend the isometry to C ′
(−1) → C ′ ′

(−1). In the case v(C ′
(−1)) = v(C ′ ′

(−1)) = 2, we

need to consider two cases. Case I has C ′ with two neighbors of valence 2, and case
II has C ′ with one neighbor of valence 2 and one neighbor of valence 3. Whichever

case we are in, the same has to hold for C ′ ′. In the first case there are two isome-

tries C ′ → C ′ ′ that are possible, and in the second case there is a unique isometry
possible. Again it is easy to see how to extend any of the possible isometries from

C ′ → C ′ ′ to C ′
(−1) → C ′ ′

(−1).

We also have to consider the possibility that v(C ′) = 3. We see from Figure 6.1
that every such cell has a neighbor of valence 2 lying in C ′

(−1). We can then repeat the

argument above starting with that neighbor.

By iterating the above argument we obtain extensions of the isometry to C ′
(−m) →

C ′ ′
(−m) and the identity v(C ′

(−m)) = v(C ′ ′
(−m)) for chains of cells C ′ ⊂ C ′

(−1) ⊂
C ′

(−2) ⊂ · · · , where C ′
(−m) has order −m, and similarly for C ′ ′. In particular, all
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0-cells C ′ in π−1(C) must have the same values for the valence sequence

(v(C ′), v(C ′
(−1)), v(C ′

(−2)), . . . , v(C ′
(−m))).

It is easy to check that all 2m+1 valences sequences occur for 0-cells in Kω , so F con-

tains at least 2m+1 0-cells. Since m is arbitrary, the covering map does not exist.
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