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REGULAR REPRESENTATION OF FINITE GROUPS
BY HYPERGRAPHS

STEPHANE FOLDES AND NAVIN M. SINGHI

0. Introduction and terminology.

0.1. All structures considered in this paper will be finite.

The product o7 of two permutations ¢ and 7 of a set V is defined by or(x) =
a(r(x)) for every x € V. The set Sy of all permutations of 1 is a group under
this operation. A permutation group on V is a subgroup of Sy.

Let P be a permutation group on a set V. If U is a subset of 17 such that
a(U) C U for every o € P, then U is a constituent of P. The restriction of a
o € P to U is then denoted by ¢|U. We write

PIU = {o|U | o€ P}

U is called a faithful constituent if every ¢ € P is determined by its restriction
to U. In this case the groups P and P|U are isomorphic. The permutation
group P is called transitive if its only constituents are V and the empty set 0.
For arbitrary P, a non-empty constituent U of P such that P|U is transitive is
called an orbit of P. For x € V, the stabilizer P, of x in P is the subgroup of P
consisting of all ¢ € P for which ¢(x) = x. If P is transitive and the stabilizer
of some element x of V is trivial, then P is said to be regular. In this case all the
stabilizers P,, x € V, are trivial.

Let B be an abstract group. For every y € B, the permutation 7, of B given
by 7,(x) = yx for every x € V, is called a left translation. Left translations
form a regular permutation group Lz on B. The mapping y — 7, is an isomor-
phism from B to L, a fact well known as Cayley's theorem [2]. Every regular
permutation group P can be viewed as the group of left translations Ly in
some abstract group B, isomorphic to P.

0.2. If Vis a set and & is any positive integer, then let P, (1) denote the set
of subsets of V' having cardinality k. If E is any subset of P,(1’), then the
ordered pair H = (V, E) is a k-uniform hypergraph on V. The elements of
V = V(H) are called vertices, those of E = E(H) are called lines. A line 4
containing a vertex v is also said to be incident with v. A graph is a 2-uniform
hypergraph.

A sub-hypergraph of H = (V, E) is a k-uniform hypergraph H, = (V, E,)
such that V; € Vand E, C E. H, is called an induced sub-hypergraph of H if
every line A of H contained in V is also a line of H;. For every subset S of V,
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H has a unique induced sub-hypergraph H[S] with vertex set S. It is called the
sub-hypergraph induced by S. If H[S] has no lines, then S is said to be in-
dependent. H is bipartite if its vertex set is the union of two independent sets.

A partition of a set V is a set = of pairwise disjoint non-empty subsets of V'
such that U e 4 = V. A component of a hypergraph H is a non-empty subset
C of V(H) such that every line of H is either contained in C or is disjoint from
it. C is a connected component if the only component of H[(] is C itself. The set
7 of connected components is a partition of V(H) and the hypergraph H is
said to be connected if m has at most one block, |r| < 1. A vertex v of a connected
hypergraph H is a cut vertex if H [V (H)\{v}] is not connected.

The number of lines of H containing a given vertex v is called its degree and
it is denoted by dy(v) = d(v). If two distinct vertices v and x lie together on
some line then x is said to be a neighbour of v. The set Ngz(v) = N (v) of neigh-
bours of v is called its neighbourhood. If H is a graph, then d(v) = |N(v)| for
every vertex v.

An automorphism of a hypergraph H is a permutation ¢ of V(H) such that
for every line A of H, ¢(A4) is also a line of H. The set of all automorphisms isa
permutation group on V(H), denoted by Aut H.

0.3. We shall say that an abstract group B has a regular representation by
a k-uniform hypergraph, if Ly = Aut H for some k-uniform hypergraph H.
Although for every k = 2, every group is isomorphic to the automorphism
group of some k-uniform hypergraph (R. Frucht [8], P. Hell and J. Nesetril
[9]), not every group has a regular representation by a k-uniform hypergraph.
The first counter examples were given by Frucht [8] and I. N. Kagno [15].
The simplest is the group Z; of order 3, which does not have a regular represen-
tation by a k-uniform hypergraph for any k.

In the case of graphs a theory has been developed and a standard termin-
ology has been adopted. Groups having a regular representation by a 2-
uniform hypergraph, i.e. by a graph, are said to have a GRR (graphical regular
representation). Among abelian groups, only groups of the form Z3%, n = 2, 3,
4, have a GRR (C. Y. Chao (4], W. Imrich [11; 12], M. H. McAndrew [16],
G. Sabidussi [19]). The problem is more complicated for non-abelian groups.
Using the theorem of W. Feit and J. G. Thompson [5] on the solvability of
groups of odd order, L. A. Nowitz and M. E. Watkins have shown that if B
is non-abelian and of order coprime to 6, then it has a GRR [18]. Imrich
extended this result to the case of |B| odd and sufficiently large {13; 14]. Other
classes of groups have also been examined by Nowitz [17] and Watkins
[22; 23; 24].

In this paper we show that given any integer & = 3, every group B of
sufficiently large order has a regular representation by a k-uniform hypergraph
H. The argument consists of two steps. We first define the hypergraph H
with vertex set V(H) = B in such a way that the relation Lz C Aut H becomes
obvious. Then, since Ly is transitive on B, in order to prove the equality
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Ly = Aut H it suffices to show that the stabilizer in Aut H of the identity
element ¢ of B, (Aut H),, is trivial. The construction makes use of special
generating sum-free sets in a sufficiently large group B. Also we have to deal
separately with groups of exponent >2 and elementary abelian 2-groups.

1. Groups of exponent > 2.

1.1. Let B be any group. A set D of elements of B is called sum free if
{xy|x,y€E DYN\D =4.

This is equivalent to the condition x~'y ¢ D, for any x, y € D. Clearly D
cannot contain the identity element e of B. A sum free set D is called a §-set
if the following additional conditions are fulfilled:

(i) forevery x € D, x™* € D only if x~! = «x;
(i1) D has two distinct elements a and b such that a? e and b2 5 e.

It is clear that the elements ¢ and b of condition (ii) must also satisfy
at*#£b, b*#Fa, abFe.
For every x € B, let (x) denote the subgroup of B generated by x.

1.2. An elementary abelian 2-group B (a group of exponent 2, i.e. such that
x* = e for every x € B) cannot have a §-set.

1.3. PROPOSITION. Let a finite group B of exponent >2 have order at least 18.
Then B has two distinct elements a and b such that

a*s#Ze a*#b, b*xe b2s=a, abFe.

Proof. Assume that the proposition is false for some group B of exponent
>2, |B| Z 18. Let @ be an element of B having largest possible order. Then
x? ## a for every x ¢ (a), because otherwise we would have (x) D (a),
contradicting the choice of a. Indeed we must have x? = ¢ for every x ¢ (a),
because otherwise letting b = «, the pair a, b would satisfy the requirements of
the proposition. This shows also that (x a)? = e for every x ¢ (a), i.e.

xax =a7!, xa=alx.

Further, if we had [(a)| = 7, then setting b = «® the pair a, b would satisfy
the requirements of the proposition. Therefore |(a)| £ 6 and, in view of
|B| 2 18, we can choose x, y € B\(a) such that the product x y ¢ (a). Then
xax = ¢ l'ax =c¢landyay = a~lyy = a7, so that

xXax =vyay, Xya=axy.
But also, since x y ¢ (a), we have x y @ = a~! x v, and hence

axy =a'txy, a=a’l,

https://doi.org/10.4153/CJM-1978-082-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-082-9

REGULAR REPRESENTATIONS 949

contradicting the choice of a.
1.4. PROPOSITION. Let d be an tnteger = 2 and B a finite group. If
1B| 2 3(d + d2),
then B has a generating 8-set of size at least d.

Proof. According to proposition 1.3, B has a é-set {a, b} containing two
elements.

Let D be a maximum size §-set of B, |D| = n, D = {x1,...,x,} and assume
that the sum >_"_, |(x,)| is largest possible. In order to prove that D generates
B, we shall show that the set

D=V (x) U {xly, %y} xy |x, 3 € D}
i=1

is the entire group B. For otherwise let z be any element of B\D. If 22 ¢ D,
then D U {z} is a é-set, a contradiction to the maximality of D. On the other
hand, if 22 = x; € D, then

D' = (D\{x4}) \J {z}

is a 8-set of maximum size n = |D]. But (z) D (x;), so that
2 @ > 2 @),
z€D’ z€D

contradicting the maximality of the latter sum.

There remains to prove that D contains at least d elements. This again will
be a consequence of the equality D = B. Suppose that |D| = n < d. We shall
obtain a contradiction, If we had |(x;)| < 3 d?for every x; € D, then

IB| = |D| < n (3d) + 3n2,
IB| < d (3d2) + 3d2 = 3(d* + d2),

a contradiction to the initial assumption on the order of B. Therefore |(x,)| =
3 d? for some x; € D. Keeping this subscript ¢ fixed, observe that for each
x; € D, the equation z2 = x; has at most two solutions z € (x;). Consequently
there are at most 2% elements in (x,), the square of which belongs to D. On the
other hand, we have the inequality

Ha'y, ey xylx,y € DY = 3n,
so that it is possible to find an element
2 € (w)\lx™y, x 37! w ylx, y € D}

such thatz ¢ D, 271 ¢ D, 2* ¢ D. Then D \U {z} is a é-set strictly larger than
D, which contradicts the choice of D.

1.5. If » and m are integers, then we denote by (%, m] the set of integers 1
such that n» < 7 and 7 < m.
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Let £ and # be integers, & = 2, n = 2k + 3. Let G,, be the k-uniform
hypergraph defined by
V(Gi.n) = [1, n]
E(Gpn) =1{li,i+k—11si=<n—k—1}
Ui, i +k—=21U{n —1}i =2k + 1}
USU{nlSC1,n—1],|S =k — 1}.

The graph G 14 is pictured in Figure 1.

10

FiGure 1.

A hypergraph G is called a (k, n) — arc if it is isomorphic to G; ,.
1.51. LEMMA. For every x € V(Gy.n), x 3~ n, we have d(x) < d (n).

Proof. 1t is clear from the definition of G, that

_[n = 1)

don) = (k —1/)-

Also every x € [1, n — 1] lies together with %z in some line exactly (: : ;)
times, and lies in at most & + 1 lines not containing #, so that

d(x)§k+1+(’]::§).
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Using the inequalities

2% + 1 n—2)
k+1<(k—l)§(k—1 :

we get

n—2 n—2) (n—2) (n—l)
< = =
d(x)=k+1+(k—2><(k—1 o) = o) — 4
1.52. The vertex of largest degree of any (k, n) — arc G is called the dis-
tinguished vertex of G.

1.563. LEMMA. The automorphism group of Gy , s trivial.

Proof. Obviously
V(Gra)\n} = [1,n — 1]
is a constituent of Aut G, ,. Also it is not difficult to see that
Aut Gy, | [1, n — 1]
is trivial, and consequently so is Aut Gy .
1.54. LEMMA. Gy, is not bipartite if n = k* — k + 2.
Proof. Suppose that
V(Gin) =1, 0] = ViUV,
where V; and V', are independent sets. Assuming that » € V', we must have
[ViNn(l,n —2]| £k -2
But also for every 7 € V; M [1, (n — 2) — k] we must have
Vimv[i+ 1,7+ k] # 0,

because otherwise [z -+ 1, ¢« 4+ k] would be a line of Gy, contained in V,. For
similar reasons,

ViM (1, k] = 0.
It follows that

n—2 = |[I,n— 2][ <k-1)+ |Vlm|:l,n — 2]|-k
Sk—-—1)4+(k—-—2k=Fk—Fk—1,
a contradiction.

1.55. LEMMA. Ifn = 2 k + 6, then
2d(x) < d(n)
for every x € V (Gi.n), x # n.
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Proof. We have already seen in the proof of Lemma 1.51 that

n— 2
d(x)ék-l—l—l—(k_Z).
Consequently

¢

2d(x)§2k+2+2(;::;) gn—4+2(2:§).

But the assumption #n = 2k + 6 implies also that

n—2 n—2
”"3+(k—2)§(k—1)

i < (1224 (222) = (21) v

1.6. PROPOSITION. Let k be any integer = 3. Let a finite group B have a gemera-

ting é-set D containing at least k* + 1 elements. Then B has a regular representa-
tion by a k-uniform hypergraph H.

and

Proof. 1. Let n be the cardinality of D. Let G be a (k — 1, n) — arc with
vertex set V(G) = D, and assume that the distinguished vertex of G is an

element a of D having order larger than 2.
Let H be defined by

V(H) = B,
E(H) = {{t,txl, e ,txk_l}[{xl, e ,xk_l} S E(G), t € B}

Obviously every left translation of B is an automorphism of H. We have to
prove that the stabilizer (Aut H), is trivial.

Clearly Ng(e) is a constituent of (Aut H),. Define a (k — 1) — uniform
hypergraph G; by

V(G) = Nyl(e),

E(G) = {{xn, ..., x=1lie, %1, ..., 2} € E(H)}.
Then (Aut H),| Ng(e) € Aut G,.
II. Let
E, = E(G),
E, = {{x, xy1, ..., sy} [{x, v1, . . . a2} € E(G), 2% = ¢},
Es = {{x 1, x oy, o a7 X, y1, -0, ko) € E(G), x2 = e}

It follows from the axioms of a §-set that FE,, E; and E, are pairwise disjoint.
Moreover, for every Ay € Eyand Ay € E., we have 49 M 4, = @.
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We claim that E(G)) = E,\JU E;\U E,. The inclusion E,\U E;\U E, C
E(G,) is readily verified. On the other hand, let 4 = {21, ..., 2,21} € E(G)).
By definition,

{6, 21y .. ka—l} = {ty txly LA ytx/c—l}
for some ¢t € B and
{xly LRI vxk—l} E E(G)

If e = ¢, then 4 € E,. Otherwise ¢ is one of the fx;,, 2 =1,...,k — 1, and
there is no loss of generality in assuming that e = fx;. In this case

e, 21, oy zmaf = o™ e, X , o, X M,
A= {27, o1 e, ..., X170} € B U Es.
III. Let us denote
D' = {x!x € D},
F={x"ylx,y € D}.
From the axioms of a 6-set it is clear that FMN D =@ and FN D! = @. It
follows from part II that V(G,) € D \U D—1\U F, and also that G, [D] = G.
Ler K be the connected component of G; that contains the distinguished
vertex a of G. Since, according to Lemma 1.54, G = G, [D] is not bipartite, it

follows that G, [K] is not bipartite. For every other connected component
K’ # K of Gy, if there is any, we have

K'N\D =0
K = (D'NK')U (FNK).

But D' M\ K’ being disjoint from D, is independent in Gi, and so is F M K.
Hence G; [K'] is bipartite and K is a constituent of Aut G; and also of
(Aut H),. We have

Aut G1|K C Aut G, [K]

Il

and consequent.y
(Aut H) |K C Aut Gi[K].

It will follow from the subsequent parts [V-VI, that the vertex a of K is
fixed by every automorphism of G; [K]. For every x € K, we shall write

d(x) = do,im (),
N(x) = NGIIK] ().

IV. It follows from part II that every x € D\D~!is incident in G, only with
lines of G. In view of Lemma 1.51, d(x) < d(a) for every x € D\D, x # a.
If x € DM D~ then

{xy Y1y - - )yk-—Q} - {xv XY1y - .- )xyk—2}
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is a bijection from the set of lines of G incident with x to the set
{4 € E(GU\E(G)|x € A}

Consequently, in view of Lemma 1.55, we have
d(x) = 2dg(x) < d(a)

for every x € D M D~

Forevery x € K M (D~\D) we have N(x) C F, so that N(x) is indepen-
dent in G,, while N{(a) = D\{a} is not independent in G;.

If x € KM F, then we have to examine separately the cases # = 3 and
k= 4.

V. Let & = 3. Since G, [K] is a graph, we have d(x) = |N(x)| for every
x € K. Also, sincex € F, N(x) € D\U D%

If N(x) € D-\D, then N(x) is independent in G; while N{a) is not.

If N(x) C D, then every element of N(x) has order 2, so that

IN@)| <Dl —2<n—14d@x) <d@).

If N(x) € D and N(x) € D-\D then, since no vertex in D is adjacent in
G1 to a vertex in D—\D, x is a cut vertex of G;[ N (x) U {x}]. On the contrary,
a is not a cut vertex of G, [N («) U {a}] = G, [D] = G.

VI. Let & =2 4. If [N(x) N\ (DU D1)| = 2, then let S be any subset of
N(x) such that

ISl=k—2, SN (DUDY| =2

Clearly S\U {x} ¢ E (G,). On the contrary, for every subset S of N(a) con-
taining & — 2 elements, S \U {a} € E (G)).

If [N(x) N (DU D™)| = 1, then every line of G, incident with x is incident
with the unique element y of N(x) M (D U D-1). But it is easy to find two
lines of G, and hence of G, the intersection of which contains only ¢ and no
other vertex.

VII. The different properties of ¢ and of the other vertices x # « of G1[K],
discussed in the preceding parts IV-VI, show that every automorphism of
G [K] must fix a. Consequently

D = N (a) Y {a} = Ng, (a) U {a}

is a constituent of Aut G, [K], hence of Aut G;, and finally of (Aut H),.
Therefore

(Aut H),|D C Aut G, [D] = Aut G.

But, according to Lemma 1.53, Aut G is trivial. Consequently (Aut H),|D is
trivial.

VIII. Since D generates B, every x € B can be written as a product of
elements of D. Let /(x) be the minimum number of factors in such an expres-
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sion of x. We have, e.g., I(x) = Oif and only if x = ¢, and I(x) = 1if and only
ifx € D.

We prove by induction on /(x) that every ¢ € (Aut H), fixes x. This is true
by definition if /(¢) = 0. For I(x) = 1 this is exactly the triviality of (Aut H),|D,
proved in VII.

If the claim is false, let x € B such that ¢ (x) # x for some ¢ € (Aut H),,
and assume that /(x) = g is smallest possible. Then x = y, ...y, withy; € D
for1 <1 < g Now

Iy, ) =1x) — 1
and hence, by the induction hypothesis,
o(xy, ™) = x ¥,

Consider the automorphism 7 of H given by 7(z) = x y,7! z for every z € B.
We have 7! ¢ 7 € (Aut H),, and consequently

1

™o r(y,) = Vo 07(3’0) =1(y,), olx) =«

2. Groups of exponent 2.

2.1. We recall that if every non-identity element of a group B has order 2,
then B is necessarily isomorphic to some Zy". Although the term elementary
abelian 2-group is often used and might be more informative to designate such
groups, in the sequel we shall consistently call them groups of exponent 2.

The notation will be kept multiplicative.

2.2. LEMMA. For every integer n = 6 there exists a graph G, having n vertices,

each of them of degree at least 2, and such that Aut G, s trivial.

Proof. Let
V(G,) = [1, n],
EG) = o i+ Blie [L,n— 113 UL a}, {1, 2 — 1}, {1, n — 2}}.
The graph Gg is pictured in Figure 2.

Remark. Every graph having less than 6 and at least 2 vertices has a non-
trivial automorphism group.

2.3. PROPOSITION. Euvery finite group B of exponent 2 and having order at least
28 has a regular representation by a 3-uniform hypergraph H.

Proof. Let D be a minimal set of generators for B. (D is a basis of B if this is
viewed as a vector space over the two-element field.) Certainly

|D| = logs |B| = 6.

According to Lemma 2.2, there is a graph G such that

https://doi.org/10.4153/CJM-1978-082-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-082-9

956 S. FOLDES AND N. M. SINGHI

Ficure 2.

(i) V(G) = D;
(ii) Aut G is trivial;
(iii) every vertex of G has degree at least 2.

Let H be defined by
V(H) = B,
EH) = {{t, tx, ty} [ {x, ¥} € E(G), ¢ € BY.

Every left translation of B is an automorphism of H. We shall prove that
(Aut H), is trivial.
Clearly Ng(e) is a constituent of (Aut H),. Define a graph G, by

V(G1) = Ny (e)
E(Gi) = {{x, y} | e, x, ¥} € E(H)}.
Defining again F = {x y | x, y € D}, we have
ViGy) S D\UF, DNF=4.
Also Ng, (x y) = {x,y} foreveryxy € FM V(G,), and G, [D] = G. Clearly
de, (x) = 2dg (x) 2 4
for every x € D, while
dg (x) = 2

for every x € F M V(G,). Therefore D is a constituent of Aut G; and hence of
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(Aut H),, so that
(Aut H),| D C Aut G, [D] = Aut G.

But Aut G is trivial, so that every ¢ € (Aut H), fixes every element of D. To
prove that every ¢ € (Aut H), fixes every x € B, i.e. that (Aut H), is trivial,
we apply mutatis mutandis the argument of part VIII in the proof of Proposi-
tion 1.6.

2.4. PROPOSITION. Let k be any integer = 4 and B « finite group of exponent 2.
If |B| =2 4k + 2, then B has a regular representation by a k-uniform hypergraph.

Proof. 1. Let |B| = 2"and let {x,, ..., x,} be a minimal set of generators for
B. Let

D = {H x| C (1, n], 1| odd} .

i€r

D is a sum free set and
|D| = 21 = 2k + 1.

Let Gbea (B — 1,2 1) — arc (see 1.5) with V(G) = D. As before, let H
be defined by

V(H) = B,

EH) = {{t, txq, . .., txea}|{xr, ..., %1} € E(G), t € B}.
Let G, be the (k — 1)-uniform hypergraph defined by

V(G1) = Nul(e),

E(G)) = {{xy, ..., xad|fe, %1, .o 21} € E(H).

To prove that (Aut H), is trivial, it will suffice to show, as in the proof of
Propositions 1.6 and 2.3, that every (Aut H), fixes every x € D.
II. Let

Eiy = {{x, xy1, .. ., x;a}|{x, y1. . ., yx—2} € E(G)}.

Since D is a sum free set, E(G) M E; = . An argument similar to that of part
IT in the proof of Proposition 1.6 can show that

E(G,) = E(G) \J E..
Also defining again F = {x v | x,y € D}, we see that
V(G)=D\UJUF, DNF=9
and
G [D] = G.
Leta € D be the distinguished vertex of the (¢ — 1, 2"!) — arc G.
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I11. For every x € D, the correspondence

{xy Viy o oo yyk—Q} - {xvxyly cee rxyk—Q}

is a bijection from {4 € E(G) |x € A} to {4 € Ei|x € A}. It follows from
Lemma 1.51 that for every x € D, x # a,

de (x) = 2dg(x) < 2dg(a) = dg, (a).
IV. Setting N; = D\{a}, and Ny = {ax | x € D}, we have
Ng (@) = Nt U N, N1\ N; = 0.
Moreover, for every subset S of N; or of Ny containing & — 2 elements,
SU {a} € E (Gy).

On the contrary, assume that for a vertex x € F, N4, (x) is the union of two
disjoint sets Ng (x) = M, \J M, such that for every subset S of M, or of M,
containing k — 2 elements,

S U {x} € E (Gy).

Since we can see without difficulty that D € N, (x), it is clear that one of the
sets My or M,, say M, has to contain at least & — 2 elements of D. Let

SCM,ND, |S|=Fk—2
We should have
SV {x} € E(Gy)

which, in view of & — 2 = 2, is impossible.
V. It follows from III and IV that every ¢ € Aut G, fixes the distinguished
vertex a. Therefore Ng (a) is a constituent of Aut G,. But it is easy to see that

H - {Nl, NQ}

as defined in 1V, is the only partition II of Ng, (a) into two blocks such that
for each block C of II and every subset S of C containing & — 2 elements

SU {a} € E (Gy).

Also N is independent in Gy, while N, is not. Consequently D = N; \U {a} is
a constituent of Aut G, and hence of (Aut H),. But Aut G, [D] = Aut G is
trivial, implying that every ¢ € (Aut H), fixes every x € D.

The proof is finished.

3. Main theorem. 7'here exists a polynomial p(x) with the property that for

every integer k = 3, every finite group of order at least p (k) has a regular represen-
tation by a k-uniform hypergraph.
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Proof. Let
px) = 3[(x* + 1)* + (x* + 1)7,

a polynomial of degree 6. The result follows from Propositions 1.4, 1.6, 2.3,
2.4 and the inequalities

p(3) > 26
and
p(k) > 4k + 2

for every k = 4.

4. Concluding remarks. Recently F. Hoffman has shown [10], that the
theorem of Feit and Thompson on the solvability of groups of odd order,
together with a result contained in (7], implies that every finite group of odd
order = 57 has a regular representation by a 3-uniform hypergraph.

For some classes of groups the bound p (k) given in the main theorem is very
crude. It was shown, for example, in [6] that a cyclic group Z, has a regular
representation by a 3-uniform hypergraph if and only if n # 3, 4, 5. We think
that the polynomial p(x) can be replaced by one of degree less that 6, perhaps
even by a linear polynomial of the form x + ¢, ¢ constant.
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