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REGULAR REPRESENTATION OF FINITE GROUPS 
BY HYPERGRAPHS 

STEPHANE FOLDES AND NAVIN M. SINGHI 

0. Introduction and terminology. 

0.1. All s t ructures considered in this paper will be finite. 
T h e product <JT of two permuta t ions a and r of a set V is defined by ar(x) = 

(J(T(X)) for every x (E V. The set Sv of all permuta t ions of F is a group under 
this operation. A permutation group on F is a subgroup of Sv. 

Let P be a permuta t ion group on a set V. If U is a subset of V such t h a t 
a(U) Ç U for every a 6 P , then U is a constituent of P . T h e restriction of a 
(j G P to £/ is then denoted by a\U. We write 

P\U = {er|17 | d G P ) . 

£7 is called a faithful constituent if every <r £ P is determined by its restriction 
to U. In this case the groups P and P\ U are isomorphic. T h e permuta t ion 
group P is called transitive if its only const i tuents are V and the e m p t y set 0. 
For a rb i t ra ry P , a non-empty const i tuent U oi P such t h a t P | £/ is t ransi t ive is 
called an orbit of P . For x Ç F, the stabilizer Px of x in P is the subgroup of P 
consisting of all a £ P for which a(x) = x. If P is t ransi t ive and the stabilizer 
of some element x of F is trivial, then P is said to be regular. In this case all the 
stabilizers Px, x £ F , are trivial. 

Let $ be an abs t rac t group. For every y Ç P , the permuta t ion ry of P given 
by r y(x) = 3>x for every x Ç F , is called a Ze// translation. Left t ranslat ions 
form a regular permuta t ion group LB on B. T h e mapping 3/ —> ry is an isomor
phism from B to LB, 3, fact well known as Cayley 's theorem [2]. Every regular 
permuta t ion group P can be viewed as the group of left t ranslat ions LB in 
some abs t rac t group B, isomorphic to P . 

0.2. If F is a set and k is any positive integer, then let Pk(V) denote the set 
of subsets of F having cardinali ty k. If E is any subset of Pk(V), then the 
ordered pair H — ( F , E) is a k-uniform hyper graph on F. T h e elements of 
F = V(H) are called vertices, those of E = E(H) are called lines. A line A 
containing a vertex v is also said to be incident with v. A graph is a 2-uniform 
hypergraph. 

A sub-hyper graph oî H = (V, E) is 2, ^-uniform hypergraph Hi = (F i , £1) 
such tha t Vi Ç F and P i Ç p . Hi is called an induced sub-hyper graph of # if 
every line A oî H contained in V\ is also a line of Hi. For every subset 5 of F , 
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H has a unique induced sub-hypergraph H[S] with vertex set S. I t is called the 
sub-hypergraph induced by S. If H[S] has no lines, then S is said to be in
dependent. H is bipartite if its vertex set is the union of two independent sets. 

A partition of a set V is a set ir of pairwise disjoint non-empty subsets of V 
such tha t U^ÇTT A = V. A component of a hypergraph # is a non-empty subset 
C of F (if) such tha t every line of H is either contained in C or is disjoint from 
it. C is a connected component if the only component of H[C] is C itself. T h e set 
T of connected components is a part i t ion of F (if) and the hypergraph H is 
said to be connected if T has a t most one block, \T\ ^ L A vertex v of a connected 
hypergraph i f is a cut vertex if i f [V(H)\{v\] is not connected. 

The number of lines of H containing a given vertex v is called its degree and 
it is denoted by dH{v) = d(v). If two distinct vertices v and # lie together on 
some line then x is said to be a neighbour of p. The set NH(v) = N(v) of neigh
bours of v is called its neighbourhood. If i f is a graph, then d(v) = |iV(t>)| for 
every vertex v. 

An automorphism of a hypergraph i f is a permutat ion a of T( f i ) such t h a t 
for every line A of if, a (A) is also a line of H. The set of all automorphisms is a 
permutat ion group on V(H), denoted by Aut H. 

0.3. We shall say tha t an abst ract group B has a regular representation by 
a ^-uniform hypergraph, if LB = Aut i f for some ^-uniform hypergraph H. 
Although for every k ^ 2, every group is isomorphic to the automorphism 
group of some ^-uniform hypergraph (R. Frucht [8], P. Hell and J. Nesetril 
[9]), not every group has a regular representation by a ^-uniform hypergraph. 
The first counter examples were given by Frucht [8] and I. N. Kagno [15]. 
The simplest is the group Z 3 of order 3, which does not have a regular represen
tat ion by a ^-uniform hypergraph for any k. 

In the case of graphs a theory has been developed and a s tandard termin
ology has been adopted. Groups having a regular representation by a 2-
uniform hypergraph, i.e. by a graph, are said to have a GRR (graphical regular 
representat ion) . Among abelian groups, only groups of the form Z | , n = 2, 3, 
4, have a GRR (C. Y. Chao [4], W. Imrich [11; 12], M. H. McAndrew [16], 
G. Sabidussi [19]). The problem is more complicated for non-abelian groups. 
Using the theorem of W. Feit and J. G. Thompson [5] on the solvability of 
groups of odd order, L. A. Nowitz and M. E. Watk ins have shown tha t if B 
is non-abelian and of order coprime to 6, then it has a GRR [18]. Imrich 
extended this result to the case of \B\ odd and sufficiently large [13; 14]. Other 
classes of groups have also been examined by Nowitz [17] and Watk ins 
[22; 23 ; 24]. 

In this paper we show tha t given any integer k ^ 3, every group B of 
sufficiently large order has a regular representation by a ^-uniform hypergraph 
H. The argument consists of two steps. We first define the hypergraph H 
with vertex set V(H) = B in such a way tha t the relation LB C Aut H becomes 
obvious. Then, since LB is transit ive on B, in order to prove the equali ty 
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LB = Aut H it suffices to show that the stabilizer in Aut H of the identity 
element e of B, (Aut H)ei is trivial. The construction makes use of special 
generating sum-free sets in a sufficiently large group B. Also we have to deal 
separately with groups of exponent > 2 and elementary abelian 2-groups. 

1. Groups of exponent > 2. 

1.1. Let B be any group. A set D of elements of B is called sum free if 

{x y | x, y G D\ C\ D = 0. 

This is equivalent to the condition x~ly g D, for any x, y £ D. Clearly D 
cannot contain the identity element e of B. A sum free set D is called a ô-set 
if the following additional conditions are fulfilled: 

(i) for every x G D, x~l G D only if x~l = x; 
(ii) D has two distinct elements a and b such that a2 9e e and b2 9e- e. 

It is clear that the elements a and b of condition (ii) must also satisfy 

a2 ?± b, b2 ?± a, ab ^ e. 

For every x G B, let (x) denote the subgroup of B generated by x. 

1.2. An elementary abelian 2-group B (a group of exponent 2, i.e. such that 
x2 = e for every x £ B) cannot have a 5-set. 

1.3. PROPOSITION. Let a finite group B of exponent > 2 have order at least 18. 
Then B has two distinct elements a and b such that 

a2 9^ e, a2 ?± b, b2 9^ e, b2 9^ a, ab 9e e. 

Proof. Assume that the proposition is false for some group B of exponent 
>2 , \B\ ^ 18. Let a be an element of B having largest possible order. Then 
x2 9^ a for every x (? (a), because otherwise we would have (x) D (a), 
contradicting the choice of a. Indeed we must have x2 = e for every x (£ (a), 
because otherwise letting b = x, the pair a, b would satisfy the requirements of 
the proposition. This shows also that (x a)2 — e for every x (? (a), i.e. 

x ax — a~1, x a = a~l x. 

Further, if we had |(a)| ^ 7, then setting b = az the pair a, b would satisfy 
the requirements of the proposition. Therefore \{a)\ ^ 6 and, in view of 
\B\ ^ 18, we can choose x, y G B\(a) such that the product x y G (a). Then 
x a x = a~~l x x = a - 1 and y a ;y = a~l yy = a -1, so that 

x a x = y A j , x j A = a x y. 

But also, since x y G (a), we have x 3/ a = a~l x y, and hence 

a x y = a~l x y, a — a~l, 
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contradicting the choice of a. 

1.4. PROPOSITION. Let d be an integer ^ 2 and B a finite group. If 

\B\ ^ 3(d* + d2), 

then B has a generating 8-set of size at least d. 

Proof. According to proposition 1.3, B has a ô-set {a, b) containing two 
elements. 

Let D be a maximum size <5-set of B, \D\ — n, D = {xi, . . . , xn} and assume 
tha t the sum 2 ^ = 1 | (tf*)| is largest possible. In order to prove tha t D generates 
B, we shall show tha t the set 

n 

D = U (Xi) U {oTly, xy~l
y xy \x,y £ D) 

is the entire group B. For otherwise let z be any element of B\D. If z2 G D, 
then D U {z} is a <5-set, a contradiction to the maximali ty of D. On the other 
hand, if z2 = xt G D, then 

5' = OA{*,})U{*} 

is a <5-set of maximum size w = |Z)|. But (z) Z) (#*), so tha t 

Z l(*)l> Z l(*)l. 
z€Z)' x€D 

contradicting the maximality of the lat ter sum. 
There remains to prove tha t D contains a t least d elements. This again will 

be a consequence of the equality D = B. Suppose tha t \D\ = n < d. We shall 
obtain a contradiction, If we had | (x*)| < 3 d2 for every xt G D, then 

\B\ = \D\ < n (3d2) + 3n2, 
\B\ < d (3d2) + 3d2 = 3(d* + d2), 

a contradiction to the initial assumption on the order of B. Therefore | (xt)\ ^ 
3 d2 for some xt G D. Keeping this subscript i fixed, observe tha t for each 
Xj G D, the equation z2 = Xj has a t most two solutions z G (xi). Consequently 
there are a t most 2n elements in (xt), the square of which belongs to D. On the 
other hand, we have the inequality 

|{x _ 1 y, xy~1,xy | x,y G D}\ ^ 3 n2, 

so tha t it is possible to find an element 

z G (x^Xf*-1 y, x y~\ x y\x} y G D] 

such tha t z G D, z~l ([ D, z2 d D. Then D \J {z\ is a <5-set strictly larger than 
D, which contradicts the choice of D. 

1.5. If n and m are integers, then we denote by [n, m] the set of integers i 
such tha t n ^ i and i ^ m. 
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Let k and n be integers, k ^ 2, n ^ 2k + 3. Let Gk>n be the ^-uniform 
hypergraph defined by 

V{Gk,n) = [1, n] 

E(Gk,n) = {[i, i + ft - 1]|1 â * û n - ft - 1} 
U {[i, i + ft - 2] U {n - l}\i = 2, ft + 1} 

U | 5 U {n}|SC [1, n - 1], |Sj = ft - 11. 

The graph G2,10 is pictured in Figure 1. 

FIGURE 1. 

A hypergraph G is called a (ft, n) — arc if it is isomorphic to Gk,n-

1.51. LEMMA. For ^ery x Ç V(Gk,n), x ^ n, we have d(x) < d (n). 

Proof. It is clear from the definition of Gk,n that 

' « - 1 : 1 ) • 
Also every x £ [1, n — 1] lies together with w in some line exactly 

times, and lies in at most ft + 1 lines not containing n, so that 

d(x) £ k + 1 + (l - 2) . 
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Using the inequalities 

we get 

1.52. The vertex of largest degree of any (&, n) — arc G is called the dis
tinguished vertex of G. 

1.53. LEMMA. T ^ automorphism group of G*,n is trivial. 

Proof. Obviously 

m . n ) \ M = [hn - 1] 
is a constituent of Aut Gk,n. Also it is not difficult to see that 

Aut G*.„ | [1, n - 1] 

is trivial, and consequently so is Aut Gk<n. 

1.54. LEMMA. GktTl is not bipartite if n ^ k2 — k + 2. 

Proof. Suppose that 

F(G*.«) = [ l ,n ] = 7 i U F2, 

where Fi and F 2 are independent sets. Assuming that n Ç Fi, we must have 

| F i H [1, n - 2] I ^ * - 2. 

But also for every i £ Fi Pi [1, (w — 2) — k] we must have 

Fj H [* + 1, i + k] ^ 0, 

because otherwise [i + 1, i + k] would be a line of GktU contained in F2. For 
similar reasons, 

F i H [ l , k] F ^ 0 . 

It follows that 

n - 2 = |[1, w - 2]I ^ (£ - 1) + I Fi r\ [1, w - 2]|- & 

^ (jfe - 1) + (k - 2)k = ife2 - & - 1, 
a contradiction. 

1.55. LEMMA. If n ^ 2 k + 6, then 

2d(x) < d(n) 

for every x £ F (Gkin), x ^ n. 
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Proof. We have already seen in the proof of Lemma 1.51 that 

d(X)èk + i + (n
kzt)-

Consequently 

But the assumption n ^ 2k + 6 implies also that 

—+(::^(::ï) 
and 

»«<(::?) +fe:')-(;:!)-«•>• 
1.6. PROPOSITION. Let k be any integer ^ 3. Let a finite group B have a genera

ting 8-set D containing at least k2 + 1 elements. Then B has a regular representa
tion by a k-uniform hypergraph H. 

Proof. I. Let n be the cardinality of D. Let G be a (k — 1, n) — arc with 
vertex set V(G) = D, and assume that the distinguished vertex of G is an 
element a of D having order larger than 2. 

Let H be defined by 

V(H) = 5, 

Obviously every left translation of B is an automorphism of H. We have to 
prove that the stabilizer (Aut H) e is trivial. 

Clearly NH{e) is a constituent of (Aut H)e. Define a (k — 1) — uniform 
hypergraph Gi by 

F(Gi) = i M e ) , 

£(Gi) = {{ai, . . . , x*_i}|{e, xi, . . . , x/c_i} G E(H)}. 

Then (Aut # ) e | iV* (e) C Aut Gi. 
II. Let 

£o = £(G), 

£ i = j{x, x^i, . . . , xyk-2}\{x, yu . . . ,yk-2] G E(G), x2 = e\, 

E2 = {{x~\ x-1 yu . . . ,x-lyk-2\{x, yu . • . , ^ -2} € £(G), x2 ^ e}. 

It follows from the axioms of a <5-set that Eo, E\ and £2 are pairwise disjoint. 
Moreover, for every A0 Ç E0 and yl2 G £2, we have A^ C\ A2 = 0. 
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We claim tha t E{G\) = £ 0 W £ i U E2. The inclusion £ 0 U Ex \J E2 Q 
E(Gi) is readily verified. On the other hand, let A = {zi, . . . , zk-\) G E(G\). 
By definition, 

{e, zi, . . . , 2fit_i} = {/, txi, . . . , /x/c_i} 

for some t G i? and 

{xi, . . . , Xyt-i} G £ ( G ) . 

If e = t, then A G £0- Otherwise 6 is one of the to*, i = 1, . . . , & — 1, and 
there is no loss of generality in assuming tha t e = t%\. In this case 

{e, zi, . . . , zk-i} = {xr\ e, Xi_1x2, . . . ,xrlxk-i}, 
A = {xi - 1 , Xi_1x2, . . . , Xi_1x*;_i} G Ei U E 2 . 

I I I . Let us denote 

D~l = { x - 1 ^ G £>}, 

i7 = {x_1 y\xf y G D} . 

From the axioms of a ô-set it is clear t ha t F r\ D = 0 and F P\ Z) - 1 = 0. I t 
follows from par t II t ha t V(Gi) Q D U D~l \J F, and also tha t G1 [D] = G. 

Ler K be the connected component of G\ t ha t contains the distinguished 
vertex a of G. Since, according to Lemma 1.54, G = G\ [D] is not bipart i te , it 
follows tha t Gi [K] is not bipart i te . For every other connected component 
K' 9^ K of Gij if there is any, we have 

K' C\D = id 

K' = (D~ir\Kf) U (Fr\K'). 

But D~l C\ K' being disjoint from D, is independent in Gi, and so is F P\ K'. 
Hence G\ [Kf] is bipart i te and K is a consti tuent of Aut G\ and also of 
(Aut # ) e . We have 

Aut Gi\K Ç Aut Gi [K] 

and consequent.y 

( A u t t f ) e | i £ C AutGi [ iT | . 

I t will follow from the subsequent parts IV-VI , tha t the vertex a of K is 
fixed by every automorphism of G\ [K]. For every x G K, we shall write 

d(x) = ^ [ ^ ( x ) , 

iV(x) = NGi[K](x). 

IV. I t follows from par t II t ha t every x G D\D~l is incident in Gi only with 
lines of G. In view of Lemma 1.51, d(x) < d(a) for every x G D\D, x 7e a. 

If x G -D H Z>-\ then 

{x, 3/1, . . . , yk_i) -> {x, x^i, . . . , x^_ 2 } 
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is a bijection from the set of lines of G incident with x to the set 

{A e E(G!)\E(G)\x G ̂ 4}. 

Consequently, in view of Lemma 1.55, we have 

d(x) = 2 dG{x) < d(a) 

for every x £ D C\ D~l. 
For every x G K C\ (D~l\D) we have N(x) C F, so t h a t 7V(x) is indepen

dent in Gi, while N(a) = D\{a\ is not independent in Gi. 
If x G i£ / ^ F, then we have to examine separately the cases k = 3 and 

& ^ 4. 
V. Let k = 3. Since Gi [i£] is a graph, we have d(x) = \N(x)\ for every 

x £ K. Also, since x G F, JV(*) C D U Z)-1. 
If 7V(x) Ç Z)_1\Z), then iV(x) is independent in G\ while TV (a) is not. 
If N(x) Ç £), then every element of 7V(x) has order 2, so t ha t 

|A^(x)| ^ |D| - 2 < n - 1, d ( s ) < d (a ) . 

If 7V(x) $£ £> and N(x) $£ D~1\D then, since no vertex in D is adjacent in 
G\ to a vertex in D~1\D, x is a cut vertex of Gi[Ar(x) U {#}]. On the contrary , 
a is not a cut vertex of Gi [A7"(a) ^J {a}] = G\ [D] = G. 

VI . Let k ^ 4. If |N(x) H (D VJ Z)-1)! ^ 2, then let 5 be any subset of 
N(x) such tha t 

| 5 | = k - 2, | S H (£>U D~l)\ è 2. 

Clearly 5 VJ {x} $ £ (Gi). On the contrary, for every subset 5 of N(a) con
taining k — 2 elements, 5 U ( A ) £ E ( G I ) . 

If |7V(x) H ( D U ^ - 1 ) l = 1» then every line of G\ incident with x is incident 
with the unique element y of N(x) H (D U D~l). But it is easy to find two 
lines of G, and hence of Gi, the intersection of which contains only a and no 
other vertex. 

VI I . T h e different properties of a and of the other vertices x 9^ a of Gi[K], 
discussed in the preceding par t s I V - V I , show tha t every automorphism of 
G\ [K] must fix a. Consequently 

D = N (a) U {a} = NGl(a) U {a} 

is a const i tuent of Aut G\ [K], hence of Aut Gi, and finally of (Aut H)e. 
Therefore 

(Aut H)e\D Ç Aut Gi [D] = Aut G. 

But , according to Lemma 1.53, Aut G is trivial. Consequently (Aut H)e\D is 
trivial. 

V I I I . Since D generates B, every x £ B can be wri t ten as a product of 
elements of D. Let l(x) be the minimum number of factors in such an exprès-
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sion of x. We have, e.g., l(x) = 0 if and only if x = e, and l(x) = 1 if and only 
ifx£D. 

We prove by induction on l(x) tha t every a £ (Aut i7 ) e fixes x. This is t rue 
by definition if 1(e) = 0. For l(x) = 1 this is exactly the triviality of (Aut H)e\D, 
proved in VI I . 

If the claim is false, let x £ B such tha t a (x) ^ x for some o- £ (Aut i 7 ) e , 
and assume tha t l(x) = g is smallest possible. Then x = yi . . . yQ with yt £ D 
for 1 ^ i fg g. Now 

/(x 3V-1) = l(x) — 1 

and hence, by the induction hypothesis, 

<J(X yg~
l) = x yg-\ 

Consider the automorphism r of H given by T(Z) = X yg~
l z for every z Ç B. 

We have r~l a r Ç (Aut 77) e , and consequently 

^ _ 1 o- r ( y j = yg, a r(yg) = r(yg), a(x) = x. 

2. Groups of e x p o n e n t 2. 

2.1. We recall tha t if every non-identi ty element of a group B has order 2, 
then B is necessarily isomorphic to some Z2

W. Although the term elementary 
abelian 2-group is often used and might be more informative to designate such 
groups, in the sequel we shall consistently call them groups of exponent 2. 

The notat ion will be kept multiplicative. 

2.2. LEMMA. For every integer n ^ 6 there exists a graph Gn having n vertices, 
each of them of degree at least 2, and such that Aut Gn is trivial. 

Proof. Let 

V(Gn) = [l,n], 

E(Gn) = {{i, i + \\\i G [1, n - 1]} U {{1, n], {1, n - 1}, {1, n - 2}\. 

The graph G6 is pictured in Figure 2. 

Remark. Every graph having less than 6 and a t least 2 vertices has a non-
trivial automorphism group. 

2.3. PROPOSITION. Every finite group B of exponent 2 and having order at least 
26 has a regular representation by a S-uniform hypergraph H. 

Proof. Let D be a minimal set of generators for B. (D is a basis of B if this is 
viewed as a vector space over the two-element field.) Certainly 

\D\ = log2 \B\ ^ 6. 

According to Lemma 2.2, there is a graph G such tha t 
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FIGURE 2. 

(i) V{G) = D; 
(h) Aut G is trivial; 

(iii) every vertex of G has degree at least 2. 

Let H be defined by 

V(H) = B, 

E(H) = {{/, tx, ty) | {x, y} 6 £(G), * G 5 } . 

Every left translation of B is an automorphism of H. We shall prove that 
(Aut H)e is trivial. 

Clearly NH(e) is a constituent of (Aut i7) e . Define a graph d by 

Vid) = NH (e) 

E(d) = {{x,y\ | {e}x,y} £ E(H)}. 

Defining again F = {x y \x, y £ D], we have 

V(d) <^D\J F, D C\ F = 0. 

Also iVGl (x y) = {*, 3;} for every x ^ g ^ H 7 ( d ) , and Gi [D] = G. Clearly 

dGl (x) = 2 dG (x) ^ 4 

for every x £ D, while 

dGl(x) = 2 

for every x Ç F C\ V(Gi). Therefore D is a constituent of Aut G\ and hence of 
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(Aut H)e,so that 

(Aut H)e | D C Aut Gi [£>] = Aut G. 

But Aut G is trivial, so that every a £ (Aut i?) e fixes every element of Z\ To 
prove that every a £ (Aut Z7)e fixes every x £ B, i.e. that (Aut 77)e is trivial, 
we apply mutatis mutandis the argument of part VIII in the proof of Proposi
tion 1.6. 

2.4. PROPOSITION. Let k be any integer ^ 4 and B a finite group of exponent 2. 
If \B\ ^ 4& + 2, then B has a regular representation by a k-uniform hypergraph. 

Proof. I. Let \B\ = 2n and let {xi, . . . , xn) be a minimal set of generators for 
B. Let 

D = ill xt\IQ \hn], | / |oddf . 

D is a sum free set and 

\D\ = 2n~l ^ 2ife + 1. 

Let G be a (jfe - 1, 2"-1) - arc (see 1.5) with V(G) = D. As before, let H 
be defined by 

V(H) = B, 

E(H) = {{t,txu. . . ,txk-!}\{xi, . . . ,x,_!J Ç £(G), / G 5 } . 

Let Gi be the (& — 1)-uniform hypergraph defined by 

V(G1) = i M * ) , 

£(Gi) = {{xi, . . . , x*-i}|{e, xi, . . . , ̂ - i } € £ ( # ) . 

To prove that (Aut H)e is trivial, it will suffice to show, as in the proof of 
Propositions 1.6 and 2.3, that every (Aut H) e fixes every x Ç D. 

II. Let 

Ei = {{x, ryi, . . . , xyk-2}\{x, yi . . . , y*_2} G £(G)}. 

Since £> is a sum free set, E(G) C\ Ei = 0. An argument similar to that of part 
II in the proof of Proposition 1.6 can show that 

E(Gi) = E(G) \J Ex. 

Also defining again F = {x y \ x, y £ D}, we see that 

V(Gi) = DVJ F, D C\ F = 0 

and 

Gi [£>] = G. 

Let a f Dbe the distinguished vertex of the (k — 1, 2n_1) — arc G. 
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III. For every x G D, the correspondence 

{x, yu • • • , jk-î) -> {x, xyu • . . , ^ - 2 } 

is a bijection from {A G £(G) | x G 4̂} to {4 G -Ei | x G A}. It follows from 
Lemma 1.51 that for every x G D, x ^ a, 

dGl(*) = 2dG(x) < 2dG(a) = dGl(a). 

IV. Setting iVi = D\{a\, and iV2 = {ax | x G £>}, we have 

NGl (a) = N1 U iV2, iVi H iV2 = 0. 

Moreover, for every subset 5 of iVi or of N2 containing k — 2 elements, 

5 U f a } G £ ( G i ) . 

On the contrary, assume that for a vertex x G F, NGl (x) is the union of two 
disjoint sets NG (x) = Mi U M2 such that for every subset 5 of Mi or of M2 

containing k — 2 elements, 

5 U {x} G £ ( d ) . 

Since we can see without difficulty that D C 7VGl (x), it is clear that one of the 
sets M\ or M2, say Mi, has to contain at least k — 2 elements of Z>. Let 

^ C I j H A \S\ = k - 2. 

We should have 

S U {x} G £ ( d ) 

which, in view of k — 2 ^ 2, is impossible. 
V. It follows from III and IV that every a G Aut G\ fixes the distinguished 

vertex a. Therefore NGl (a) is a constituent of Aut G\. But it is easy to see that 

n = {Ni, N2} 

as defined in IV, is the only partition II of NGi (a) into two blocks such that 
for each block C of II and every subset S of C containing k — 2 elements 

S U {a} G E (GO. 

Also N2 is independent in Gi, while Ni is not. Consequently D = Ni U {a} is 
a constituent of Aut Gi and hence of (Aut H)e. But Aut Gi [Z>] = Aut G is 
trivial, implying that every a G (Aut H)e fixes every x £ D. 

The proof is finished. 

3. Main theorem. There exists a polynomial p(x) with the property that for 
every integer k ^ 3, every finite group of order at least p(k) has a regular represen
tation by a k-uniform hyper graph. 
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Proof. Let 

p{x) = 3[(x2 + l ) 3 + (x2 + i n 

a polynomial of degree 6. The result follows from Propositions 1.4, 1.6, 2.3, 
2.4 and the inequalities 

p(S) > 26 

and 

p(k) > 4& + 2 

for every k ^ 4. 

4. Concluding remarks. Recently F. Hoffman has shown [10], that the 
theorem of Feit and Thompson on the solvability of groups of odd order, 
together with a result contained in [7], implies that every finite group of odd 
order ^ 57 has a regular representation by a 3-uniform hypergraph. 

For some classes of groups the bound p(k) given in the main theorem is very 
crude. It was shown, for example, in [6] that a cyclic group Zn has a regular 
representation by a 3-uniform hypergraph if and only if n ^ 3, 4, 5. We think 
that the polynomial p(x) can be replaced by one of degree less that 6, perhaps 
even by a linear polynomial of the form x + c, c constant. 
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