GROHTH OF POLYNOMIALS HHOSE ZERDS ARE

WITHIN OR OUTSIDE A CIRCLE

Abdul Aziz

Let $P(z)$ be a polynomial of degree n which does not vanish in the disk $|z|<K$. For $K=1$, it is known that

$$
\begin{aligned}
& \left.\operatorname{Max}_{|z|=r<1}^{\operatorname{Max}}| | P(z)\left|\geq\left(\frac{1+r}{2}\right)^{n} \operatorname{Max}_{|z|=1}\right| P(z) \right\rvert\,, \quad \text { and } \\
& |z|=R>1
\end{aligned}
$$

In this paper we consider the two cases $K \geq 1$ and $K<1$, and present certain generalizations of these results.

If $P(z)$ is a polynomial of degree n, then $[7, p .346]$ or [6, Vol.I, p. 137 Problem III 269]
(1)

$$
\underset{|z|=R>1}{\operatorname{Max}}|P(z)| \leq R^{n} \operatorname{Max}_{|z|=1}|P(z)|
$$

Here equality holds if and only if $P(z)=\alpha z^{n}$.
It was shown by Ankeny and Rivlin [4] that if $P(z) \neq 0$ in $|z|<1$, then (1) can be replaced by

Received 2 April 1986. We thank Professor Q.I. Rahman for his useful suggestions.

Copyright Clearance Centre, Inc. Serial-fee code: 004-9729/87 $\$ 2.00+0.00$.
(2)

$$
|z|=R>1 \leq \operatorname{Max}_{|z|=1}|P(z)| \leq \frac{R^{n}+1}{2}|P(z)| .
$$

Inequality (2) is sharp and equality holds for $P(z)=\alpha+\beta z^{n}$, $|\alpha|=|\beta|$.

By the maximum modulus principle

$$
\begin{aligned}
& \operatorname{Max} \\
& |z|=\frac{1}{r}>1
\end{aligned}\left|z^{n} P(1 / z)\right| \geq \operatorname{Max}_{|z|=1}\left|z^{n} P(1 / z)\right|=\operatorname{Max}_{|z|=1}|P(z)|,
$$

and so
(3)

$$
\operatorname{Max}_{|z|=r<1}|P(z)| \geq r^{n} \operatorname{Max}_{|z|=1}|P(z)|,
$$

where equality holds if and only if $P(z)=\alpha z^{n}$.
If $P(z) \neq 0$ in $|z|<1$, then [8] the stronger inequality

$$
\begin{equation*}
|z|=r>10|(z)| \geq\left(\frac{1+r}{2}\right)^{n} \operatorname{Max}_{|z|=1}^{\operatorname{Max}}|P(z)| \tag{4}
\end{equation*}
$$

holds. Here equality is attained if $P(z)=\alpha(z-\beta)^{n},|\beta|=1$.
In this paper we obtain certain generalizations of inequalities (2) and (4). We prove.

THEOREM 1. If $P(z)$ is a polynomial of degree n such that $P(z) \neq 0$ in $|z|<K$ where $K \geq 1$, then

$$
\begin{equation*}
|z|=r<1 . \tag{5}
\end{equation*}
$$

Here equality holds if $P(z)=(z+K)^{n}$.
Applying Theorem 1 to the polynomial $z^{n} P(1 / z)$, we obtain
THEOREM 1'. If $P(z)$ is a polynomial of degree n which has all its zeros in the disk $|z| \leq k$ where $k \leq 1$, then

$$
\begin{equation*}
|z|=R>10,{\left(\frac{R+k}{1+k}\right)^{n}}_{\operatorname{Max}_{|z|=1}^{\operatorname{Max}}|P(z)| .}|P(z)| \geq \tag{6}
\end{equation*}
$$

The result is sharp and in (6) equality holds for $P(z)=(z+k)^{n}$.
THEOREM 2. If $P(z)$ is a polynomial of degree n such that $P(z) \neq 0$ in $|z|<k$ where $k \leq 1$, then

$$
\begin{equation*}
\underset{|z|=r}{\operatorname{Max}}|P(z)| \geq\left(\frac{r+k}{1+k}\right)^{n} \underset{|z|=1}{\operatorname{Max}}|P(z)| \text { if } 0 \leq r \leq k^{2} . \tag{7}
\end{equation*}
$$

The estimate is sharp with equality in (7) for $P(z)=(z+k)^{n}$.
This result when applied to $z^{n} P(1 / z)$ gives:
THEOREM 2'. If $P(z)$ is a polynomial of degree n which has all its zeros in the disk $|z| \leq K$ where $K \geq 1$, then

$$
\begin{equation*}
\operatorname{Max}_{|z|=R}|P(z)| \geq\left(\frac{R+K}{1+K}\right)^{n} \operatorname{Max}_{|z|=1}|P(z)| \text { if } R \geq K^{2} . \tag{8}
\end{equation*}
$$

The result is sharp with equality in (8) for $P(z)=(z+K)^{n}$.
The precise estimate for $\operatorname{Max}_{|z|=r}|P(z)|$ in Theorem 2 for $k^{2}<r<1$ and the corresponding estimate for $\underset{|z|=R}{\operatorname{Max}}|P(z)|$ in Theorem 2' for $1<R<K^{2}$ does not seem to be easily obtainable. It was shown by Aziz and Mohammad [2] that if $P(z)$ is a polynomial of degree n which does not vanish in the disk $|z|<K$ where $K \geq 1$, then

$$
\operatorname{Max}_{|z|=R}|P(z)| \leq\left(\frac{R+K}{1+K}\right)^{n} \operatorname{Max}_{|z|=1}|P(z)| \text { for } 1 \leq R \leq K^{2}
$$

and in addition, if $P(z)$ has non-negative coefficients or if $P\left(K^{2} R z\right)$ and $P(R z)$ become maximum at the same point on $|z|=1, R>1$, then

$$
\begin{equation*}
\operatorname{Max}_{|z|=R}|P(z)| \leq \frac{R^{n}+K^{n}}{1+K^{n}} \operatorname{Max}_{|z|=1}|P(z)| \text { for } R>K^{2} \tag{9}
\end{equation*}
$$

We take this opportunity to point out that the statement of the inequality (5) of Theorem 2 of [2] should read as the statement of the inequality (9) above, as the proof given for the first part of Theorem 2 in [2] covers only the above mentioned class of polynomials and so the general case is still open.

However, we have a considerable evidence in favour of the following
CONJECTURE. If $P(z)$ is a polynomial of degree n which does not vanish in the disk $|z|<k$, then

$$
\operatorname{Max}_{|z|=r}|P(z)| \geq \frac{r^{n}+k^{n}}{1+k^{n}} \operatorname{Max}_{|z|=1}|P(z)| \text { for } k^{2}<r<1, k<1
$$

and

$$
\operatorname{Max}_{|z|=R}|P(z)| \leq \frac{R^{n}+k^{n}}{1+k^{n}} \operatorname{Max}_{|z|=1}|P(z)| \text { for } R>k^{2}, k>1
$$

Here we prove the following generalisations of (2).
THEOREM 3. If $P(z)$ is a polynomial of degree n which does not vanish in the disk $|z|<K$ where $K \geq 1$, then

$$
\begin{equation*}
\operatorname{Max}_{|z|=R}|P(z)| \leq \frac{R^{n}+K^{n}}{1+K^{n}}|z|=1, ~|P(z)| \text { for } R \geq K^{2} \text {, } \tag{10}
\end{equation*}
$$

provided $\left|P^{\prime}\left(K^{2} z\right)\right|$ and $\left|P^{\prime}(z)\right|$ become maximum at the same point on $|z|=1$.
The result is best possible with equality in (10) for $P(z)=z^{n}+k^{n}$.
The next result is an interesting generalisation of the inequality (2).

THEOREM 4. If $P(z)$ is a polynomial of degree n which does not vanish in the disk $|z|<K$ where $K \geq 1$, then
(11) $\left.\underset{|z|=R>1}{\operatorname{Max}}|P(z)| \leq \frac{\left(R^{n}+1\right.}{2}\right) \left.\underset{|z|=1}{\operatorname{Max}|P(z)|-\left(\frac{R^{n}-1}{2}\right)} \operatorname{Min}_{|z|=1}^{|P(z)| \text {. }} \right\rvert\,$

The result is best possible and equality in (11) holds for the polynomial $P(z)=\alpha z^{n}+\beta K^{n},|\alpha|=|\beta|=1, K \geq 1$.

As an application of Theorem 4, we establish
THEOREM 5. If $P(z)$ is a polynomial of degree n which does not vonish in the disk $|z|<k, k \leq 1$, then for $0 \leq r \leq k$ we have (12) $\quad\left(1+r^{n}\right) \operatorname{Max}_{|z|=r}|P(z)|-\left(1-r^{n}\right) \operatorname{Min}_{|z|=r}|P(z)| \geq 2 r^{n} \underset{|z|=1}{\operatorname{Max}}|P(z)|$. The result is best possible and equality in (12) holds for the polynomial $P(z)=\alpha z^{n}+\beta k^{n}$ where $|\alpha|=|\beta|=1$ and $k \leq 1$.

For the proofs of these theorems, we need the following lemmas.
LEMMA 1. If $P(z)$ is a polynomial of degree n, then on $|z|=1$,

$$
\left|P^{\prime}(z)\right|+\left|Q^{\prime}(z)\right| \leq n \underset{|z|=1}{\operatorname{Max}}|P(z)|,
$$

where $Q(z)=z^{n} \overline{P(1 / \bar{z})}$.

This is a special case of a result due to Govil and Rahman [5, Lemma 10] (see also [3]).

LEMMA $2[1,2]$. If $P(z)$ is a polynomial of degree n, then for alZ $R \geq 1$ and $0 \leq \theta<2 \pi$

$$
\left|P\left(r e^{i \theta}\right)\right|+\left|Q\left(R e^{i \theta}\right)\right| \leq\left(R^{n}+1\right) \underset{|z|=1}{\operatorname{Max}}|P(z)|,
$$

where $Q(z)=z^{n} \overline{P(1 / \bar{z})}$.

Proofs of the theorems.

Proof of Theorem 1. Since all the zeros of $P(z)$ lie in $|z| \geq K$, $K \geq 1$, we write

$$
P(z)=C \prod_{j=1}^{n}\left(z-R_{j} e^{i \theta} j\right) \text { where } R_{j} \geq K, j=1,2, \ldots, n .
$$

Therefore, for $0 \leq \theta<2 \pi$ and $r \leq 1$, we have clearly

$$
\begin{aligned}
\left|P\left(r e^{i \theta}\right) / P\left(e^{i \theta}\right)\right| & =\prod_{j=1}^{n}\left|\left(r e^{i \theta}-R_{j} e^{i \theta}\right) /\left(e^{i \theta}-R_{j} e^{i \theta} j\right)\right| \\
& =\prod_{j=1}^{n} \mid\left(r e^{i\left(\theta-\theta_{j}\right)}-R_{j}\right) /\left(e^{i\left(\theta-\theta_{j}\right)^{j}-R_{j}} \mid\right. \\
& =\prod_{j=1}^{n}\left\{\left(r^{2}+R_{j}^{2}-2 r R_{j} \cos \left(\theta-\theta_{j}\right)\right) /\left(1+R_{j}^{2}-2 R_{j} \cos \left(\theta-\theta_{j}\right)\right)\right\}^{\frac{1}{2}} \\
& \geq \prod_{j=1}^{n}\left(r+R_{j}\right) /\left(1+R_{j}\right) \\
& \geq \prod_{j=1}^{n}(r+K) /(1+K)=(r+K)^{n /(1+K)^{n} .}
\end{aligned}
$$

This implies

$$
\left|P\left(r e^{i \theta}\right)\right| \geq\left(\frac{r+K}{1+K}\right)^{n}\left|P\left(e^{i \theta}\right)\right| \text { for } r \leq 1,0 \leq \theta<2 \pi
$$

Hence

$$
\operatorname{Max}_{|z|=r<1}|P(z)| \geq\left(\frac{r+K}{1+K}\right)^{n} \operatorname{Max}_{|z|=1}|P(z)|
$$

and the proof of Theorem 1 is complete.

Proof of Theorem 2. Since the polynomial $P(z)$ has all its zeros in $|z| \geq k$ where $k \leq 1$, we write as before

$$
P(z)=C \prod_{j=1}^{n}\left(z-R_{j} e^{i \theta} j\right) \text { where } R_{j} \geq k, j=1,2, \ldots, n .
$$

Then clearly for $r \leq k^{2}$ and $0 \leq \theta<2 \pi$, we have

$$
\begin{aligned}
\left|P\left(r e^{i \theta}\right) / P\left(e^{i \theta}\right)\right| & =\prod_{j=1}^{n}\left|\left(r e^{i \theta}-R_{j} e^{i \theta} j\right) /\left(e^{i \theta}-R_{j} e^{i \theta} j\right)\right| \\
& \geq \prod_{j=1}^{n}\left(r+R_{j}\right) /\left(1+R_{j}\right) \geq(r+k)^{n} /(1+k)^{n} .
\end{aligned}
$$

This gives

$$
\left|P\left(r e^{i \theta}\right)\right| \geq\left(\frac{r+k}{1+k}\right)^{n}\left|P\left(e^{i \theta}\right)\right| \text { for } r \leq k^{2} \text { and } 0 \leq \theta<2 \pi .
$$

Hence

$$
\operatorname{Max}_{|z|=r}|P(z)| \geq \frac{(r+k)^{n}}{(1+k)^{n}} \operatorname{Max}_{|z|=1}|P(z)| \text { for } 0 \leq r \leq k^{2} \text {, }
$$

which proves inequality (7).
Proof. of Theorem 3. It is clearly sufficient to consider the case $K>1$. Since $P(z)$ has all its zeros in $|z| \geq K>1$, it follows that the polynomial $H(z)=P(K z)$ has all its zeros in $|z| \geq 1$. If now $Q(z)=z^{n} \overline{P(1 / z)}$, then the polynomial

$$
G(z)=z^{n} \overline{H(1 / \bar{z})}=z^{n} \overline{P(K / \bar{z})}=K_{Q}^{n}(z / K)
$$

has all its zeros in $|z| \leq 1$. Moreover $|H(z)|=|G(z)|$ for $|z|=1$. Hence $G(z) / H(z)$ is analytic on and inside the unit circle and on the boundary $|G(z) / H(z)|=1$. By the maximum modulus principle it follows that $|G(z)| \leq|H(z)|$ for $|z| \leq 1$. Replacing z by $1 / \bar{z}$ and nothing that $z^{n} \overline{G(1 / \bar{z})}=H(z)$, we conclude that $|H(z)| \leq|G(z)|$ for $|z| \geq 1$. Hence in particular $|H(K z)| \leq|G(K z)|$ for $|z| \geq 1$. Equivalently

$$
\begin{equation*}
\left|P\left(K^{2} z\right)\right| \leq K^{n}|Q(z)| \text { for }|z| \geq 1 . \tag{13}
\end{equation*}
$$

Since all the zeros of $Q(z)$ lie in $|z| \leq \frac{1}{K}<1$, therefore, if α is a complex number such that $|\alpha|>1$, then Rouche's theorem, the
polynomial $P\left(K^{2} z\right)-\alpha K^{n} Q(z)$ has all its zeros in $|z|<1$. By the Gauss-Lucas theorem, the polymomial $K^{2} p^{\prime}\left(K^{2} z\right)-\alpha K^{n} Q^{\prime}(z)$ does not vanish in $|z| \geq 1$. This implies that

$$
K^{2}\left|P^{\prime}\left(K^{2} z\right)\right| \leq K^{n}\left|Q^{\prime}(z)\right| \text { for }|z| \geq 1,
$$

which gives with the help of Lemma 1

$$
K^{2}\left|P^{\prime}\left(K^{2} z\right)\right|+K^{n}\left|P^{\prime}(z)\right| \leq n K^{n} \operatorname{Max}_{|z|=1}|P(z)| \text { for }|z|=1
$$

This, by hypothesis, implies that

$$
\begin{equation*}
K^{2} \operatorname{Max}_{|z|=1}\left|P^{\prime}\left(K^{2} z\right)\right|+K^{n} \operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \leq n K^{n} \operatorname{Max}_{|z|=1}|P(z)| . \tag{14}
\end{equation*}
$$

Now $P^{\prime}(z)$ is a polynomial of degree $(n-1)$ and $K>1$, therefore, by (1), it follows that

$$
\operatorname{Max}_{|z|=1}\left|P^{\prime}\left(K^{2} z\right)\right|=\operatorname{Max}_{|z|=K^{2}}\left|P^{\prime}(z)\right| \leq K^{2(n-1)} \operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| .
$$

Using this in (14) we obtain

$$
\left(1+K^{n}\right) K^{2} \underset{|z|=1}{\operatorname{Max}}\left|P^{\prime}\left(K^{2} z\right)\right| \leq n K^{2 n} \operatorname{Max}_{|z|=1}|P(z)| .
$$

Applying (1) again to the polynomial $P^{\prime}\left(K^{2} z\right)$, we obtain for all $r \geq 1$ and $0 \leq \theta<2 \pi$

$$
\begin{equation*}
K^{2}\left|P^{\prime}\left(K^{2} r e^{i \theta}\right)\right| \leq \frac{n K^{2 n} n-1}{1+K^{n}} \underset{|z|=1}{\operatorname{Max}}|P(z)| \tag{15}
\end{equation*}
$$

Now for each $\theta, 0 \leq \theta<2 \pi$ and $R>1$, we have

$$
P\left(K^{2} R e^{i \theta}\right)-P\left(K^{2} e^{i \theta}\right)=\int_{1}^{R} K^{2} e^{i \theta} P^{\prime}\left(K^{2} r e^{i \theta}\right) d r
$$

This gives with the help of (15)

$$
\begin{aligned}
\left|P\left(K^{2} R e^{i \theta}\right)-P\left(K^{2} e^{i \theta}\right)\right| & \leq \int_{1}^{R} K^{2}\left|P^{\prime}\left(K^{2} r e^{i \theta}\right)\right| d r \\
& \leq \frac{K^{2 n}}{1+K^{n}}\left\{\begin{array}{c}
\left.f_{1}^{R} n r^{n-1} d r\right\}_{|z|=1}^{\operatorname{Max}}|P(z)| \\
\end{array}\right. \\
& \frac{K^{2 n}\left(R^{n}-1\right)}{1+K^{n}} \max _{|z|=1}|P(z)|
\end{aligned}
$$

Since by (13)

$$
\left|P\left(K^{2} e^{i \theta}\right)\right| \leq K^{n}\left|Q\left(e^{i \theta}\right)\right|=K^{n}\left|P\left(e^{i \theta}\right)\right|
$$

it follows from (16) that for each $\theta, 0 \leq \theta<2 \pi$ and $R>1$

$$
\begin{aligned}
\left|P\left(K^{2} R e^{i \theta}\right)\right| & \leq\left\{\frac{K^{2 n}\left(R^{n}-1\right)}{1+K^{n}}+K^{n}\right\} \underset{\operatorname{Max}}{|z|=1}|P(z)| \\
& =\frac{K^{2 n} R^{n}+K^{n}}{1+K^{n}} \quad \operatorname{Max}_{|z|=1}|P(z)|
\end{aligned}
$$

This gives

$$
\operatorname{Max}_{|z|=R \geq K^{2}}|P(z)| \leq \frac{R^{n}+K^{n}}{1+K^{n}} \operatorname{Max}_{|z|=1}|P(z)|
$$

which is the desired result.
Proof of Theorem 4. Let $m=\operatorname{Min}_{|z|=1}|P(z)|=\operatorname{Min}_{|z|=1}|Q(z)|$ where $Q(z)=z^{n} \overline{P(1 / \bar{z})}$, then $m \leq|Q(z)|$ for $|z|=1$. Since $P(z)$ has all its zeros in $|z| \geq K \geq 1$, therefore, all the zeros of $Q(z)$ lie in $|z| \leq 1$. Hence by Rouché's theorem, it follows that for every complex number α with $|\alpha|<1$, the polynomial $F(z)=Q(z)-\alpha m$ of degree n has all its zeros in $|z| \leq 1$ (note that, this is true even if $m=0$). So that the polynomial

$$
G(z)=z^{n} \overline{F(1 / \bar{z})}=z^{n} \overline{Q(1 / \bar{z})}-\bar{\alpha} m z^{n}=P(z)-\bar{\alpha} m z^{n}
$$

has all its zeros in $|z| \geq 1$ and $|G(z)|=|F(z)|$ for $|z|=1$. Thus the function $F(z) / G(z)$ is analytic in $|z| \leq 1$ and $|F(z) / G(z)|=1$ for $|z|=1$. It now follows as in the proof of Theorem 3 that

$$
|G(z)| \leq|F(z)| \text { for }|z| \geq 1
$$

Equivalently

$$
\left|P(z)-\bar{\alpha} m z^{n}\right| \leq|Q(z)-\alpha m| \text { for }|z| \geq 1
$$

Taking in particular $z=R e^{i \theta}$ where $R \geq 1$ and $0 \leq \theta<2 \pi$, we get

$$
\begin{equation*}
\left|P\left(r e^{i \theta}\right)-\bar{\alpha} m R^{n} e^{i n \theta}\right| \leq\left|Q\left(R e^{i \theta}\right)-\alpha m\right| \tag{17}
\end{equation*}
$$

for every α with $|\alpha|<1$. Choosing argument of α in (17) such that

$$
\left|P\left(R e^{i \theta}\right)-\bar{\alpha} m R^{n} e^{i n \theta}\right|=\left|P\left(R e^{i \theta}\right)\right|+|\alpha| m R^{n},
$$

we obtain

$$
\left|P\left(R e^{i \theta}\right)\right|+|\alpha| m R^{n} \leq\left|Q\left(R e^{i \theta}\right)\right|+|\alpha| m,
$$

or

$$
\begin{equation*}
\left|P\left(R e^{i \theta}\right)\right|+|\alpha| m\left(R^{n}-1\right) \leq\left|Q\left(R e^{i \theta}\right)\right| \tag{18}
\end{equation*}
$$

for all $R \geq 1,0 \leq \theta<2 \pi$ and for every α with $|\alpha|<1$. Letting $|\alpha| \rightarrow 1$ in (18) we get

$$
\left|P\left(R e^{i \theta}\right)\right|+m\left(R^{n}-1\right) \leq\left|Q\left(R e^{i \theta}\right)\right|
$$

for all $R \geq 1$ and $0 \leq \theta<2 \pi$. This gives with the help of Lemma 2 that

$$
\begin{equation*}
2\left|P\left(R e^{i \theta}\right)\right|+m\left(R^{n}-1\right) \leq\left(R^{n}+1\right) \operatorname{Max}_{|z|=1}|P(z)| \tag{19}
\end{equation*}
$$

for all $R \geq 1$ and $0 \leq \theta<2 \pi$. From (19) we finally obtain

$$
\left.\left|\operatorname{Max}_{|z|=R>1}\right| P(z)\left|\leq\left(\frac{R^{n}+1}{2}\right) \operatorname{Max}_{|z|=1}^{\operatorname{Man}}\right| P(z)\left|-\left(\frac{R^{n}-1}{2}\right) \operatorname{Min}_{|z|=1}\right| P(z) \right\rvert\,,
$$

which is (11) and Theorem 4 is completely proved.
Proof of Theorem 5. Since all the zeros of $P(z)$ lie in $|z| \geq K$, $K \leq 1$, therefore, for $0<r \leq K$, the polynomial $P(r z)$ has all its zeros in $|z| \geq \frac{K}{r} \geq 1$. Applying Theorem 4 to the polynomial $P(r z)$, we obtain

$$
\operatorname{Max}_{|z|=R \geq 1}|P(r z)| \leq\left(\frac{R^{n}+1}{2}\right) \operatorname{Max}_{|z|=1}|P(r z)|-\left(\frac{R^{n}-1}{2}\right) \operatorname{Min}_{|z|=1}|P(r z)| .
$$

Equivalently

$$
\operatorname{Max}_{|z|=1}|P(\operatorname{Re} z)| \leq\left(\frac{R^{n}+1}{2}\right) \operatorname{Max}_{|z|=r}|P(z)|-\left(\frac{R^{n}-1}{2}\right) \operatorname{Min}_{|z|=r}|P(z)| .
$$

Taking $R=1 / r$, then for $0<r \leq K$, we obtain

$$
\left(\frac{1+r^{n}}{2 r^{n}}\right) \operatorname{Max}_{|z|=r}^{\operatorname{Max}}|P(z)|-\left(\frac{1-r^{n}}{2 x^{n}}\right) \operatorname{Min}_{|z|=r}^{\operatorname{Min}}|P(z)| \geq \operatorname{Max}_{|z|=1}|P(z)|,
$$

which is equivalent to (12) and Theorem 5 is proved.

References

[1] Abdul Aziz, "Inequalities for the derivative of a polynomial", Amer. Math. Soc. 89 (1983), 259-266.
[2] Abdul Aziz and Q.G. Mohammad, "Growth of polynomials with zeros outside a circle", Proc. Amer. Math. Soc. 81 (1981), 549-553.
[3] Abdul Aziz and Q.G. Mohammad, "Simple proof of a Theorem of Erdös and Lax", Proc. Amer. Math. Soc. 80 (1980), 119-122.
[4] N.C. Ankeny and T.J. Rivlin, "On a theorem of S. Bernstein", Pacific J. Math. 5 (1955), 849-852.
[5] N.K. Govil and Q.I. Rahman, "Functions of exponential type not vanishing in a half-plane and related polynomials", Trans. Amer. Math. Soc. 137 (1969), 501-517.
[6] G. Pólyá and G. Szegö, Aufgaben und Lehrsatze aus der Analysis, Springer-Verlag, Berlin, 1925.
[7] M. Riesz, "über einen Satz des Herrn Serge Bernstein", Acta Math. 40 (1916), 337-347.
[8] T. J. Rivlin, "On the maximum modulus of polynomials", Amer. Math. Monthly 67 (1960), 251-253.

Post-Graduate Department of Mathematics
University of Kashmir
Hazratbal Srinagar- 190006
Kashmir India.

