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GROWTH OF POLYNOMIALS WHOSE ZEROS ARE

WITHIN OR OUTSIDE A CIRCLE

ABDUL AZIZ

Let P(z) be a polynomial of degree n which does not vanish

in the disk \z\ < K . For K = 1 , it is known that

7 n
Max \P(z)\ > (^£-) Max \P(z)\ s and

\z\=r<l 2 \z\=l

Max \P(z)\ £ (2-±±) Max \P(z)\ .
\z\=R>l \z\=l

In this paper we consider the two cases K £ 1 and K < 1 ,

and present certain generalizations of these results.

If P(z) is a polynomial of degree n , then [7, p.346] or 16,

Vol.1, p.137 Problem III 269]

(1) Max \P(z)\ < iP Max \P(z)\ .
\z\=R>l \z\=l

Here equality holds if and only if P(z) = az

It was shown by Ankeny and Rivlin [4] that if P(z) ^ 0 in

l̂ l < 1 j then (1) can be replaced by

Received 2 April 1986. We thank Professor Q.I. Rahman for his
useful suggestions.

Copyright Clearance Centre, Inc. Serial-fee code: 004-9729/87
$A2.00 + 0.00.

https://doi.org/10.1017/S0004972700013204 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700013204


248 Abdul Aziz

(2) Max \P(z)\ <. " + 2 Max \P(z)\ .
z\=R>l * \z\=l

Inequality (2) is sharp and equality holds for P(z) = a + fiz ,

M = lei •
By the maximum modulus principle

Max \znP(l/z)\ i. Max \znP(l/z)\ = Max \P(z)\ ,

and so

(3) Max \P(z)\ > rH Max \P(z)\ ,
\z\=r<l \z\=l

where equality holds if and only if P(z) = az

If P(z) JO in \z\ < 1 s then LSI the stronger inequality

n
(4) Max \P(z) | t (~y-) Max \P(z)\

\z\=r>l 12 |=1

holds. Here equality is attained if P(z) = a(z - &)n , |@| = 1 .

In this paper we obtain certain generalizations of inequalities

(2) and (4). We prove.

THEOREM 1. If P(z) is a polynomial of degree n such that

P(z) JO in \z\ < K where K > 1 , then
n

(5) Max \P(z)\ > (jjjf) Max \P(z)\ .
\z\=r<l 1+K | z |=1

Here equality holds if P(z) = (z + K)

Applying Theorem 1 to the polynomial z P(l/z) , we obtain

THEOREM I 1 . If P(z) is a polynomial of degree n which has all

its zeros in the disk \z\ & k where k £ 1 , then

(6) Max \P(z)\ > (Y£-) Max \P(z)\ .
\z\=R>l |z |=1

The result is sharp and in (6) equality holds for P(zJ = (z + k)

THEOREM 2. If P(z) is a polynomial of degree n such that
P(z) JO in \z\ < k where k <. 1 , then
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ft

(7) Max \P(z)\ Z (~^-) Max \P(z)\ if 0 < r < k2 .

\z\=r d+K \z\=l

The estimate is sharp with equality in (7) for P(z) = (z + k)

This result when applied to Z P(l/z) gives:

THEOREM 2 ' . If P(z) is a polynomial of degree n which has all

its zeros in the disk \z\ < K where K ^ 1 , then

n(8) Max \P(z)\ £ (&£) Max \P(z)\ if R > K2 .

IM IM
The result is sharp with equality in (8) for P(z) = (z + K)n .

The precise estimate for Max \P(z)| in Theorem 2 for k < r < 1
\z\=r

and the corresponding estimate for Max |P^3^| in Theorem 2' for

\z\=R

1 < R < K does not seem to be easily obtainable. It was shown by Aziz

and Mohammad [2J that if P(z) is a polynomial of degree n which does

not vanish in the disk \z\ < K where K t 1 , then

Max \P(z)\ < f i Max |Prs;| for 1 S R < K2

\z\=R \z\=l

and in addition, if P(z) has non-negative coefficients or if P(liRz)

and P(Rz) become maximum at the same point on \z\ = 1, R > 1 , then

(9) Max \P(z)\ S ** »• Max \P(z)\ for R > K2

\ \ 1 \ \\z\=R 1+K \z\=l

We take this opportunity to point out that the statement of the

inequality (5) of Theorem 2 of [2] should read as the statement of the

inequality (9) above, as the proof given for the first part of Theorem 2

in [2] covers only the above mentioned class of polynomials and so the

general case is still open.

However, we have a considerable evidence in favour of the following

CONJECTURE. If P(z) is a polynomial of degree n which does not

vanish in the disk \z\ < k , then

Max \P(z)\ > r + „ Max \p(z)\ for k2 < r < 1, k < 1
\z\=r 1 + k \z\=l

and
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Max \P(z) | < „ Max \P(z) \ for R > k2 , k > 1 .
\z\=R 1 + k \z\=l

Here we prove the following generalisations of (2).

THEOREM 3. If P(z) is a polynomial of degree n which does not

vanish in the disk \z\ < K where K > 1 , then

(10) Max \P(z) I < Max \P(z) I for R z K2 ,
\z\=R 1+1? \z\=l

provided \P'(Kz)\ and \P'(z)\ become maximum at the same point on

\z\=l.

The result is best possible with equality in (10) for P(z) = z + K .

The next result is an interesting generalisation of the inequality

(2).

THEOREM 4. If P(z) is a polynomial of degree n which does not

vanish in the disk \z\ < K where K >. 1 , then

(11) Max \P(z)\ < (~-) Max \p(z)\ - (fy-) Min \P(z)\ .
\z\=R>l d \z\=l i \z\=l

The result is best possible and equality in (11) holds for the polynomial

P(z) = azn + BK* , | a | = | B | = i , K > 1 .

As an application of Theorem 4, we establish

THEOREM 5. If P(z) is a polynomial of degree n which does not

vanish in the disk \z\ < k, k < 1 , then for 0 •& r i k we have

(12) (l+rn) Max \p(z)\ - (l-rn) Min \P(z)\ > 2rn Max \P(z)\ .

\z\=r \z\=r \z\=l

The result is best possible and equality in (12) holds for the polynom-ial

P(z) = azn + &kn where |a| = |s| = 2 and k < 1 .

For the proofs of these theorems, we need the following lemmas.

LEMMA 1. If P(z) is a polynomial of degree n } then on \z\ =1 t

\P'(z)\ + \Q'(z)\ S n Max \P(z)\ ,
| * |=2

where Q(z) = zn P(l/z~) .
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This is a special case of a resul t due to Govil and Rahman [5,

Lemma 10] (see also [3]) .

LEMMA 2 [ I , Z ] . If P(z) is a polynomial of degree n , then for

all R > 1 and 0 < 9 < 2TT

\P(re%*)\ + \Q(RezQ)\ < (I? + 1) Max \P(z)\ ,
\z\=l

where Q(z) = z P(l/z) .

Proofs of the theorems.

Proof Of Theorem 1. Since all the zeros of P(z) lie in \z\> K ,

K S 1 3 we write

n_ iQ .
P(z) = C II (z-R.e 3) where R. > K, j = 1,2., . . ., n.

3 = 1 d 3

Therefore, for 0 < 6 < 2ir and r £ 1, we have clearly

P(reiQ)/P(ei6)

- T T
3=1

n

(re - R.
3

iCe-e J
(re °

r

ie.
e 3 )/(e

- R.)/(e
o

- R.i
3

5-e.)

ie.
? °)

-R3

1
i 2

= M { (r +!T.-2rR.cos(Q-e J)/(l+ir.-2R.cos(e-6 .))}
j-ji 3 3 3 3 3 3 )

> II (r + R.)/(l + R.)
3=1 3 3

(r K) = (r K)n .
3=1

This implies

Hence

\P(reiQ) | > (T^-4) \P(ei6) \ for r < 1 , 0 < 6 < 2TT .
1 ~t~ A

Max \P(z)\ ^ C^-4; Max \P(z)\
\z\=r<l \z\=l

and the proof of Theorem 1 is complete.
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Proof Of Theorem 2. Since the polynomial P(z) has all its zeros

in 131 > k where k <• 1 , we write as before

n id .
P(z) = C II (z-R.e 3) where R. > k, 3=1,2,

3=1 3 °
2

Then clearly for V < k and 0 < 9 < 2TT , we have

n.

n
II
3=1

n

3=1

(rei6 - R.e 3' -R.e
3

k)

This gives

evB) () evQ\P(revB)\ > (j—j) \P(evQ)\ for r < k2 and 0 < 8 < 2v .

Hence

Max \P(z)\ > (r + k) Max \p(z)\ for 0 <, r < k2 ,
\z\=r (1 + k)n \z\=l

which proves inequality (7).

Proof, of Theorem 3. It is clearly sufficient to consider the case

K > 1 . Since P(z) has all its zeros in \z\ > K > 1 , it follows that

the polynomial E(z) = P(Kz) has all its zeros in \z\ t 1 . If now

Q(z) = zn P(lfz) , then the polynomial

G(z) = zn H(l/z) = zn P(K/z ) = l?Q(z/K)

has all its zeros in \z\ < 1 . Moreover \H(z) \ = |fff2,)| for |a|=i .

Hence G(z)/H(z) is analytic on and inside the unit circle and on the

boundary \G(z)/H(z)\ = 1 . By the maximum modulus principle it follows

that \G(z)\ < \H(z)\ for \z\ < 1 . Replacing Z by 1/z and nothing

that zn G(l/z) = H(z) , we conclude that \H(z)\ < \G(z)\ for \z\ > 1.

Hence in particular \E(Kz)\ < \G(Kz)\ for \z\ > 1 . Equivalently

\P(J?z)\ < l?\Q(z)\ for \z\ Z 1 .(13)

Since all the zeros of Q(z) lie in \z\ < jr < 1 , therefore, if

a is a complex number such that |a| > 1 , then Rouche's theorem, the
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polynomial POCz) - al^Qfz) has a l l i t s zeros in \z\ < 1 . By the

Gauss-Lucas theorem, the polynomial KP'(KZ) - aJCQ'(z) does not

vanish in \z\ 2 1 . This implies tha t

}?\P'a?z)\ =5 Xn\Q>(z)\ for \z\ > 1 ,

which gives with the help of Lemma 1

K2\P'(X2z)\ +/l\P'(z)\ < «K* Max \P(z)\ for \z\ =1 .
\z\=l

This, by hypothesis, implies that

(14) K2 Max \P'(lfz)\ + tf* Max \P'(z)\ < nK* Max \P(z)\ .
\z\=l \z\=l \z\=l

Now P'(z) i s a polynomial of degree (n-1) and K > 1 , therefore,

by (1), i t follows that

Max \P'(I^z)\ = Max „ \P'(z)\ < K2(n~1) Max \P'(z)\ .
\z\=l \z\=}C \z\=l

Using this in (14) we obtain

(1 + I^JK2 Max \P'(l?z)\ <nK2n Max \P(z)\ .
\z\=l \z\=l

Applying (1) again to the polynomial P'(K z) , we obtain for a l l r

and 0 < 6 < 2TT

(15) K2\P'(lfrelQ)\ < ̂ - ^ Max \P(z)\.
1 + 1C \z\=l

Now fo r each B} 0 <. 8 < 2ir and i? > 1 , we have

i

This gives with the help of (15)

P(K2Reie) - P C K V 9 ; < SR K2\P'(l?reiQ)\ dr

j2n ( R n i 1
s \ / nr ~ dr \ Max \P(z) \

i + JT
 l

 J ^ | 3 | = J

\P(z
z\=l

(16) = X'* - V Max \P(z) | .

? \\
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Since by (13)

i t follows from (16) that for each 6̂  0 < 6 < 2ir and R > 1

2ReiQ\P(K*Re™)\ < . - 1) Max \P(z)\

n
1 + K

This gives

I?

Max

\z\=l

Max , \P(z)\ < " + A Max \P(z)\ ,
\z\=R-£K 1 + y?- \Z\=1

which i s the desired r e s u l t .

Proof of Theorem 4. Let m = Min \P(z) \ = Min \Q(z)\ where
\z\=l \z\=l

Q(z) = zn P(l/z) , then m < \Q(z)\ for \z\=l . Since P(z) has all

its zeros in \z\ > K > 1 , therefore, all the zeros of Q(z) lie in

13 I < 1 . Hence by Rouche's theorem, it follows that for every complex

number a with |cx| < 1 , the polynomial F(z) = Q(z) - am of degree

n has all its zeros in \z\ S 1 (note that, this is true even if

m = 0 ) . So that the polynomial

G(z) = zn F(l/z) = zn Q(l/z ) - ~amzn = P(z) - a mzn

has all its zeros in |s| > 1 and \G(z) \ = \F(z) \ for \z\ = 1 . Thus

the function F(z)/G(z) is analytic in |s| < 1 and \F(z)/G(z)\= 1

for I^^J . It now follows as in the proof of Theorem 3 that

\G(z)I < \F(z)I for \z\ > 1 .
Equivalently

\P(z) - a mzn\ < \Q(z) - am\ tor \z\ > 1 .

Taking in particular z = Re where R > 1 and (? < 9 < 2TT , we get

(17) \P(reiQ) - a mRneinQ\ < \Q(ReiQ) - om\

for every a with |a| < 1 . Choosing argument of a in (17) such that
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\p(ReiQ) - *mRnein*\ = \P(ReiQ)\ + |

we obtain

\P(ReZQ)\ + \a\mlP < \Q(Re-*)\ + \a\m ,

or

(18) \P(Re'ie)\ + lalmO?1 - 1) < \Q(ReiB)\

for all R > 1 , 0 S 6 < 2-n and for every a with |a| < 1 . Letting

| ot | •> 1 in (18) we get

\P(ReU)\ +m(Rn - 1) < \Q(ReU)\

for a l l R > 1 and 0 S 6 < 2ir . This gives with the help of Lemma 2

that

(19) 2\P(Rel6)\ + mii1 - 1) < (if1 + 1) Max \P(z)\
\z\=l

for all R > 1 and 0 < 8 < 2-n . From (19) we finally obtain

Max \P(z)\ < r + 2) Max \p(z)\ - r " 2) Min \P(z)\ ,
\z\=R>l 2 \z\=l 2 \z\=l

which is (11) and Theorem 4 is completely proved.

Proof of Theorem 5. Since all the zeros of P(z) lie in \z | > K,

K < 1 , therefore, for 0 < r < K , the polynomial P(rz) has all its

zeros in \z\ >. — > 1 . Applying Theorem 4 to the polynomial P(rz) , we

obtain

Max \P(rz)\ < (~-^-) Max \P(rz)\ - (^-~) Min \P(rz)\ .
\\z\=R>l • ' 2 \z\=l

Equivalently

Max \P(Rrz)\ < ( +1) Max \P(z)\ - (—^-) Min \P(z)\ .
\z\=l 2 |a|=r

 2 \z\=r

Taking R = 1/r 3 then for 0 < r < K , we obtain

(i — ; Max \P(z) | - (— ) Min \P(z) \ 2 Max \P(z) |
2rn \z\=r 2r \z\=v \z\=l

which is equivalent to (12) and Theorem 5 is proved.
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