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Abstract

Recently in several papers the boundary element method has been applied to non-
linear problems. In this paper we extend the analysis to strongly nonlinear boundary
value problems. We shall prove the convergence and the stability of the Galerkin
method in if -spaces. Optimal order error estimates in if space then follow.
We use the theory of ^4-proper mappings and monotone operators to prove con-
vergence of the method. We note that the analysis includes the u4-nonlinearity,
which is encountered in heat radiation problems.

1. Introduction

For some time the analysis of boundary element methods (i.e. BEM) has in-
terested many authors. At the same time the development of computational
software has made the boundary element method an alternative to the more
conventional finite element techniques in engineering applications. And when
the implementation of the boundary element method is done ingeniously (cf.
[13] for the panel clustering method), it will be in fact as efficient in comput-
ing the approximate solution to linear elliptic boundary value problems as
other methods available. The efficiency here refers to both complexity and
accuracy of the method.

The purpose of this paper is to extend the analysis of the boundary element
methods to nonlinear problems started in [21]. There the Galerkin boundary
element method was studied for the first time for a mildly nonlinear bound-
ary integral equation, which was obtained by the direct formulation of the
nonlinear boundary value problem. Later in [20] the analysis was extended
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420 Keijo Ruotsalainen [2]

to the collocation method, which seems to be easier to implement than the
Galerkin method (cf. [14]). In [22], which contains more general Hammer-
stein equations, the analysis has been sharpened to yield also I?-estimates.
Recently, optimal I? -estimates, 1 < p < oo, were derived by Eggermont and
Saranen [10]. However, all the works mentioned assume that the nonlinearity
is mild, having at most linear growth.

Here we shall allow strong nonlinearities, which permits us to study the nu-
merical approximation of the black-body radiation with the u -nonlinearity.
In the papers mentioned above and here, we shall study the numerical ap-
proximation of the nonlinear boundary value problem

O, infl,
-dn® = (?(<*>) - / , onT. U

Here F is a smooth simple closed curve and Q, is the bounded region en-
closed by F . The symbol dn is already standard for the outer normal deriva-
tive on F . Note that the differential operator is linear, the nonlinearities ap-
pearing only on the boundary. This is not a severe restriction. Via the Kirch-
hoff transformation, more general quasi-linear equations can be brought into
this form.

Here we shall consider the indirect formulation of the boundary value
problem (1). We shall make the ansatz: Find a boundary distribution u (in
some appropriate function space defined later on) such that

= - ^ J u(y)log\x-y\dsy, x € ft. (2)

Then by the properties of the normal derivative of the monopole potential
[26, 6, 7] we derive (see Section 2) the nonlinear boundary integral equation

I = /• (3)

Here the operator K* is the spatial adjoint of the double layer operator K,
which is defined by

Ku{x) = ±J u{y)dn log \x - y\ dsy (4)

and the single layer operator V is defined by

V(u)(x) = -±J u(y)log\x-y\dsy, xeT. (5)

In the next section we collect the basic mapping properties of operators
in question. There the necessary function spaces are defined and the funda-
mental properties are recalled. Especially we introduce the exact form of the
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nonlinearities which are treated throughout the paper. We impose the neces-
sary growth conditions that will fix the function spaces in which the boundary
integral equations are studied, and collect all the assumptions that the non-
linearity should fulfil in order to yield a unique solution to the nonlinear
boundary integral equation (3).

The existence and uniqueness are then discussed in the third section. Using
the variational methods in the standard manner, the existence of the solution
is established. Since the integral operator defined by the formula (3) is strictly
V~'-monotone, we finally obtain the uniqueness of the solution. To ensure
this to be true, we assume that the nonlinearity is a strictly monotone real
function. These properties are crucial when we discuss the uniqueness of the
approximate solution.

After studying the mapping properties of the continuous problem, we then
focus attention on the study of the approximate scheme. In the fourth sec-
tion we introduce the necessary approximation spaces and the necessary ap-
proximation properties they possess. After that we show that the Galerkin
equations are uniquely solvable. In this context we use the theory of A-
proper mappings and the degree theory of nonlinear mappings to obtain the
existence of the approximate solution and the convergence of the method
considered. Finally we shall study the the asymptotic error estimates of the
Galerkin method in Lp-spaces. The compact operators in (3) are in fact pseu-
dodifferential operators of order - 1 . When these operators are applied to
some If-spaces, the images are more regular. Utilising this property we may
derive error estimates in weaker norms than the Lp-topology. This provides
better estimates for the approximate potential of (1).

2. The mapping properties

Let Q be a bounded open domain in the plane R2 with a smooth boundary
F = dSl. In other words Y has a regular parameter representation x : R -» T
with nonvanishing Jacobian, i.e. | ^ | ^ 0 and the representation is a C°°-
mapping. To avoid difficulties related to the mapping properties of the single
layer operator (i.e. the Symm's operator) we assume that the conformal ca-
pacity cap(O ^ 1.

Let us now examine more closely the class of problems that are to be
treated: find O such that

infl,

n ( / , o n T ,
where / and <?(•) are functions with various properties which we shall
specify next.
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The nonlinear mapping G is the Nemitskyi operator corresponding to the
Caratheodory function g(-, •) : T x R -• R. We remind the reader that a
function g( • , •) fulfils the Caratheodory conditions whenever

Al. g( • , u): F —• R is measurable for all u € R;
A2. g(x, •) : R —> R is continuous for almost all x e F .
In the sequel, we shall follow the convention that whenever g( •) is used

it is meant to represent the function g(x, •) for almost every x € F . In
contrast to [10, 19, 20, 21, 22] we do not require g(-) to have a linear
growth. Instead, we shall assume that it possesses the following properties
for some fixed p > 2:

A3. there exist constants ax > 0, a2 > 0 independent of u such that

\g(u)\ < ax\u\p~x + a2, g(u)u>bx\u\" + b2;

A4. g{ •) is strictly increasing function on R;
A5. there exist constants Kx > 0 and K2 > 0 such that

\g(u)-g(v)\ <|«-«|

Before proceeding to reformulate the boundary value problem as a bound-
ary integral equation, we first introduce some notations. By LP(V) we denote
the conventional Banach space with respect to the Lebesgue measure on F .
This space is endowed with the usual Lp-norm, 1 < p < oo,

We remind the reader that these spaces are reflexive. The dual spaces are
defined with respect to the L2-inner product. It is an already well-known fact
that the dual space of LP(T) is Lq(T), where q is the conjugate exponent:
! + ± = 1.
P Q

To distinguish the function spaces defined on the domain Q from the
one on the boundary, the Lp-spaces in Q will be denoted by Lp(il) and
the corresponding norm will then be || • ||p n . In the course of the paper,
the Sobolev spaces are also needed. On the boundary w''p(T) stands for
the conventional Sobolev-Slobodetskii space for t > 0. The negative-order
Sobolev spaces are then defined by duality with respect to the L2-inner prod-
uct. Other related function spaces considered in this paper will be defined in
the order of occurence when necessary.

We start our consideration by recalling some basic mapping properties of
the single and double layer operators (cf. [10]):
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THEOREM 1. The boundary operators V, K, K* have the following mapping
properties:

(1) V, K, K*: LP{Y) -> Lq{Y) are bounded and compact for all

(2) V, K,Kl : LP{Y) -» C(F) are compart.
(3) V : W''2(F) -» W'+1 >2(F) w an isomorphism for all teR.

Next we shall establish the mapping properties of the Nemitskyi operator
G(-) : LP(F) -» L9(F) corresponding to a Caratheodory function satisfying
the assumptions A1-A5 above.

LEMMA 2. The Nemitskyi operator G : LP(Y) -» Lq(Y) is bounded, continu-
ous and strictly monotone, i.e. for all u, v 6 LP(Y) there holds

(G(u)-G(v),u-v)LHr)>0. (7)

The equality in (7) holds only if u — v .

PROOF. The statement is now a direct consequence of the well-known prop-
erties of the Nemitskyi operators. The proof can be found in any text book
[17, Chapter IV, Section 1].

Finally we have to impose one more restrictive condition on the nonlin-
earity. Namely, we suppose that the partial derivative satisfies the following
growth condition:

•a\u\p-\ (8)

where a and b are some nonnegative constants. Then the Nemitskyi oper-
ator is also Frechet-differentiable from LP(Y) -* Lq(Y) and the derivative is
given by

(9)

for almost all x e F .
In this occasion we note that the Caratheodory function

g(x,u) = \u\u3 (10)

satisfies all the assumptions A1-A5 and the additional growth condition
(8). But it has even stronger properties. Its derivative function §^g{u) =
4|u|3 is also a Caratheodory function. Since the related Nemitskyi opera-

tor is bounded and continuous from L5(F) -» L*(F), then by [25, Chap-
ter 20] the Nemitskyi operator G: L5(F) -» L^(F) is continuously Frechet-
differentiable.
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Motivated by the previous considerations we make the following assump-
tion, which we will use in the forthcoming sections. Besides the conditions
A1-A5 above we require:

A6. The Nemitskyi operator corresponding to the Caratheodory function

-^ ,«) :rxR-,R

is bounded and continuous from LP(T) to
Under this additional assumption the following lemma is valid [25, Chap-

ter 20]:

LEMMA 3. The Nemitskyi operator G : LP{T) -* L"{Y) is continuously Frechet-
differentiable.

Combining the results of Theorem 1 and Lemmas 2 and 3, one easily
verifies the following statement:

THEOREM 4. Let us assume that the Caratheodory function g( •): T x R -> R
fulfills the assumptions A1-A6. Then the nonlinear operator

(11)

is bounded, continuously Frichet-differentiable in L9(T).

PROOF. For every u e L9(T) we have by the triangle inequality

I
Using the growth condition A3 and the Minkowski inequality we obtain

* [ f ? C p 1 ) « ] \m(T)a2

Here we used the property (p — 1 )q — p for the conjugate exponents p and
q . Now the boundedness follows from Theorem 1, which states that

The continuity of the mapping is clear from the mapping properties of V, K*
and G. It remains to prove the Frechet-differentiability. By the definition of
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the Frechet-derivative it is sufficient to show that the linear operator DA(u)
denned by setting

DA{u)h= ()rI-K*\h + DG{Vu) Vh (14)

is bounded as an operator from L9(T) into itself, and that

\\A(u + h)-A(u)-DA(u)h\\L,{r) _n

ll*lltf<n-° IWL

The definition of the mapping A( •) yields immediately that

A(u + h)- A{u) = (^1 -K*}h + G(V(u + h)) - G(Vu). (16)

Therefore we have by the formula (14)

A(u + h)- A(u) - DA(u)h = G(V(u + h)) - G(Vu) - DG(Vu)Vh (17)

and by Lemma 3 there holds the estimate

\\G(V(u + h))-G(Vu)-DG(Vu)Vh\\L,{r)

= \\Vh\\LP{r)R(\\Vh\\LP{r)) < c \\h\\L,{r)R(\\h\\L,{r))

where R(r) —* 0, as r —» 0+ . But this estimate already proves the Frechet-
differentiability. The continuity of the Frechet-derivative is obvious, since
u —•• DG(Vu) is continuous by Lemma 3. This completes the proof of the
statement.

3. Existence and uniqueness

The standard approach to deal with the existence and uniqueness of the
solution for a nonlinear equation requires usually that a nonlinear operator
is monotone, coercive, bounded and continuous (cf. Theorem 27.1 in [16]).
In our case we shall use some generalisation of the concept of a monotone
operator. Since the monotonicity in the existence and uniqueness proofs
is usually used only in the last step, when one proves the uniqueness of
a solution, we can find in the literature a multitude of useful generalised
concepts.

The nonlinear Hammerstein operator A(u) is not monotone, but if "we
change the coordinates" in some sense, they possess a related property. Name-
ly, by using the properties of the single and double layer operators we are able
to show
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THEOREM 5. The Hammerstein operator A{ •) : Lg(T) —> Lq(F) is a strictly
V-monotone mapping, i.e. for all u, v e Lq(T), u ̂ v there holds

(A{u)-A(v),V(u-v))L2{r)>0. (19)

P R O O F . T O establish the monotonicity property we shall quote the following
mapping property [21, Theorem 2, p. 303]: For every ^ e ^ (F) = W^'2(T)
there holds

(V"1 (1/ - K) x, x) = f Wrfdx, (20)
where *F e Wl'2(Q.) is the harmonic function having x a s i t s boundary
value, i.e. 4*^ = x , and V~l is the inverse of the single layer operator.

Let us assume that u,w e Lq{T). Then by Theorem 1 the function
V(u - w) is contained in the Sobolev space Wl'q(T). Since we assumed
that

' - ( * - * ) > • •

we have by Theorem 7.58 in [1] the continuous imbedding

Therefore V{u - w) is also contained in the Sobolev-Slobodetskii space
W*'2(T). Setting in (20) x = V(u — w) w e Set, remembering that V~x

is formally symmetric,

/ \W\2dx = (v~l (Irl - K] V(U - w), V(u - w))
Ja \ \ 2 ) ) Lr2(D

( (\ \ \ ( 2 1 )

= (V(u-w), l^I-K* )(u-w))

Using (21) we obtain finally the desired result

(^(M) - A(w), V(u - w))L2(r) = I \W\2 dx

h
J" (22)

[g(x, Vu(x))-g(x, Vw(x))][Vu(x) - Vw(x)]dx.
la

Here the right-hand side is strictly positive for every u # w, since by the
assumption A4 the function g(u) is a strictly increasing function on R.

This theorem yields us as a consequence the following.

COROLLARY 6. The solution ueL9(V) of the nonlinear integral equation

A(u) = f (23)

is unique for every f e Lq{T).
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Next we shall proceed with the solvability of the boundary integral equa-
tions. We turn our attention to the equivalent boundary value problem:

PROBLEM 1. Find T e WX-2{Q) such that

/ . (24)

It is well known that this potential problem is equivalent to the minimisa-
tion of the functional

-J fgdsr (25)

over Wl'2(Q) [4, 5, 16]. The functional F(-) depends on the boundary
values of the function *F e Wl'2(Q.). It is denned by setting

\ +oo, otherwise.

The function j( •) is strictly convex and lower semicontinuous and the sub-
differential (subgradient) is given by

dj(u) = G(u). (27)

The existence of this function is verified in [4, Theorem 2.3], because g(u)
is a strictly monotone, proper function. For the function j( •) we have the
explicit expression

r X ) s . (28)=
Joo

' '2(By the growth condition A3, for every 4* e W' '2(Q.) there exist constants
c> 0, M 6 R independent of *F such that

r ) > c f \u(x)\p dsx + M I \u{x)\ dsx,
JT JT

(29)

where u = *F|r. Note that according to the Sobolev imbedding theorem
[1, Theorem 7.58] the Sobolev space W ' (Q) is continuously imbedded in
LP(T). In any case from this estimate it follows that the functional ^ is
coercive:

= \ I |V¥|2 dx + / ;(T) dsx- fz Ja JT JT
ds

x (30)

Once the functional is also strictly convex and continuous, by the standard
argument we can prove the existence of the function *F e Wl'2(Q.), which
is the minimiser of the functional ^ over the Sobolev space Wx >2(Q).
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Now the minimiser of the functional in question is also the unique solu-
tion of the boundary value problem (24) [5, 16]. Our problem is, however, to
prove the existence of the solution to the nonlinear boundary integral equa-
tion (23).

THEOREM 7. For every f € L9(T) there exists a unique solution u e Lg(T)
of {23).

PROOF. Let *F e WX'2(Q) be the unique solution of the corresponding
boundary value problem (24). By Theorem 1 there exists a uniquely de-
termined boundary distribution u e W~^2{Y) such that V(u) = *F|r, and
the function *F has the integral representation

u(y)log\x-y\dsy. (31)

Since the normal derivative of the single layer potential S has the jump
across the boundary [26], the normal derivative of S(u) from the interior
domain is given as

[̂ ]̂ (32)
On the other hand by the boundary conditions in (24) there holds the relation

I - / (33)

in the topology of the Sobolev-Slobodetskii space W *'2(F). We can rewrite
this equation in the form

u = 2K*u-2G(Vu)-2f. (34)

From this form one immediately concludes that u is contained in L9(T).
Namely, by the mapping properties of K* and the single layer operator there
holds (Theorem 1): K*u e W^2{T) and Vu e W^'2{T). Using the Sobolev
imbedding theorem which states that the continuous imbeddings

W^2{T)^LP{T), \<p<oo,

are valid, we obtain the inclusions

K*ueLQ(T), VU<ELP{Y).

Furthermore, G maps LP(T) onto Lg(T) continuously, implying the inclu-
sion

G{Vu) e Lq(X).

Combining these inclusions with (34) we obtain the Lq-regularity of the
boundary distribution, since / e L9(T) by the assumption.
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Thus we have proved the existence at least one solution. The uniqueness
was already proved in Corollary 6. The proof of the statement is now com-
plete.

4. The boundary element method

Next we shall focus our attention on the numerical approximation of the
nonlinear integral equation

/i \

I = / • (35)

We shall utilise the theory of y4-proper mappings introduced and studied
intensively by W. V. Petryshyn and F. Browder in the late 1960s. The concept
is rather weak: it does not say anything about the existence of the finite
dimensional approximate solutions. But combining this property with other
mapping properties of the Hammerstein operator in question we achieve the
unique solvability of the Galerkin equations.

Let us first fix the boundary element spaces used for the approximation.
To this end we select a sequence of mesh points © = {JC(|/ = 0, . . . , N — 1}

on F , and denote by 5^(0) the boundary element spaces transplanted from
the space of 1-periodic, (d - l)-times continuously differentiate splines of
degree d onto V. In general, we assume the family of partitions to be
quasiuniform, e.g. ™ffi| 6 [y, y~l] for all partitions in the family with
some constant y > 0. Here we have used a natural notation ht = \xi+l - x , | .
The mesh parameter, however, is denoted by h = l/N.

With the assumptions made above there holds the very well-known ap-
proximation and inverse properties [2, 3, 11, 24]:

Approximation property. For every u e WS'2(T), s < d + 1, there exists
y/ e SN(S) such that

II" ~ Vllw-2(r) < c AJ~'||«||^,2(r) (36)

where t <s, t < d + j . The constant depends only on s, t and d; but not
on the mesh parameter.

Inverse estimate. For all y/ e 5^(0) there holds the inverse estimate

H^H»"'2(r) - c h'~S II Vllw''2(r) > (37)

for t < s < d + \ .
In this context we would like to remind the reader that the approximation

property holds for general meshes. As a consequence for the L2-projection
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the following estimates are valid [20]:

||(7 - J>IU, ,2 ( r ) < c * '~ ' |M|^ .2 ( n (38)

for -d - 1 < t < s < d + 1, -d - 1/2 < s and t < d + 1/2.
But besides these conventional L2-estimates we shall require the approx-

imation properties also with respect to the Lp-topology. In the standard
manner one then derives the uniform boundedness of the L2-projection in
//-spaces by using the Riesz-Thorin theorem [8] (see also [10, Lemma 6.2]).
Furthermore, the L2-projection of a function u e WS'P(T), s < d + 1,
possesses the error estimates

where -d — 1 < t < mm{s, 0} . Note that this result holds for entirely
general meshes.

We shall approximate the solution of the nonlinear integral equation (23)
by spline functions. In general, the problem is to find the coefficients a( e R,
i = 0, ... , N - I , such that

N-l
uh =

i=0

is a good approximation of u. The functions y/t form a suitable basis of the

spline space SN(Q).
We shall fix the coefficients by requiring that uh satisfies the Galerkin

equations
(^(«/,). V)L2(r) = (A(u), v)L2{r) (41)

for all y/ e SN{&). This choice leads us to solve a nonlinear system of
equations.

Possibly there exist several conceptual frameworks to prove the existence
of the approximate solution, and what is most important, the convergence
of the sequence of solutions as the mesh parameter tends to zero. We have
chosen the approach of ^-proper mappings. For the definition we quote the
references [9, 18].

T H E O R E M 8. The nonlinear operator A(-): LQ(r) -* Lq{Y) is A-proper with

respect to the projectionally complete scheme {Ph , S ^ ( 9 ) } .

PROOF. The first defining property is that from every bounded sequence
{uh }, uh e SN{Oj), for which Ph A{uh) —> / as h}, -> 0, we can sub-
tract a subsequence {uh } with the property: There exists a function u

https://doi.org/10.1017/S0334270000009012 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000009012


[13] Remarks on the boundary element method for strongly nonlinear problems 431

such that

and A(u) = f. Since L9(T) is reflexive, every bounded sequence has a
weakly convergent subsequence. Let {uh } be the subsequence with u as

the weak limit. By Theorem 1, the operators V and K* are compact from
L*(r) onto L"(T) and Lq{Y) to Lq{T), respectively. Via the basic proper-
ties of the linear compact operators we have

o
By the definition of the integral operator we have the identity

M. =2(Ph A(uh )-f) + 2f + 2P.

Therefore by the triangle inequality we get

. =2(Ph A(uh )-f) + 2f + 2P. K*uh -2P. G(Vuh ). (43)
hKk) V hj{k) V hj(k) hKk) hKk) hj(k) V hKk)' V '

+ 2\\Phj{kG(Vuhm)-G(Vu)\\L,{r).

The right-hand side tends to zero by the assumption and (42). Thus the
uniqueness of the weak limit in reflexive Banach spaces implies

and by (44) uh -* u strongly in Z^-norm. Thus we have proved the first

part of the statement. To prove the second part of the statement we have to
show that PhDA(u) is continuous. But this is clear, since by the mapping
properties of the integral operator A(-) and the L2-projection Ph : L9(T) —>

Lq{T) are continuous.
The relevance of Theorem 8 is justified as follows: if one can prove the

existence of bounded sequence of Galerkin solutions, then the ^4-properness
will yield the convergence of the method.

Thus the problem is now to prove the existence of the Galerkin solutions.
This we proceed to do by linearising the equations. The linearised operator
has some rather nice properties. We have already seen that A : Lq{Y) —>
Lq(T) is continuously Frechet differentiable. The Frechet derivative acts on
functions as

DA(u)v = \u- K'u + DG(Vu)Vv.

But the derivative has even stronger properties that are crucial if we are to
prove the unique solvability of the Galerkin equations.
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THEOREM 9. The bounded linear operator

DA{u):Lq{T)^Lq{Y)

is a Fredholm operator with index zero: ind(DA(u)) — 0. Furthermore, it is
also injective.

PROOF. The first part of the statement is obvious from the general theory of
Fredholm operators [23, Chapters IV and V]. Namely, the bounded linear
operators K* and DG(Vu)V are compact by Theorem 1. Therefore DA(u)
is a Fredholm operator with index zero.

To prove the injectivity we shall show that DA(u) : L9{T) -> L9(T) is
strictly F-monotone. As in Theorem 5 we use the semicoercivity of the
linear operator V(\l — K*). There we noticed that for every w e Lq{T) we
can find a harmonic function *F e PF1>2(Q) such that

The assumption A4 implies that -§^g{x, u) > 0 for almost all x € P . Thus
we get

{DA(u)w, Vw)Ll(n = ||«F|£1(O) + jf j^g{x, Vu(x))\Vw(x)\2 dsx > 0

for every u ; / 0 , which proves our statement.
Now we are in a position to prove the main theorem of this section.

THEOREM 10. For given f e L9(T) there exists hQ > 0 such that for every
0 < h < h0 the Galerkin equations

admit a unique solution, and uh converges towards the unique solution of the
equation A(u) = f.

PROOF. The statement is actually now a consequence of the general theory of
,4-proper mappings [9, Theorem 21.3, pp. 263-264] or [18, Theorem 4.3G].
But for the sake of convenience we recall the basic idea of the proof here. It
relies strongly on the degree argument of the nonlinear Fredholm operators.
By Theorem 8 there exists a constant c = c(u) > 0 depending only on
u e L"(T) such that

\\DA(u)v\\L,{r)>c(u)\\v\\L,{r) (45)

for all v &L9{T).
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Next we shall estimate the operator norms of (/ - Ph)DG{Vu)V and
(/ - Ph)K* in L9(T). Using the results for the approximation of compact
operators [15, Section 8.5, p. 186] we obtain

\\(I-Ph)K*\\L^L,<d(h),
\\{I-Ph)DG{Vu)V\\L,^Lq<8{u;h),

where 3{h) —> 0 as h -> 0. From these estimates it follows that

\\(PhDA(u)-DA(u))v\\L<l{r) < S(h) + d(u; h) -> 0.

Thus the approximation of DA(u)

A'h(u) =1-- PhK* + PhDG(Vu)V

is also an isomorphism in L9(T) provided the mesh parameter is small
enough. As a consequence PhDA(u) : S^(Q) —> S^(Q) is an homeomor-
phism, because the restriction of A'h(u) to Sd

N{Q) is PhDA(u). Hence the
Brouwer degree of this finite dimensional operator

d{PhDA(u),Bh{0,r),0) = ±l

for every r > 0. Notice that we can choose r > 0 such that on the boundary
of the set

Bh(u, r) = {w€ Sj(e) | ||« - w\\L,{r) < r}

there holds
PhA(w) * PJ.

This choice is possible, since we know that u is the isolated solution of (23).
The hard part of the proof is to show that [12, Chapter 1]

d(PhA(.),Bh(u, r),Phf) = d(PhDA(u),Bh(0, r), 0) = ±1.

Since the degree of the finite dimensional operator is nonzero, there exists
uh e 5^(6) such that

if h is sufficiently small. Furthermore, the Galerkin solutions are bounded.
The convergence of the method follows now by the ^4-properness of the
integral operator and the uniqueness of the continuous solution.

Let us finally consider the uniqueness of the Galerkin solutions. Since
A( •) is continuously Frechet-differentiable we can find p > 0 such that for
every uh € B(u, p) there holds
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Let then uh, vh e S^{O) be Galerkin solutions on the same mesh, i.e.

Ph[A(uh)-A(vh)] = 0.

We choose h0 > 0 so small that for every h < h0 it holds that

uh,vheB(u,p) and \\uh - vh\\L,(T) < e/2. (47)

Here e/2 can be made so small that the remainder

R(uh;uh-vh)<c(u)/2. (48)

Combining (47) and (48) with estimate

\\Ph[A(uh) - A(vh)]\\L,{r) > \\PhDA{uh){uh - vh)\\^r)

-R(uh;uh-vh)\\uh-vh\\L,{r)

we finally get

which proves the uniqueness.
Up to now we have not said a word about the accuracy of the approximate

solution obtained by the Galerkin method. Next we shall use the Fredholm
property to derive the asymptotic error estimates in L9(r)-norm (compare
with Theorem 4.4 in [19]). We begin by proving

LEMMA 11. For the Galerkin solutions there holds the following asymptotic
estimates

Wphu ~ «A«(T) ^ C(u){\\K\u - Phu)\\L,iri + \\V(u - Phu)\\L,{r)}. (49)

PROOF. In Theorem 9 we proved that there exists h0 > 0 such that for all
0 < h < h0 we have

\\PhDA{u)<t>\\L«(r) > clM) IMlL«(r> > * e S U e ) - (50)
Here u e L9(T) is the unique solution of the nonlinear integral equation
(23) as above. On the other hand we can replace u in (50) by its orthogonal
projection Phu, because the nonlinear operator is continuously differentiable.
Setting in (50) (f> = Phu — uh we get

K - V H L ' O - ) ^ c(u)\\PhDA(Phu)(uh - Phu)\\L,(r). (51)

By the definition of the Frechet-derivative

DA(Phu)(uh-Phu) = A(uh)-A(Phu)+R(Phu;uh-Phu)\\uh-Phu\\LHr). (52)

Theorem 9 and the properties of the L2-projection imply
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yielding finally the convergence of the remainder term in (52):

R(Phu;uh-Phu)->0, h^O.

In particular, we can choose h0 small enough to get

Using the estimates (51), (52) and (53) together with the identity

Ph(A(u) - A(Phu)) = Ph(A(uh) - A(Phu))

- K\u - Phu) + Ph[G(Vu) - G(V(Phu))]

we achieve

. (54)

Here we have used also the boundedness of the L2-projection in L^-norm
(see the estimate (39) with s = t = 0) .

To complete the argument, we have to estimate the second term on the
right-hand side in (54). To do this we utilise the assumptions made on the
nonlinearity. First we introduce some helpful notation to make the following
estimates clearer. We set v = Vu and vh — VPhu. Then by the assumption
A5 for almost all x e T

\G(v)(x) - G(vh){x)\ < \v(x) - vA(x)|{tf, + K^vix)^ + \vh(x)^)}.

With this inequality and the Holder inequality we get

\G(v)(x)-G(vh)(x)\ dsx < {Kx+K2{\\v\\p-J+\\vh\\
pfi)}\\v-vh\\L,(T). (55)

The right-hand side is finite since V: Lq (V) —* C(T) is bounded by Theorem 1.
Using this property on the right-hand side of (55) we get the final estimate

\\G(Vu) - G(VPhu)\\LHr) < K(\\u\\L,(r))\\V(u - Phu)\\L,(T).

The previous lemma may be applied to establish the asymptotic error es-
timates in various Sobolev norms.

THEOREM 12. Let u e L9(T) be the unique solution of the nonlinear integral
equation A(u) = f, and uh e 5^(0) the Galerkin solution corresponding
to the mesh parameter h = l/N. Then there holds the asymptotic stability
estimates

II" - " J z .« ( n ^
 c(IMlL«<r))H" - Phu\\L"(T) (56)

and

II" " "h\\iv-l-<(D ^ C i d M L W H " ~ Phu\\w-l-<<n' ( 5 7 )
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PROOF. The first part of the statement is obvious. By the triangle inequality
we obtain

II" " uhh<(D $ II" - Phu\\mr) + I K - Phu\\L"(D •

For the second term on the right hand side we can use estimate obtained in
Lemma 11. If we choose the mesh parameter h < Ao, we have

+ c{\\u\\L,(T)){\\K\u - Phu)\\LHr) + \\V(u - Phu)\\L,,(r)}.

Because the operators V : L9(r) -» L9(T) and K : Lq{T) - Lq{T) are
bounded (Theorem 1), we get

II" " x*lli«{r> ^ i 1 + c (H" l lL< ( r ) ) ( l l * l + \\V\\))\\u -
The estimate (57) follows by utilising the mapping properties of the oper-

ators V and K*. Since we assumed that the boundary curve F is smooth,
there holds: for every w e W~l'q(T)

With these estimates and Lemma 11 one easily deduces

I K - PhuWw-^"(T) ^ ^ " I l i ' d i H H * * I I + HFII>II" " PhuWw-<-<{ry
But this estimate already proves the inequality (57), because by the triangle
inequality we have

Theorem 12 yields immediately the asymptotic convergence rates provided
we know the regularity of the solution u.

COROLLARY 13. Let us assume that the solution we WS'9{T). Then there
holds the error estimates

p . • /

II ~~ h\\ H*''' ^(T*\ *̂*' \ II y ^T^ / I I W*' ^fT^ '

for every - 1 < / < O < 5 < ^ + 1.

PROOF. By Theorem 12 the estimates follow simply by the mapping proper-
ties of spline functions.

Finally we want note that these theoretical results agree quite well with
the numerical computations made in [21, Example 2]. There the piecewise
constants are used to approximate the solution. The experimental order was
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exactly the theoretical order obtained here. The numerical computations were
carried out with the |u|«3-nonlinearity.
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