EQUATIONALLY DEFINED RADICAL CLASSES

N.R. MCCONNELL AND TIMOTHY STOKES

We consider universal classes of multioperator groups, and give a sufficient condition for a subclass defined by algebraic elementwise rules to be a radical class.

Consider a universal class \mathcal{U} of multioperator groups. We obtain a sufficient condition for algebraic element-wise definitions of classes of algebras in \mathcal{U} to give rise to radical classes. Some work of this sort has been done by Gardner [1] and Wiegandt [5]. As our work is largely motivated by rings, we refer to normal subobjects as ideals throughout. We direct the reader to [2] for terminology and background.

DEFINITION 1: Let \mathcal{U} be a universal class in a variety \mathcal{V} of multioperator groups, and let F be a set of elements in the free algebra with countable generators $\{x_1, x_2, \ldots\}$ in \mathcal{V} . Let $\mathcal{R}F$ be the class in \mathcal{U} defined as follows: R is in $\mathcal{R}F$ providing that for every $r \in R$ there exist $f(x_1, x_2, \ldots, x_n) \in F$ and r_2, r_3, \ldots, r_n in R, such that $f(r, r_2, r_3, \ldots, r_n) = 0$. For any algebra R, define $\mathcal{R}F'(R) = \{r \in R \mid \text{ there exists } f \in$ F, and $r_2, \ldots, r_n \in R$ with $f(r, r_2, \ldots, r_n) = 0$.

It is obvious from these definitions that R is in $\mathcal{R}F$ if and only if $\mathcal{R}F'(R) = R$.

LEMMA 2. For all F, $\mathcal{R}F$ is homomorphically closed.

PROOF: Suppose $R \in \mathcal{R}F$, $I \triangleleft R$. If $r + I \in R/I$, then by assumption there exist $f(x_1, x_2, \ldots, x_n) \in F$ and $r_2, r_3, \ldots, r_n \in R$, such that $f(r, r_2, r_3, \ldots, r_n) = 0$, whence $f(r + I, r_2 + I, r_3 + I, \ldots, r_n + I) = 0 + I$, and so R/I is in $\mathcal{R}F$.

It is shown in [5] that the class of rings whose elements satisfy some property P is a radical class if P satisfies the following conditions (where I is an ideal of some ring A):

- (a) If a is a P-element of A, then the coset a + I is a P-element of A/I;
- (d) If a is a P-element in I, then a is a P-element in A too;
- and
- (e) If the coset a + I is a *P*-element of A/I and *I* consists of *P*-elements, then a is a *P*-element of A.

Received 5th March, 1992.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/93 \$A2.00+0.00.

We can use this to get a criterion for $\mathcal{R}F$ to be a radical class.

DEFINITION 3: F is \mathcal{U} -associating (or just associating when no confusion arises) if and only if for all $R \in \mathcal{U}$, whenever there are $g, h \in F$, $r, a_i \in R$ and $b_j \in I$ where Iis some ideal of R with $\mathcal{R}F'(I) = I$ for which $g(h(r, a_i), b_j) = 0$, there are also $f \in F$ and $c_k \in R$ such that $f(r, c_k) = 0$. Note that a_i here refers to n-1 elements of Rwhere n is the number of generators involved in h, et cetera.

THEOREM 4. If F is U-associating then $\mathcal{R}F$ is a radical class.

PROOF: Suppose F is associating, and let r be a P-element of a ring R if $f(r, a_i) = 0$ for some $f \in F$, $a_i \in R$. (a) is satisfied by Lemma 2, and (d) is trivial. Suppose that r + I is a P-element of R/I, where I consists of P-elements. Then for some $f \in F$ and $a_i \in R$, $f(r + I, a_i + I) = 0$, that is $f(r, a_i) \in I$. Since I consists of P-elements, $\mathcal{R}F'(I) = I$, so there exist $g \in F$ and $b_j \in I$ with $g(f(r, a_i), b_j) = 0$; hence $h(r, c_k) = 0$ for some $h \in F$ as F is associating. Thus r is a P-element of R, (e) holds, and $\mathcal{R}F$ is a radical class.

COROLLARY 5. Suppose F is such that $\mathcal{R}F'(R)$ is an ideal of R for all $R \in \mathcal{U}$, and further that $\mathcal{R}F'(\mathcal{R}F'(R)) = \mathcal{R}F'(R)$ for all $R \in \mathcal{U}$. Then $\mathcal{R}F$ is a radical class if and only if F is \mathcal{U} -associating.

PROOF: We show that if $\mathcal{R}F$ is a radical class, then F is associating, the result then following by Theorem 4. Let $R \in \mathcal{U}$. We observe that $\mathcal{R}F'(R)$ is the radical of Rwith respect to $\mathcal{R}F$, since $\mathcal{R}F'(R)$ is an ideal of R which obviously contains all other $\mathcal{R}F$ -ideals of R; moreover, $\mathcal{R}F'(R)$ is itself an $\mathcal{R}F$ -ideal of R since $\mathcal{R}F'(\mathcal{R}F'(R)) =$ $\mathcal{R}F'(R)$ by assumption.

Suppose there are $g, h \in F$ and $r, a_i \in R$, $b_j \in I$ where I is an ideal of R with $\mathcal{R}F'(I) = I$, for which $g(h(r, a_i), b_j) = 0$. Then certainly $h(r, a_i)$ is in $\mathcal{R}F'(R)$, so that $h(r + \mathcal{R}F'(R), a_i + \mathcal{R}F'(R)) = 0 + \mathcal{R}F'(R)$. Thus $r + \mathcal{R}F'(R) \in \mathcal{R}F'(R/\mathcal{R}F'(R)) = 0$ whence $r \in \mathcal{R}F(R)$ so that there are $f \in F, c_k \in R$ such that $f(r, c_k) = 0$ and the result follows.

In this case, A is $\mathcal{R}F$ -semisimple if and only if $\mathcal{R}F'(A) = \mathcal{R}F(A) = 0$ if and only if whenever $f(r, a_i) = 0, r = 0$.

COROLLARY 6. Suppose that for all $R \in U$, $\mathcal{R}F'(R)$ is an ideal of R, and that whenever $f(r, r_2, r_3, \ldots, r_n) = 0$ for some $r, r_2, \ldots, r_n \in R, f \in F$, then all of r, r_2, r_3, \ldots, r_n are in $\mathcal{R}F'(R)$. Then $\mathcal{R}F$ is a radical class in U if and only if F is associating.

PROOF: Let $R \in \mathcal{U}$. Evidently, for all $r \in \mathcal{R}F'(R)$, there exist $r_2, r_3, \ldots, r_n \in \mathcal{R}F'(R)$ for which $f(r, r_2, \ldots, r_n) = 0$. Hence $\mathcal{R}F'(\mathcal{R}F'(R)) = \mathcal{R}F'(R)$, and the result follows.

Note that if every $f \in F$ involves only one generator, the second condition of Corollary 6 is satisfied immediately.

EXAMPLES. In all the examples below, U is the class of all associative rings (unless otherwise stated).

(i) Let $F = \{f\}$ where f(x, y) = x + y + xy; then $\mathcal{R}F$ is the class of quasiregular rings. Since f(f(x, y), z) = f(x, y + z + yz) for all x, y, z in any ring R, F is associating and by Theorem 4 $\mathcal{R}F$ is a radical class (the Jacobson radical class). In fact, F is strongly associating in the sense that for every $f, g \in F$ we have $f(g(x, y_i), z_j)$ actually equal to $h(x, p_k(x, y_i, z_j))$ for some $h \in F$ and polynomials p_k in the free algebra. This is also true of all subsequent examples.

(ii) Let $F = \{x, x^2, ...\}$; then $\mathcal{R}F$ is the class of nil rings, which is a radical class (the nil radical) because $(x^n)^m = x^{nm}$, and so F is associating. Similarly, letting $F = \{mx^n \mid m, n \text{ positive integers }\}$ gives the Veldsman radical. Note that if \mathcal{U} is the class of commutative rings, then $\mathcal{R}F'(R)$ is an ideal of R for every $R \in \mathcal{U}$, and the remarks after Corollaries 5 and 6 apply. These two are also examples of sets of polynomials closed under substitution, which makes them 1-radicals, where an n-radical is a radical class for which a ring R is radical if and only if every n-generated subring of R is radical [1, Proposition 4.2].

(iii) In a similar way, all the examples 1-8 from [5, Section 3] arise from strongly associating F. It appears possible that all radical classes of the form

 $\{R \mid \text{ every element of } R \text{ is a } P \text{-element } \}$

arise in this way.

(iv) Let $F_p = \{x - py\}$, where p is prime; then $\mathcal{R}F_p$ is the class of p-divisible rings, which is a radical class because (x - py) - pz = x - p(y + z), and so F_p is associating. Note that the divisible radical is the intersection of all the $\mathcal{R}F_p$'s.

(v) Let p and q be integer polynomials and let $F = \{x - p(x)yq(x)\}$; then $\mathcal{R}F$ is the class of (p,q)-regular rings. By an argument similar to that in [3, Lemma 1], F can be shown to be associating.

(vi) Let \mathcal{U} be the class of commutative rings, and let $F = \{x^{2m} + y_1^2 + \dots + y_n^2 \mid m, n \text{ positive integers }\}$; then it is fairly easy to see that for any $f_1, f_2 \in F$ there will be $f_3 \in F$ with $f_1(f_2(x, y_i), v_j) = f_3(x, z_k)$, so F is associating. Note that in this case the conditions of Corollaries 5 and 6 hold. This radical class arises from the real Nullstellensatz of Stengle [4] in the same way that the nil radical arises from the Hilbert Nullstellensatz.

(vii) Let $F = \{x^2 - x\}$; then $\mathcal{R}F$ is the class of Boolean rings. $\mathcal{R}F$ is a radical class, but F is not associating. It follows from Corollary 6 that $\mathcal{R}F'(R)$ is not always an ideal of R; that is, the idempotent elements of a ring do not always form an ideal.

References

- B.J. Gardner, 'Radical properties defined locally by polynomial identities I', J. Austral. Math. Soc. 27 (1979), 257-273.
- [2] B.J. Gardner, *Radical theory*, Pitman Research Notes in Mathematics 198 (Longman Scientific and Technical, Harlow, Essex, UK, 1989).
- [3] Gary L. Musser, 'Linear Semiprime (p;q) Radicals', Pacific J. Math. 37 (1971), 749-757.
- G. Stengle, 'A Nullstellensatz and a Positivstellensatz in semialgebraic geometry', Math. Ann. 207 (1974), 87-97.
- [5] R. Wiegandt, 'Radicals of rings defined by means of elements', Sitz. Ost. Akad. Wiss.II 184 (1975), 117-125.

Department of Mathematics and Computing University of Central Queensland Rockhampton MC Qld 4701 Australia Department of Mathematics University of Tasmania Hobart, Tas 7000 Australia