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Abstract

In this paper, from several commutative self-adjoint operators on a Hilbert space, we define a class of
spaces of fundamental functions and generalized functions, which are characterized completely by self-
adjoint operators. Specially, using the common eigenvectors of these self-adjoint operators, we give the
general form of expansion in series of generalized functions
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1. Fundamental space and generalized space

Let H be a Hilbert space and A}, A,, ... , A, be commutative unbounded self-adjoint
operators on H. For every ¢ = (o), 00,... ,a,) € (Z,)" we denote by A* =
AT'AY - A%, where Z, = {o;a € Z,a > 0}. Suppose that D,. is the domain
of A%, and m is a non-negative integer. Let @, = (o y<m Daes Where || =
a +a; +--- + a,, forevery a € (Z,)". Define an inner product in ®,, as follows:

X, Y)m = Z (A°x, A%y), foreveryx,y e &,

0<|a|<m

where (-, ) is the inner product of H. Since H is complete and A® is closed,
we can see that &, is a Hilbert space with the inner product (-, -),,. Obviously,
H=920,0%,D---.Letd = ﬂ,“:fo ®,,. We have the following proposition.

PROPOSITION 1.1. ® is a dense subset of Hilbert space ®,, (m > 0).
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PROOF. Let A; = [*°° AEY)(dA) be the spectral decomposition of A;, where E¥?
is a spectral measure on the real line R, 1 < j < n. Because A,...,A, are
commutative, we can define E(dA,dAy - --d)r,) = EV@A)E®(dXy) --- E™(dA,),
a spectral measure on R". For N € N, let Py = fms v E(d}), where N is the set of all
positive integers, dA = didXy - - - dh,, |A| = |A |+ |A2] + - - - + |A,]. Obviously, Py
is a projection on H, and PyH C ®,,, foranym € Z,, N € N, so | Jy=, PvH C .
Suppose that x € ®,,, m € Z,. We have

[+ 4 o a N
IPvx —xlI7, = E IA® Pvx — A%x||> = E / A PIE@M)x|* — 0,
IzN

O<la|<m 0<la|<m
where A% = AT'AS? - - A%. So |1, Py H is dense in Hilbert space ®,,. O

PROPOSITION 1.2. With the countable inner products {(-, )n.m € Z.}, ® is a
countable Hilbert space.

PROOF. For the definition of a countable Hilbert space, see [2]. Let ¢ € . We
have ||¢llo < ol < li¢ll2 < ---. Now we show that these countable norms are
compatible. If [|¢:|l.. — O, and ¢, is a Cauchy sequence in the norm || ||n4+s, { being
some positive integer, then by the completeness of H there exists x® € H for each
a € (Z.)", |la| <m+1,suchthat |[A*¢, —x@]|| — 0. Since A” is a closed operator,
we have x@ = A*x©, la| < m + 1. From ||¢:]l, — 0, it follows that x® = 0, and

ldellmss — O.
By Proposition 1.1, the completion of {®, (-, ).} is ®,,. Since ® = % @, it
follows that @ is a countable Hilbert space ([2]). O

DEFINITION 1.1. The space & defined as above is called the fundamental space
associated with self-adjoint operators {A; | 1 < j < n}. The dual space &' is called
the generalized space associated with {A; | 1 < j < n}.

Later we see that if a Hilbert space H consists of functions, then @ is a fundamental
space of functions, and A, A,, ..., A, can operate on ® infinitely, and ®' is the
corresponding generalized space of functions.

From [2], @' = (%, ®.,. where for each m &/, is the dual space of ®,, and it is
also a Hilbert space. We have H = ¢; C ¢| C &, C ---. The weak * topology
o (', d) of &’ is defined as follows. The fundamental system of neighborhoods of
zero consists of

U(O?d)lv s¢l;8)= {f If € ¢/’|(.f’¢k>l <§é, 1 fkfl},

where ¢, ¢2, ... . ¢ € D, [ is some positive integer, ¢ > 0. Later the topologies of
P’ are all o (', D).
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PROPOSITION 1.3. &, (m € Z..) is a dense subset of ¥'.

PROOF. Since H = &, C | C -- -, it is sufficient to prove that H is dense in ¢’
In the proof of Proposition 1.1, we introduced a sequence of projections {Py; N € N},
such that PyH C ®, N € N. Let x € H. Then we have

12wl = Y ARt = 3 [ perip@s?
IA|<N

0<l|a|<m O<laf<m
< ( > N2'“')||PNx||2 < ( > Nz'“'>||x||2,m €Z,.
O<lal<m O<jai=m

Hence Py is a continuous linear operator from H to ®. Its adjoint operator P, :
@’ — H is defined by (P f,x) = (f, Pyx),foreveryx € H, f € ®'. Then Py is a
continuous linear operator from &' to H and P, f — f,forevery f € ¢’ U

PROPOSITION 1.4. Foreach j € {1,2,... ,n}, A; is a continuous linear operator
on &, and its adjoint operator A is a continuous linear operator on ®'. Moreover,
A’ is an extension of A; from ® to @', and it can operate on 9’ infinitely, 1 < j < n.

PROOF. Let ¢ € ®. We have |A; ¢l < @llmt1, m € Z4,50 Ay, Ay, ..., A, are
continuous linear operators on ®. The other conclusions are obvious. O

EXAMPLE 1.1. Let H = L*(R"), A; = —iD;, D; = 3/3t;,1 <j < n. Then

& = {x(2) | x(1) € C*°(R"), D*x € L*(R"), forevery a € (Z,)"},
P, = {x(t) | D°x € L*(R"), |a| < m},

where D* = D{' D3* - -- D%, for every a € (Z,)". We see that & = D, &' = Z,,,
where 2,:, and Z,, are defined in [6].

EXAMPLE 1.2. Let H = L%([0, 27]"), A; = —iDj, D, = {x(t) | x(t), D;x(t) €
L2([0,27]), x(D]y=2x = X(D)|y=0}, 1 < j < n. Then ® = {x(t) | x(t) €
C*([0,27]"), DZx(#)|yj=2n = D*x(#)|;;=0, 1 < j < n, foreverya € (Z,)"}. We
have that & = 2,,(R") = {x(¢) | x (1) € C*°(R"), x(t + 2mk) = x(¢), forevery k €
7"}, where 2,,(R") is defined in [1]. Because the family of semi-norms {||x|,, =
ID*x |2, ¢ € (Z,)",x € } is equivalent to the family of semi-norms {||x g0 =
|D%x |0, @ € (Z4)", x € P}, we have &' = Z;_(R").

EXAMPLE 1.3. Let H = L*(R"), A; = 2“(11.2 —-1- Df), 1 <j <n. We have

d = {x(D)x(t) € C(RM, |A*x|l» < 400, forevery o € (Z,)"}.
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Because the family of semi-norms {fixjl, = J|A“x|l;, @ € (Z;)"} is equivalent to the
family of semi-norms {||x|lg,.2 = 1t DY x5, B,y € (Z)"} (14]), we have

® = S(R") = {x(0)|x(2) € C(R™), [’ D" x|, < +00, forevery B,y € (Z,)"},

where S(R") is the set of all rapid descent C* functions on R”. The topology of & is
equivalent to the well-known topology of S(R"), thus &’ = §'(R"), the set of all slow
growth generalized functions.

2. The criterion for the completeness and nuclearity of a fundamental space

How do we decide about the completeness and nuclearity of a fundamental space
associated with self-adjoint operators? In this section we give a complete answer to
this problem.

The completeness and nuclearity of a countable Hilbert space are defined in [2].
Now let Hilbert space H, commutative self-adjoint operators A, A,, ... , A, and the
associated basic space ¢ be as in Section 1.

LEMMA 2.1. U, = ( ZOSMSM Az"‘)l/2 is a unitary operator from Hilbert space ®,,
onto Hym e Z,.

PROOF. In Proposition 1.1, we have defined the spectral measure E (dA) = EV(dA,)
E@(d),)--- E™(dA,) on R". Now we can set up the functional calculus for the
spectral measure as follows. Suppose f (1) is a complex Borel measurable function
on R". We define a linear operator T; = [;, f (\)E(dA) on H as follows

(Trx,y) = fA)(E@M)x,y), forevery x € D5,y € H,
RI’

Dr, = {x | x € H,/ If WPIE@Mx)? < +oo},
Rn

and we have || x| = fe. If WPIE(@Mx]?, x € 27, (see [S] about the functional
calculus).

Let pn(d) = (Toepen 1) where 20 = (20, 205, -+ , 20,).  Obviously
Up=T1,,, Dy, = ﬂoiMs”’ Dpa = O, Since U, is a self-adjoint operator on H, and
NU.x NI = lIxlIZ, = lIx]|?, so zero is a regular point of U, and U;' is defined on the
whole H. Therefore, U, is an operator from ®,, onto H and U, is unitary. ]

LEMMA 2.2. Suppose that the imbedding operator from ® ., to ®,, is denoted by
I™* m > 0, k > 1. Then we have the equalities of operators on H, that is

Ui 174U L, = U, UsL,,  foreverym >0, k> 1,

where |1+ = [(ImT%)*I"+*]V/2 is a non-negative self-adjoint operator on @, .
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PROOF. Because p,}, is a bounded continuous function on R”, we have

Topite = Tou Tty = Un Uy
by the functional calculus for the spectral measure E(d)). Since p,,,p,;‘+k is also
bounded, it follows that U, U,}, is a bounded self-adjoint operator on H. For any

x,y € H, we have

(Um+k (I":+k) Im+k U— X, y) ((I':ln+k)* Im+k U—l ,;ik)’),n%
= (I:+k Ui, In* Um+ky) ( +ky)
= (U +kx Un Um+ky) ((U,,, Ur;+k) X, y) .

Since the square root of a non-negative self-adjoint operator is unique, it follows that
Unn+4 |Im+k| m+k = Un Ur;+k 0

LEMMA 2.3. & is a complete space (or nuclear space) if and only if there exists
some positive integer k, such that U;" is a compact operator (or nuclear operator)
on H.

PROOF. First we show necessary condition. Suppose ® is complete (or nuclear).
Then there exists some positive integer k,, foreach m > 0, such that I+ is a compact
(or nuclear) operator. In particular, / “ is a compact (or nuclear) operator from @,
to H. Therefore, II(f"l is a compact (or nuclear) operator on ®,. By Lemma 2.2, it
follows that U,;' is a compact (or nuclear) operator on H.

Next we show sufficiency condition. Suppose that U;' is a compact (or nuclear)
operator on H where k is some positive integer. Because p,,p..}, = p; lPkPmP;lHu
and pkp,,,pm !, is a bounded continuous function for each m € Z,, then U, U,}, =
U't ppmptoand T, -1 is abounded lmear operator on H by the functional calculus
for the spectral measure E (d A). Thus U, U + . is acompact (or nuclear) operatoron H.

From Lemma 2.2, it follows that |I,:,"+"| is a compact (or nuclear) operator on @, 4,
and I™** is a compact (or nuclear) operator from ®,,.x to ®,, for every m € Z,.. So
& is a complete (or nuclear) space. O

THEOREM 2.1. ® is a complete (or nuclear) space if and only if there exists some

positive integer k, such that (I + R)™* is a compact (or nuclear) operator on H, where
R= A2+ Al+. ...+ A%

PROOF. Note that (/. + R)™ = T, where ¢,(A) = (1 + r(0))*, and r(2) =
VM +M 4+ + 22 Since pit = g 'qpi, gt = pi'pigi, if both gyp; ' and
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piq; " are bounded continuous functions on R", then T, and T - are compact (or
nuclear) simultaneously.
Since

172
i i
2 2
o< ‘ < e a <l a:
{TSI?«SX,IaJ_ (?_l a,) < lail +la;| + +lal < (‘E—l ,)

we have that

1/2

k!
NSO+l + Rl 4+ D= A
@) S A+l +Pal +ot bt = 3 Gl

k!
< a A%
= (o‘s‘?ai’s‘k (k= JaDlar ey ) 2|

O<|a|<k

12
k!

< | max A% ,

- (Oslalsk (k — Doy lay! - - - ) (O%X!:(kl l)

where d; is the number of elements of the set {a | @ € (Z,)",0 < |a] < k}. Soqip;’
is a bounded continuous function on R”. Moreover,

k!
) < D s Y T — 12

e errit loe Y e lag!t - - - ay,!

=L+ Ml + Ao+ -+ [2DF < (L4 nr@)).

Thus
_ L+nrM)Y oo
Mg '\ < 5
Pk()Qk()_(1+r(k)) n
and p,g;' is a bounded continuous function on R”. Use Lemma 2.3 to finish the
proof. |

DEFINITION 2.1. R is called the absolute value operator of the commutative self-
adjoint operators {A; | 1 < j < n}.

DEFINITION 2.2. Let B be a self-adjoint operator on Hilbert space H, o (B) be the
spectrum of B, P,(B) be the point spectrum of B. Suppose that o (B) = P,(B) =
{Am}, IAml 1 400, and also the multiplicity of each eigenvalue in P, (B) is finite and is
exactly the number of times the eigenvalue is repeated in the sequence {A,,}. Then we
say that B has spectral property C. In addition, if there exists some positive integer
k, such that ka £0 |An|* < +o00, then we say that B has spectral property N .
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THEOREM 2.2. ® is a complete space (or nuclear space) if and only if the absolute
value operator R has spectral property C (or N).

PROOF. From Theorem 2.1, it suffices to show the compactness (or nuclearity) of
(I + R)7*. Since (I + R)~! is a bounded self-adjoint operator on H, it follows that
(I + R)™(k > 1) is compact if and only if (I + R)™! is compact. By the spectral
decomposition of a self-adjoint operator, it is clear that the compactness of (I + R)™!
means that R has spectral property C. Furthermore, the nuclearity of (I + R)~* means
that R has spectral property N. U

THEOREM 2.3. Suppose F¢ is a Hilbert space, A is a self-adjoint operator on .
LetA=06= ==/, H= ®]_,H;, where ® denotes the tensor product.
Foreachl <j <nletA; =1IQIQ---QIRARI® ---Q 1, where A is on
the j th position. Then the fundamental space ® associated with {A; | 1 < j < n}is
complete (or nuclear) if and only if A has spectral property C (or N).

PROOF. By Theorem 2.2, we want to prove that R has spectral property C (or N)
if and only if A has spectral property C (or N). Without loss of generality we assume
that n = 2.

We show sufficiency first. Suppose that A has spectral property C, o(A) =
P,(A) = {XA,} is as in Definition 2.2. From the spectral decomposition of A, we can
take e, as an eigenvector corresponding to an eigenvalue X,,, such that {e,;m € N}
is an orthonormal basis of 5#. Then {e¢,, ® ¢;;m, ] € N} is an orthonormal basis of
H=X Q.

In addition, R> = A2 ® I + I ® A? is a diagonal operator: R*(e, ® €) =
(A2 4+1})(en®e), m, | € N. Itisobviousthato (R?) = P,(R?) = {AL+A?; m, 1 € N}
has unique cluster point co. Therefore, o (R) = {‘/}»,2,, +i:m,l e N}, and R has
spectral property C. Suppose that A has spectral property N, thatis }_ |A,|™* < 00
for some positive integer k. Since

> (,/A;’-,, + x%)_zk <Y @anling) ™ =27 (Z |A,,,|-")2,

it follows that R has spectral property N.

Next we show necessity. If R has spectral property C (or N), then R? has spectral
property C (or N). Suppose o (R?) = {y,} is as in Definition 2.2, and 0 < ¥,, 1
+o00. Because B, = A?® I, B, = I ® A? and R? are commutative, so in each
finite dimensional eigensubspace of R?, we can find an orthogonal basis, such that
B, B, are both diagonal in this subspace. Then there exists an orthonormal basis
(|25} of S ® H#, such that R’u, = YUy, Billy = Cplm, Botly = Bulim,
VYm = O@m + Bm, m € N. Since B;, B, are both diagonal in the basis {u,}, it follows
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that P, (B)) = {Olmlm_l} P,(By) = {Bnl}Z} and 0 (B)) = P,(By), 0(B,) = P,(By)
(see [3]). Let A2 = 0 p.F (du) be the spectral decomposition of A2 on S#. Then
= S WFAw ®I), B, = [, u ® F(du)) on S ® 5. Therefore,
U(Bl) = 0(A%) = 0(By), P (B) = P,(A®) = P,(By), and 6 (A?) = P,(A?),
P, (A% = {am'm—l = {Buln it
If « is an eigenvalue of A?, then there exists e € J#, e # 0, such that A%e = «e.
Clearly, R’(e ® ) = 2c(e ® €) and 2 € P,(R*). Since 2P,(A?) C P,(R?),
we have that co is the unique cluster point of P,(A?), and (A% = P,(A?). If
« is an eigenvalue with infinite multiplicity of A2, then 2c is an eigenvalue with
infinite multiplicity of R?. This contradicts the spectral property C of R2. Hence the
multiplicity of each eigenvalue of A? is finite, so A? has spectral property C. It is
immediate that A has spectral property C. If R? has spectral property N, then there
exists some positive integer k, such that Y_ |y,,| ™ < +00. By {20, |35} C {vx]12),
we have Y |a,,| ™ < 4-00. Then A? has spectral property N, and so does A. O

Now we use Theorem 2.2 to analyse the three examples from Section 1.

In Example 1.1, we take # = L?(R'), A = —iD,, D, = d/dt. It is known that
o(A) = C,(A) = R!, so ® = 2;: is not a complete space.

In Example 1.2, we take € = L%[0,27], A = —iD,, D4 = {x(t) | x,x' €
L0, 271, x(0) = x(2m)). It is known that 0 (A) = Z, Ae'* = ke'*, k € Z, and
dimker(A — k) = 1. Since 3,7 .0 k~? < 400, we have that ® = 2,,(R") is a
nuclear space.

In Example 1.3, we take J# = L*(R'), A = 27'(+? — 1 — D?). It is known
that 0(A) = Z,, Ady = koy, k € L, ¢(t) = Q4k' /) V2e "2 Hi (1), where
o) = (—1)"(3’2 Df‘e"2 is a Hermite polynomial. Since dimker(A — k) =

729 k? < 400, 50 ® = S(R") is a nuclear space.

Below we will give a sufficient condition for the completeness and nuclearity of a
fundamental space.

THEOREM 2.4. If some A; (1 < j < n) has spectral property C (or N), then ® is
a complete (or nuclear) space.

PROOF. Without loss of generality suppose A; has spectral property C (or N).
This is equivalent to the fact that (1 + |A,|)~* is compact (or nuclear), where k
is some positive integer, and |A;] = \/_—f Obviously, (1 + |4,|)™* = T,, where
s(A) = (1 + |A;])7*. Since ¢q; ') = qr 1s-1g, it follows, by the functional calculus,
that (I + R)™ = T,-t = T (1 4 |A )7, Since

o (1Y
U3 “(1+r(x)) =1
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we have that 7.1, is a bounded linear operator, and (I + R)™* is a compact (or
nuclear) operator on H. We apply Theorem 2.1 to finish the proof. O

3. Construction of generalized functions and their expansion in series

We continue to study the absolute value operator R. Since R is a self-adjoint
operator on H, we have 9 = {x | x € H, fw rP(MIE@Mx|? < +oo}. Noticing
pi) =1+r*Q), T,, = Ui, we get

Dr = {x |x e H, | pIMIE@Mx|? < +oo} =9y = ®,.

R”

On the other hand, we have
IRx|, = | UnRx|? =/ 1Pm (W) r() P E@dM)x]?
Rn

2 2 2
S 1PmaWPFNEEM)x]1” = Ix 1
Rn
for every x € ®,4, so R is a bounded linear operator from Hilbert space &, to
®,,,m € Z,. Then its adjoint operator R’ is a bounded linear operator from ¢/ to
@, .- Furthermore, R is also a continuous linear operator from & to ®, and R’ is a
continuous linear operator from &’ to ¢’. Moreover, R’ is an extension of R from ¢

to @', and there is an operator equality R? = A? + AZ +.-- + A

THEOREM 3.1. For any f € ®', there exists a unique element z € H, such that
f =+ R"z =limy_, ;0 (I + R*) Pyz, where k is some positive integer, Py(N € N)
is defined in the proof of Proposition 1.1, and the limit is taken for the weak * topology
of d'.

PROOE. For each m € Z,, I 4+ R™ is a self-adjoint operator on H, and zero is
its regular point. In addition, Z;,z» = ®,, so I + R™ is a one-to-one bounded
linear operator from Hilbert space ®,, onto Hilbert space H. Therefore, I + R™ isa
one-to-one bounded linear operator from H onto ¢/,

For each f € @', there exists some positive integer k, such that f € ®,. Then
there exists a unique z € H, such that f = (I + R’*)z. Since z = limy_, ;00 P2,
the limit being in H, it follows that the limit equality is also true in &’. Hence
f =limy_ oo(I + R*)Pyz. O

REMARK. If H = L*(R"), and Ay, A, ... , A, are partial differential operators,
then Theorem 3.1 shows that every generalized function of ¢’ is a finite sum of some
partial derivatives of some L? function.
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THEOREM 3.2. Suppose ® is a complete space, 6(R) = P,(R) = {An} is as in
Definition 2.2, and 0 < A,, 4 +00. Then there exists an orthonormal basis {¢,; m €
N} in H, such that Rpw = An@m, Ajm = Wjmdm 1 < j < n, ZL] W = AL,
meN, and

+00
o = {¢ | ¢ = Zamq&,,,, an = (P, dun), {am} is a {A,}-rapid descent sequence,

m=l]

the series is convergent in fb},

+00
P = {f | f = Z Cn®Prms €m = (f, Om), {Cn]) is a {An}-slow growth sequence,
m=1

the series is weakly * convergent in <1>'],

where {\,}-rapid descent sequence means that {\Xa,} € I*, for every k € Z,,
and {A,}-slow growth sequence means that {c,(1 + AX)™'} € I for some k € Z,.
Moreover, A f =3 % Culbjm®m forevery f € ¥, 1 <j <n.

PROOF. Because A, A,, ... , A,, and R are commutative, so in every finite dimen-
sional eigensubspace of R, we can find an orthonormal basis, suchthat A, A,, ... , A,
are all diagonal. By the spectral property C of R, there exists an orthonormal basis
{1} in H, such that Rpp, = A, Aj D = UjmPm, 1 <j <n, Z;;l ulz.m =A%,
m e N.

Since @, = Dx, it follows that ¢ = E;fl AnPm € Py if and only if {kf,,am|+°°

m=1

€ 2. Thus ¢ = Y '% a,¢, € @ if and only if {A¥a, 7%} € 2, for every k € Z,.

m=1

This means that {a,} is a {A,}-rapid descent sequence. If ¢ = Z:‘_’_j a,$,, in H,
¢ € @, then for each k € Z,, we have |[R* YV a,¢, — R*¢|| > 0in H by the
closeness of R¥. Then ||(I + R")(Zf An®m — D)l X 0,in H. It is clear that
U, (I + R*)~! is a bounded linear operator on H, so || Uk(Z?’ A — D) X o0inH,
that is Zf’ Ao X ¢ in ®.

If f € &', then there exist a unique z € H and some positive integer %, such that
f = (I + R*z = limy_ ;o(I + R¥)Pyz by Theorem 3.1. Let z = 3.1 bptn,
{bn} € >, and PyZ = EIIV bn®m. Then (I + R*)PyZ = Z’lv(l + A5 )bndm. Let
¢m = (14 A5)b,. We have f = liMy_, 00 3| Cm®m» here the limit being taken
for the weak *x topology of ®'. We write f = f°° Cm®m, Which means (f, ¢) =
My 100 31 Cm(ms ), for every ¢ € . Because {a, = (@m, )} is a {A,}-rapid
descent sequence, and {c, (1 +A%)~"} € I2, thus {f, ¢) = 31 c,@n is an absolutely
convergent series. Moreover, we see that ¢,, = (f, ¢n) and {c,} is a {A,,}-slow growth
sequence. Conversely, such a series 2::1 cm®n always converges to an element
of ¢'. O
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EXAMPLE 3.1. In Example 1.2, H = L? ([0, 27!]") has an orthonormal basis

{(2n)—"/2ei’“; keZ kt = ij t ]
j=1

such that A; e’*" = k; ™', Re™™ = r(k)e™, r(k) = /ki + k? + - - - + k2. Therefore,

Doy = {¢(t) | p(2)= Zake"", {a} is an {r(k); k € Z"}-rapid descent sequence },

kel

= [f Olfo= Z cre™, {c) is an {r(k); k € Z"}-slow growth sequence }
keZ"

This result agrees with that in [1].

In Example 1.3, H = L*(R") has an orthonormal basis {(r) = TI7_ ¢, (1;);
ke () }, where ¢, (¢) satisfies the following equation

2
% (z2 -1- %) o) = ki (1), kelZ,, teR!,
and ¢ (1) = 2*k!y/T) Ve "2 Hy(2), here Hi(t) = (—1)*e” D*e~" being a Hermite
polynomial. Then we have A; ¥ = k; ¥, Ry = r(k)y, k € (Z4)". So S(R™)
is equivalent to the set of all {r(k); k € (Z,)"}-rapid descent sequences. §'(R") is
equivalent to the set of all {r(k); k € (Z,)"}-slow growth sequences. This result
agrees with that in [4].
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