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Abstract

In this paper, from several commutative self-adjoint operators on a Hilbert space, we define a class of
spaces of fundamental functions and generalized functions, which are characterized completely by self-
adjoint operators. Specially, using the common eigenvectors of these self-adjoint operators, we give the
general form of expansion in series of generalized functions
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1. Fundamental space and generalized space

Let H be a Hilbert space and A i, A2, • •. , An be commutative unbounded self-adjoint

operators on H. For every a = (ai,a2» • •• ,ocn) e (!+)" we denote by A" =

A"'A"2 • • • Aa
n", where 1+ = {a;a e l,a > 0}. Suppose that ^A« is the domain

of A", and m is a non-negative integer. Let <t>m = f)o<M<m@A<>, where |a | =

ai + a2 H \-an, for every a e (!+)". Define an inner product in 4>m as follows:

(x,y)m= J2 (Aax,Aay), for every x, y € 4>m,
0<M<m

where (-, •) is the inner product of H. Since H is complete and A" is closed,

we can see that 4>m is a Hilbert space with the inner product (•, )m. Obviously,

H = <t>o D $1 D <J>2 D • • • • Let $ = HmS) *«• ^ e n a v e t n e following proposition.

PROPOSITION 1.1. 0 is a dense subset of Hilbert space <!>m (m > 0).
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PROOF. Let A; = f_™ XE(j)(dX) be the spectral decomposition of Aj, where E(j)

is a spectral measure on the real line D£, 1 < j < n. Because A i , . . . , An are
commutative, we can define E{dXxdX2 • • • dXn) = Em{dXl)E

m{dk2) • • • EM(dXn),
a spectral measure on R". For JVeN, let PN = fw<N E(dX), where N is the set of all
p o s i t i v e i n t e g e r s , dX — dX{dX2 • • • dXn, \X\ = \Xi\ + \X2\ H h |A.J. Obviously, PN

is a projection on H, and PNH c <i>m, for any m e 1+, N e N, so U N ~ PNH C <J>.
Suppose that* € 4>m, m e Z+. We have

\\AaPNx-Aax\\2= J^ f \k"\2\\E(dX)x\\2-^ 0,
0<|a|<m 0<|a|<m ^\k\>t<l

where Xa = X"' X2
2 • • • Xa

n". So U + ~ P w H is dense in Hilbert space <tm. D

PROPOSITION 1.2. Wfr/i r/ze countable inner products {(•,-)m.w € Z + } , 4> is a

countable Hilbert space.

PROOF. For the definition of a countable Hilbert space, see [2]. Let <p e <J>. We
have ||0||o < ||0||i < 1101b — " •" • Now we show that these countable norms are
compatible. If ||<^*||m —*• 0, and 4>k is a Cauchy sequence in the norm || ||m+;, / being
some positive integer, then by the completeness of H there exists x(a) e H for each
a e (!+)", \a\ < m + Z, such that \\Aa<t>k -x

(a)\\ - • 0. Since A" is a closed operator,
we have x(a) = Aaxl0), \a\ < m + I. From | |0t | |m -> 0, it follows that x(0) = 0, and
ll&IL-w - • 0.

By Proposition 1.1, the completion of {<&, (•, -)m] is <t>m. Since <t> = HmS) (^>'"' ^
follows that <t> is a countable Hilbert space ([2]). D

DEFINITION 1.1. The space <t> defined as above is called the fundamental space
associated with self-adjoint operators {A; | 1 < j < n}. The dual space <!>' is called
the generalized space associated with [Aj \ 1 <j <n}.

Later we see that if a Hilbert space H consists of functions, then $ is a fundamental
space of functions, and A\, A2,... , An can operate on 4> infinitely, and $ ' is the
corresponding generalized space of functions.

From [2], <&' = Um=o ^m' w n e r e f ° r e a c n m ^'m is t n e dual space of <t>m and it is
also a Hilbert space. We have H = <$>'o C <$>[ C <$>'2 C • • •. The weak * topology
er(<t>'', <£>) of O' is defined as follows. The fundamental system of neighborhoods of
zero consists of

1/(0;0, , . . . ,(j>i\e) = [f | / e < t \ | ( / \ 0 t ) l < e, 1 < A: < /},

where <pu <j)2,... ,0 / € 4>, / is some positive integer, e > 0. Later the topologies of
<t>' are all cr(<t>', 4>).
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PROPOSITION 1.3. &m (m e 1+) is a dense subset of&.

PROOF. Since H — $>'Q C $', C • •, it is sufficient to prove that H is dense in <!>'.
In the proof of Proposition 1.1, we introduced a sequence of projections {PN;N € N},
such that PNH c <t>, N e M. Letx e H. Then we have

= E \\AapNxf= j^ f m
0<|a|<m 0<|a|<m J W£N

< ( E W2|a')ll*W<( £ A^2|"!)||̂ l|2, m
^0<|a|<m / ^0<|a|<m

Hence PN is a continuous linear operator from H to 0 . Its adjoint operator P'N :
4>' - • H is denned by {P'Nf, x) = (/, PNx), for every x € H, f e O'. Then P ; is a
continuous linear operator from <$>' to / / and P'Nf -> / , for every / € $ ' . •

PROPOSITION 1.4. For each j e { 1 , 2 , . . . , n], Aj is a continuous linear operator
on <t>, and its adjoint operator A'j is a continuous linear operator on <t>'. Moreover,
Aj is an extension of Aj from <t> to <t>', and it can operate on 4>' infinitely, 1 < j < n.

PROOF. Let <j> 6 <t>. We have ||A,</>||m < | | ^ | | m + i , m e l+, so Au A2,... , An are

continuous linear operators on <$>. The other conclusions are obvious. •

EXAMPLE 1.1. Let H = L2(Rn), Aj = -iDj, Dj = d/dtj, 1 <j < n. Then

<D = {x(t) | x(t) e C°°(Rn), Dax e L2(Rn), for every a 6 (!+)"},

$>m = {x(t)\DaxeL2(R"), \a\<m},

where Da = D^D"2 • • • Da
n\ for every a e (Z+)\ We see that $ = &L2, 4>' = ®'o,

where &Li, and ^ [ 2 are defined in [6].

EXAMPLE 1.2. Let H - L2([0, 27r]"), A, = - J D 7 , ^ . = {x(t) \ x(t), Djx(t) e
L2([0,27r]n),^(r)|,;=2, = x(t)\tj=0], 1 < j < n. Then * = {x(t) | *(r) 6
C o o ( [ 0 , 2 ^ n , D ^ ( O I 0 = 2 , = D«jc(r)|IJ=0, 1 < ; < n, foreverya 6 (Z+)"}. We
have that <& = 2>2x(W) = {x(t) \ x(t) e C°°(IR"), x(t + Ink) = x(t), for every k e
1"}, where ^ 2 ^(^") is defined in [1]. Because the family of semi-norms {||x||a,2 =
||Z)°JC|j2, or e (l+)",x e 0} is equivalent to the family of semi-norms {||x||a,oo =
\\Dax\\oo,a 6(Z+)",x 6 O},w

EXAMPLE 1.3. Let H = L2(Rn), Aj = 2~\tf - 1 - Dj), 1 < j < n. We have

4> = {x(t)\x(t) e C°°(W), \\Aax\\2 < +oo, foreverya e (1+)"}.
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Because the family of semi-norms {||JC||O = ||i4ojt||2,a 6 (1+)") is equivalent to the
family of semi-nonns {11*11 .̂2 = | |^Z)"x| |2,/J,y e (Z+)"} ([4]), we have

<D = 5(R") = {x(0l*(0 6 C°°(ir), \\tpDYx\\2 < +oo, for every 0, y e (Z+)"},

where S(R") is the set of all rapid descent C00 functions on R". The topology of 4> is
equivalent to the well-known topology of S(R"), thus <£' = S'(Rn), the set of all slow
growth generalized functions.

2. The criterion for the completeness and nuclearity of a fundamental space

How do we decide about the completeness and nuclearity of a fundamental space
associated with self-adjoint operators? In this section we give a complete answer to
this problem.

The completeness and nuclearity of a countable Hilbert space are defined in [2].
Now let Hilbert space H, commutative self-adjoint operators Ai, A2,... , An and the
associated basic space 4> be as in Section 1.

LEMMA 2.1. Um = (£0<|a|<m ^ 2 ") " a unitary operator from Hilbert space <t>m

onto H, m 6 Z+.

PROOF. In Proposition 1.1, we have defined the spectral measure E(dk) = £(1) (dki)
Em(dk2) • • • E(n)(dXn) on R". Now we can set up the functional calculus for the
spectral measure as follows. Suppose / (A) is a complex Borel measurable function
on R". We define a linear operator 7} = /R . / (X)E(dX) on H as follows

(Tfx, y)= f f (k)(E(dk)x, v), for every x€@Tf,yeH,
JR"

&T, - \x | x e H, I \f {X)\2\\E{dX)x\\2 < +oo
• ' I f /R"

and we have \\Tfx\\2 = /„„ |/(A)|2||£(dA.);c||2,;c € 3>Tf (see [5] about the functional
calculus).

Let pm(X) = (£o<w<m*2a)1/2> where 2a = (2a, ,2a2 , ••• ,2a n ) . Obviously
Um = TPm, f&Um = no<iai<m ^*" ~ *« • Since Um is a self-adjoint operator on H, and
II Umx ||2 = \\x \\2

m > \\x ||2, so zero is a regular point of Um, and U~x is defined on the
whole H. Therefore, Um is an operator from <J>m onto H and Um is unitary. •

LEMMA 2.2. Suppose that the imbedding operator from 4>m+t to <t>m is denoted by
I™+k> rn > 0, k > 1. 77ien we /uzve //ie equalities of operators on H, that is

U»+k\*:+k\U?+t = UmU-lk, for every m > 0, k > 1,

vv/iere |/™+*| = [(/™+*)*/™+*]1/2 w a non-negative self-adjoint operator on
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PROOF. Because p~l
+k is a bounded continuous function on K", we have

by the functional calculus for the spectral measure E{dX). Since PmPmXk 1S

bounded, it follows that Um U~\_k is a bounded self-adjoint operator on H. For any
x,y € / / , we have

= (Um U~lkx, Um U~l
+ky) = ((£/„ [/-|,)2x, y) .

Since the square root of a non-negative self-adjoint operator is unique, it follows that

-ik = umu~ik. •

LEMMA 2.3. <J> is a complete space (or nuclear space) if and only if there exists
some positive integer k, such that Uk

l is a compact operator (or nuclear operator)
onH.

PROOF. First we show necessary condition. Suppose <t> is complete (or nuclear).
Then there exists some positive integer km for each m > 0, such that /™+*" is a compact
(or nuclear) operator. In particular, 1^ is a compact (or nuclear) operator from O^
to H. Therefore, |/^°| is a compact (or nuclear) operator on O^. By Lemma 2.2, it
follows that [/*"' is a compact (or nuclear) operator on H.

Next we show sufficiency condition. Suppose that Uk
x is a compact (or nuclear)

operator on H, where k is some positive integer. Because pmp~\_k = P^PkPmPm+k'
and PkPmP^,+k is a bounded continuous function for each m e 1+, then Um U~x

+k =
Uk

l TptPmP-i , and TptPmP-i k is a bounded linear operator on H by the functional calculus
for the spectral measure E (dX). Thus Um U~\_k is a compact (or nuclear) operator on H.

From Lemma 2.2, it follows that \I™+k\ is a compact (or nuclear) operator on 4>m+t,
and /™+* is a compact (or nuclear) operator from <t>m+k to 4>m for every m € Z+. So
$ is a complete (or nuclear) space. •

THEOREM 2.1. $ is a complete (or nuclear) space if and only if there exists some
positive integer k, such that (I + R)~k is a compact (or nuclear) operator on H, where
R = J \

PROOF. Note that (/ + R)~k = Tq-i, where qk(X) = (1 + r(X))k, and r(X) =

^1 = qk
lqkpk\ qk

l = Pk
lPkqk\ if both qkpk

l and
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Ptqk1 are bounded continuous functions on K", then Tp-> and Tq-i are compact (or
nuclear) simultaneously.

Since

we have that

°™<* (k-\a\y.ax\a2\ •••*„]) J ^

where dk is the number of elements of the set [a \ a € (!+)", 0 < \ct\ < k}. So
is a bounded continuous function on W. Moreover,

k\

= (l + \Xl\ + \X2\ + -.- + \ K \ ) k < ( l -

Thus
/ 1 \ k

and p * ^ 1 is a bounded continuous function on IR". Use Lemma 2.3 to finish the
proof. •

DEFINITION 2.1. R is called the absolute value operator of the commutative self-
adjoint operators {Aj | 1 <j <n}.

DEFINITION 2.2. Let B be a self-adjoint operator on Hilbert space H, a{B) be the
spectrum of B, Pa{B) be the point spectrum of B. Suppose that a(B) — Pa{B) =
{Xm}, \Xm\ t +oo, and also the multiplicity of each eigenvalue in Pa(B) is finite and is
exactly the number of times the eigenvalue is repeated in the sequence {A.m}. Then we
say that B has spectral property C. In addition, if there exists some positive integer
k, such that X ^ o \^m\~k < +oo, then we say that B has spectral property N.
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THEOREM 2.2. <& is a complete space (or nuclear space) if and only if the absolute
value operator R has spectral property C (or N).

PROOF. From Theorem 2.1, it suffices to show the compactness (or nuclearity) of
(/ + R)~k. Since (/ + R)~l is a bounded self-adjoint operator on H, it follows that
(/ + R)~k(k > 1) is compact if and only if (/ + R)~l is compact. By the spectral
decomposition of a self-adjoint operator, it is clear that the compactness of (/ + R)'1

means that R has spectral property C. Furthermore, the nuclearity of (/ -I- R)~k means
that R has spectral property N. •

THEOREM 2.3. Suppose Jif is a Hilbert space, A is a self-adjoint operator on J!?.
Let3tf'\= 3^ = •• = Jfn= Jif,H = ®"=lJ?j, where <g> denotes the tensor product.
For each 1 < j < n let Aj = / ® / ® - - - ® / ® A ® / ® - - - ® 7 , where A is on
the j th position. Then the fundamental space <t> associated with [Aj | 1 < j < n] is
complete (or nuclear) if and only if A has spectral property C (or N).

PROOF. By Theorem 2.2, we want to prove that R has spectral property C (or N)
if and only if A has spectral property C (or N). Without loss of generality we assume
that n = 2.

We show sufficiency first. Suppose that A has spectral property C, a (A) =
Pa(A) — [km] is as in Definition 2.2. From the spectral decomposition of A, we can
take em as an eigenvector corresponding to an eigenvalue Xm, such that [em\m e N}
is an orthonormal basis of Jif. Then {em ® e,; m, I e hi} is an orthonormal basis of
H = JV <g> JC.

In addition, R2 = A2 <g> / + / <g> A2 is a diagonal operator: R2(em ® e{) =
(k2

m+X2)(em®ei),m, I e H. It is obvious that a (R2) - Pa(R
2) = {A.*+A.?; m, I € N}

has unique cluster point oo. Therefore, o(R) — {y/k^ + k2; m, I € N}, and R has
spectral property C. Suppose that A has spectral property N, that is J^ |A.m|~* < +oo
for some positive integer k. Since

-Ik

it follows that R has spectral property N.
Next we show necessity. If R has spectral property C (or N), then R2 has spectral

property C (or N). Suppose o(R2) = {ym} is as in Definition 2.2, and 0 < ym f
+oo. Because Bx = A2 ® / , B2 = / (8) A2 and R2 are commutative, so in each
finite dimensional eigensubspace of R2, we can find an orthogonal basis, such that
Bi, B2 are both diagonal in this subspace. Then there exists an orthonormal basis
{«ml^=i} of Jif <g> Jif, such that R2um = ymum, Bxum = amum, B2um = f3mum,

Ym — cem + fim, m e H. Since Bu B2 are both diagonal in the basis [um], it follows
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that Pa(Bx) = {otm\l%}, Pa(B2) = {PmltZ) and (7(50 = Pa(Bx), a(B2) = Pa(B2)
(see [3]). Let A2 = /0

+°° ixF(dfi) be the spectral decomposition of A2 on JJ?. Then
Bx = /0

+0° (i(F(dti) ® / ) , B2 = /o+°° /*(/ ® ^ W M ) ) on Jf? <S> ST. Therefore,
a(Bx) = a(A2) = a(B2), Pa{B{) = Pa(A

2) = Pa(B2), and a(A2) = Pa(A
2),

If or is an eigenvalue of A2, then there exists e G Jf, e ^ 0, such that A2e = ae.
Clearly, R2(e ® e) = 2or(e <g> e) and 2a e P,,(/?2). Since 2PO(A2) C Pa(R

2),
we have that oo is the unique cluster point of Pa(A

2), and a (A2) = Pa(A
2). If

a is an eigenvalue with infinite multiplicity of A2, then 2a is an eigenvalue with
infinite multiplicity of R2. This contradicts the spectral property C of R2. Hence the
multiplicity of each eigenvalue of A2 is finite, so A2 has spectral property C. It is
immediate that A has spectral property C. If R2 has spectral property N, then there
exists some positive integer k, such that £ \ym\~k < +oo. By {2am|^,} C {ymlm~},
we have J^ |am|~* < +oo. Then A2 has spectral property N, and so does A. •

Now we use Theorem 2.2 to analyse the three examples from Section 1.
In Example 1.1, we take Jt? = L2(Rl), A = -iDt, D, = d/dt. It is known that

CT(A) = Ca(A) = Rl, so <t> = @L2 is not a complete space.
In Example 1.2, we take Jf? = L2[0, 2n], A = -iD,, 9A = {x(t) | x,x' e

L2[0, 2n],x(0) = x(2n)}. It is known that a(A) - 1, AeikI ~ keikt, k € 1, and
dimker(A - it) = 1. Since J2kez,k^tok~2 < +°° ' w e n a v e t h a t ^ = @2n(Rn) is a
nuclear space.

In Example 1.3, we take jf = L2(K'), A = 2~l(t2 - 1 - D2). It is known
that a (A) = 2+, A<pk = k<f>k, k e 1+, <pk{t) = (2kk\y/n)-1/2e-'2/2Hk(t), where
Hk(t) = (—l)ke'2Dke~'2 is a Hermite polynomial. Since dimker(A - k) = 1,
Y,t=i k~2 < +°° ' so 4> = 5(R") is a nuclear space.

Below we will give a sufficient condition for the completeness and nuclearity of a
fundamental space.

THEOREM 2.4. If some A} (\ < j < «) /ia5 spectral property C (or N), then <t> w
a complete (or nuclear) space.

PROOF. Without loss of generality suppose A\ has spectral property C (or N).
This is equivalent to the fact that (1 + IAJ)"* is compact (or nuclear), where k
is some positive integer, and |Ai| = y/~A]. Obviously, (1 + |Ai|)~* = Ts, where
s(k) = (1 + |Ai|)"*. Since q^ik) = q^s~ls, it follows, by the functional calculus,
that (/ + R)~k = Tq-i = 7^-.,-.(l + |A,|)-*. Since

5
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we have that Tq-is-, is a bounded linear operator, and (/ + R)~k is a compact (or
nuclear) operator on H. We apply Theorem 2.1 to finish the proof. •

3. Construction of generalized functions and their expansion in series

We continue to study the absolute value operator R. Since R is a self-adjoint
operator on H, we have 3>R = {x \ x e H, /R, r2(k)\\E(dX)x\\2 < +oo}. Noticing
p\{X) = 1 + r2(X), TPl = CA.weget

J l f < +oo j =
On the other hand, we have

\\Rx\\2
m = \\UmRx\\2 = f \pm(k)r(X)\2\\E(dk)x\\2

< J Jpm+i(V\l\\E(dX)xr = \\x\\2
m+l,

for every x e 4>m+l, so R is a bounded linear operator from Hilbert space <I>m+I to
<J>m, m e 1+. Then its adjoint operator R' is a bounded linear operator from <S>'m to
^m+i- Furthermore, R is also a continuous linear operator from 4> to 3>, and /?' is a
continuous linear operator from <!>' to <t>'. Moreover, R' is an extension of R from 0
to <t>', and there is an operator equality R'2 = A'? + A% -\ 1- A'2.

THEOREM 3.1. For any f e 4>', there exists a unique element z 6 H, such that
f = (I + R'k)z = limN^+00(I + Rk) PN z, where k is some positive integer, PN(N e N)
is defined in the proof of Proposition 1.1, and the limit is taken for the weak * topology
ofV.

PROOF. For each m e 1+, I + Rm is a self-adjoint operator on H, and zero is
its regular point. In addition, @i+Rm = <£>m, so / -I- Rm is a one-to-one bounded
linear operator from Hilbert space <t>m onto Hilbert space H. Therefore, / + R'm is a
one-to-one bounded linear operator from H onto <$>'m.

For each / € <t>', there exists some positive integer k, such that / 6 <$>'k. Then
there exists a unique z € H, such that / = (/ + /?'*)z. Since z = limw_,.+oo / ^ z ,
the limit being in H, it follows that the limit equality is also true in <!>'. Hence

REMARK. If H = L2(R"), and AUA2,... , An are partial differential operators,
then Theorem 3.1 shows that every generalized function of O' is a finite sum of some
partial derivatives of some L2 function.
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THEOREM 3.2. Suppose 4> is a complete space, &(R) = Pa(R) = {km} is as in
Definition 2.2, andO < km f +00. Then there exists an orthonormal basis {0m; m e
H} in H, such that R<pm = km(f>m, Aj<j>m = n.jm<\>m, 1 < j < n, £ J = , fi2

m = k2
m,

m 6 N, d

{
+00

0 I 0 = X I a m ^ " " am = {<t>, <t>m), {am} is a {Xm}-rapid descent sequence,
m = l 1

f/ie series is convergent in <I> J,

{
+00

/ I / = ^ cm0m, cm = (f,<pm), {cm} is a [km}-slow growth sequence,
m = l 1

f/ie series is weait/y * convergent in <!>' >,

where [km}-rapid descent sequence means that [kk
mam\ € I2, for every k e 2 + )

and {km}-slow growth sequence means that {cm(l + kk
m)~1} G I2 for some k € Z+.

Moreover, A'jf = YZ=i cm^jm4>m, for every f G *' , 1 < j < n.

PROOF. Because Au A2,... , An, and R are commutative, so in every finite dimen-
sional eigensubspace of R, we can find an orthonormal basis, such that A\,A2,... , An

are all diagonal. By the spectral property C of R, there exists an orthonormal basis
{</>ml̂ =,} in H, such that R<pm = km<j>m, A^m = M,mtf>m, 1 < y < », E " - i M,2m = ^ >
m e N.

Since O, = 0R», it follows that <j> = £ + ~ am0m e * t if and only if {Xj,am|^>
1}

€ /2. Thus 0 = ZtZ a»<<t>m e * if and only if { ^ o j ^ , } e /2, for every t e Z+.

This means that {am} is a {Xm}-rapid descent sequence. If <p = Ylt™i am<i>m in H,

<(> G 4>, then for each jfc e Z+, we have ||/?* *£" a<n<$>™ ~ ^Vl l -^ 0 in H by the

closeness of Rk. Then ||(7 + Rk)C£" am<pm - <p)\\ 4 - 0, in / / . It is clear that

Uk{I + Rkyl is a bounded linear operator on H, so || Uk(£l" am4>m - 0) || -^ 0 in H,

that is J2" am(pm A 0 in <t>.
If / G <!>', then there exist a unique z € H and some positive integer it, such that

/ = (/ + R*)Z = l i m ^ + o o ( 7 + Rk)PNz by Theorem 3.1. Let z = E i " ° ° M « .
{bm} e I2, and PWZ = £ " fcm0m. Then (/ + &)PNZ = ^ " ( 1 + kk

m)bm(j>m. Let
cm = (1 + -̂m)*m. We have / = lim^+oo ^ cm<pm, here the limit being taken
for the weak * topology of <&'. We write / = J2t°° cm<Pm, which means (/, 0) =
lim^^+00 £ " cm(0m, 0) , for every 0 G 4>. Because {am = (0m, 0)} is a {Am}-rapid
descent sequence, and {cm(l + kk

m)~'} G /2, thus (/, 0) = J2t°° c<^m is an absolutely
convergent series. Moreover, we see that cm = (/, 0m) and {cm} is a {Am}-slow growth
sequence. Conversely, such a series ^ ^ cm0m always converges to an element
of O'. D
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EXAMPLE 3.1. In Example 1.2, H - L2([0, 2nf) has an orthonormal basis

'"2eikt; JfceZ", ** =

such that A,V*' = *,-«'*', /?«'*' = r(Jfc)e''*', r(Jt) = V^i + *| + • • • + K- Therefore,

@in = I <P0) \<f>(t) = ^2ake
ikl, {ak} is an [r(k); k e Z"}-rapid descent sequence I,

^ = 1/ (0 | / (t) = ] T cke
ikt, {ck} is an (r(it); k e Z"}-slow growth sequence 1.

This result agrees with that in [1].

In Example 1.3, H = L2(K") has an orthonormal basis {^(0 = n"=1^(/}•);
e (Z+)"}, where 0t(/) satisfies the following equation

and <pk(t) — (2kk\*Jny1/2e~'2/2Hk{t), here Hk(t) = {—\)ke'2Dke~'2 being a Hermite
polynomial. Then we have Aj\frk — kj\jrk, R\j/k = r(k)\ffk, k e (/+)". So 5(R")
is equivalent to the set of all {r(k); k e (Z+)"}-rapid descent sequences. S'(R") is
equivalent to the set of all {r(k)\ k e (Z+)"}-slow growth sequences. This result
agrees with that in [4].
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