GENERALIZED FUNCTIONS ASSOCIATED WITH SELF-ADJOINT OPERATORS

LIU SHANGPING

(Received 10 December 1998; revised 9 August 1999)

Communicated by P. G. Dodds

Abstract

In this paper, from several commutative self-adjoint operators on a Hilbert space, we define a class of spaces of fundamental functions and generalized functions, which are characterized completely by self-adjoint operators. Specially, using the common eigenvectors of these self-adjoint operators, we give the general form of expansion in series of generalized functions

2000 Mathematics subject classification: primary 46F05, 47B25. Keywords and phrases: generalized function, self-adjoint operator, completeness, nuclearity.

1. Fundamental space and generalized space

Let *H* be a Hilbert space and A_1, A_2, \ldots, A_n be commutative unbounded self-adjoint operators on *H*. For every $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in (\mathbb{Z}_+)^n$ we denote by $A^{\alpha} = A_1^{\alpha_1} A_2^{\alpha_2} \cdots A_n^{\alpha_n}$, where $\mathbb{Z}_+ = \{\alpha; \alpha \in \mathbb{Z}, \alpha \ge 0\}$. Suppose that $\mathcal{D}_{A^{\alpha}}$ is the domain of A^{α} , and *m* is a non-negative integer. Let $\Phi_m = \bigcap_{0 \le |\alpha| \le m} \mathcal{D}_{A^{\alpha}}$, where $|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n$, for every $\alpha \in (\mathbb{Z}_+)^n$. Define an inner product in Φ_m as follows:

$$(x, y)_m = \sum_{0 \le |\alpha| \le m} (A^{\alpha}x, A^{\alpha}y), \text{ for every } x, y \in \Phi_m,$$

where (\cdot, \cdot) is the inner product of H. Since H is complete and A^{α} is closed, we can see that Φ_m is a Hilbert space with the inner product $(\cdot, \cdot)_m$. Obviously, $H = \Phi_0 \supset \Phi_1 \supset \Phi_2 \supset \cdots$. Let $\Phi = \bigcap_{m=0}^{+\infty} \Phi_m$. We have the following proposition.

PROPOSITION 1.1. Φ is a dense subset of Hilbert space Φ_m ($m \ge 0$).

Project supported by the National Natural Science Foundation of China.

^{© 2000} Australian Mathematical Society 0263-6115/2000 \$A2.00 + 0.00

[2]

 \square

PROOF. Let $A_j = \int_{-\infty}^{+\infty} \lambda E^{(j)}(d\lambda)$ be the spectral decomposition of A_j , where $E^{(j)}$ is a spectral measure on the real line \mathbb{R} , $1 \leq j \leq n$. Because A_1, \ldots, A_n are commutative, we can define $E(d\lambda_1 d\lambda_2 \cdots d\lambda_n) = E^{(1)}(d\lambda_1)E^{(2)}(d\lambda_2)\cdots E^{(n)}(d\lambda_n)$, a spectral measure on \mathbb{R}^n . For $N \in \mathbb{N}$, let $P_N = \int_{|\lambda| \leq N} E(d\lambda)$, where \mathbb{N} is the set of all positive integers, $d\lambda = d\lambda_1 d\lambda_2 \cdots d\lambda_n$, $|\lambda| = |\lambda_1| + |\lambda_2| + \cdots + |\lambda_n|$. Obviously, P_N is a projection on H, and $P_N H \subset \Phi_m$, for any $m \in \mathbb{Z}_+$, $N \in \mathbb{N}$, so $\bigcup_{N=1}^{+\infty} P_N H \subset \Phi$. Suppose that $x \in \Phi_m$, $m \in \mathbb{Z}_+$. We have

$$\|P_N x - x\|_m^2 = \sum_{0 \le |\alpha| \le m} \|A^{\alpha} P_N x - A^{\alpha} x\|^2 = \sum_{0 \le |\alpha| \le m} \int_{|\lambda| \ge N} |\lambda^{\alpha}|^2 \|E(d\lambda) x\|^2 \xrightarrow{N} 0,$$

where $\lambda^{\alpha} = \lambda_1^{\alpha_1} \lambda_2^{\alpha_2} \cdots \lambda_n^{\alpha_n}$. So $\bigcup_{N=1}^{+\infty} P_N H$ is dense in Hilbert space Φ_m .

PROPOSITION 1.2. With the countable inner products $\{(\cdot, \cdot)_m, m \in \mathbb{Z}_+\}, \Phi$ is a countable Hilbert space.

PROOF. For the definition of a countable Hilbert space, see [2]. Let $\phi \in \Phi$. We have $\|\phi\|_0 \leq \|\phi\|_1 \leq \|\phi\|_2 \leq \cdots$. Now we show that these countable norms are compatible. If $\|\phi_k\|_m \to 0$, and ϕ_k is a Cauchy sequence in the norm $\|\|_{m+l}$, *l* being some positive integer, then by the completeness of *H* there exists $x^{(\alpha)} \in H$ for each $\alpha \in (\mathbb{Z}_+)^n$, $|\alpha| \leq m+l$, such that $\|A^{\alpha}\phi_k - x^{(\alpha)}\| \to 0$. Since A^{α} is a closed operator, we have $x^{(\alpha)} = A^{\alpha}x^{(0)}$, $|\alpha| \leq m+l$. From $\|\phi_k\|_m \to 0$, it follows that $x^{(0)} = 0$, and $\|\phi_k\|_{m+l} \to 0$.

By Proposition 1.1, the completion of $\{\Phi, (\cdot, \cdot)_m\}$ is Φ_m . Since $\Phi = \bigcap_{m=0}^{+\infty} \Phi_m$, it follows that Φ is a countable Hilbert space ([2]).

DEFINITION 1.1. The space Φ defined as above is called the *fundamental space* associated with self-adjoint operators $\{A_j \mid 1 \le j \le n\}$. The dual space Φ' is called the *generalized space* associated with $\{A_j \mid 1 \le j \le n\}$.

Later we see that if a Hilbert space H consists of functions, then Φ is a fundamental space of functions, and A_1, A_2, \ldots, A_n can operate on Φ infinitely, and Φ' is the corresponding generalized space of functions.

From [2], $\Phi' = \bigcup_{m=0}^{+\infty} \Phi'_m$, where for each $m \Phi'_m$ is the dual space of Φ_m and it is also a Hilbert space. We have $H = \Phi'_0 \subset \Phi'_1 \subset \Phi'_2 \subset \cdots$. The weak * topology $\sigma(\Phi', \Phi)$ of Φ' is defined as follows. The fundamental system of neighborhoods of zero consists of

$$U(0;\phi_1,\ldots,\phi_l;\varepsilon) = \{f \mid f \in \Phi', |\langle f,\phi_k \rangle| < \varepsilon, \ 1 \le k \le l\},\$$

where $\phi_1, \phi_2, \ldots, \phi_l \in \Phi$, *l* is some positive integer, $\varepsilon > 0$. Later the topologies of Φ' are all $\sigma(\Phi', \Phi)$.

Generalized functions

PROPOSITION 1.3. Φ'_m $(m \in \mathbb{Z}_+)$ is a dense subset of Φ' .

PROOF. Since $H = \Phi'_0 \subset \Phi'_1 \subset \cdots$, it is sufficient to prove that H is dense in Φ' . In the proof of Proposition 1.1, we introduced a sequence of projections $\{P_N; N \in \mathbb{N}\}$, such that $P_N H \subset \Phi$, $N \in \mathbb{N}$. Let $x \in H$. Then we have

$$\|P_N x\|_m^2 = \sum_{0 \le |\alpha| \le m} \|A^{\alpha} P_N x\|^2 = \sum_{0 \le |\alpha| \le m} \int_{|\lambda| \le N} |\lambda^{\alpha}|^2 \|E(d\lambda) x\|^2$$

$$\le \left(\sum_{0 \le |\alpha| \le m} N^{2|\alpha|}\right) \|P_N x\|^2 \le \left(\sum_{0 \le |\alpha| \le m} N^{2|\alpha|}\right) \|x\|^2, m \in \mathbb{Z}_+$$

Hence P_N is a continuous linear operator from H to Φ . Its adjoint operator $P'_N : \Phi' \to H$ is defined by $(P'_N f, x) = \langle f, P_N x \rangle$, for every $x \in H, f \in \Phi'$. Then P'_N is a continuous linear operator from Φ' to H and $P'_N f \to f$, for every $f \in \Phi'$. \Box

PROPOSITION 1.4. For each $j \in \{1, 2, ..., n\}$, A_j is a continuous linear operator on Φ , and its adjoint operator A'_j is a continuous linear operator on Φ' . Moreover, A'_j is an extension of A_j from Φ to Φ' , and it can operate on Φ' infinitely, $1 \le j \le n$.

PROOF. Let $\phi \in \Phi$. We have $||A_j\phi||_m \le ||\phi||_{m+1}$, $m \in \mathbb{Z}_+$, so A_1, A_2, \ldots, A_n are continuous linear operators on Φ . The other conclusions are obvious.

EXAMPLE 1.1. Let $H = L^2(\mathbb{R}^n)$, $A_j = -iD_j$, $D_j = \partial/\partial t_j$, $1 \le j \le n$. Then $\Phi = \{x(t) \mid x(t) \in C^{\infty}(\mathbb{R}^n), D^{\alpha}x \in L^2(\mathbb{R}^n)$, for every $\alpha \in (\mathbb{Z}_+)^n\}$, $\Phi_m = \{x(t) \mid D^{\alpha}x \in L^2(\mathbb{R}^n), |\alpha| \le m\}$,

where $D^{\alpha} = D_1^{\alpha_1} D_2^{\alpha_2} \cdots D_n^{\alpha_n}$, for every $\alpha \in (\mathbb{Z}_+)^n$. We see that $\Phi = \mathcal{D}_{L^2}, \Phi' = \mathcal{D}'_{L^2}$, where \mathcal{D}_{L^2} , and \mathcal{D}'_{L^2} are defined in [6].

EXAMPLE 1.2. Let $H = L^2([0, 2\pi]^n)$, $A_j = -iD_j$, $\mathcal{D}_{A_j} = \{x(t) \mid x(t), D_j x(t) \in L^2([0, 2\pi]^n), x(t)|_{t_j=2\pi} = x(t)|_{t_j=0}\}$, $1 \le j \le n$. Then $\Phi = \{x(t) \mid x(t) \in C^{\infty}([0, 2\pi]^n), D^{\alpha}_{\alpha}x(t)|_{t_j=2\pi} = D^{\alpha}x(t)|_{t_j=0}, 1 \le j \le n$, for every $\alpha \in (\mathbb{Z}_+)^n\}$. We have that $\Phi = \mathcal{D}_{2\pi}(\mathbb{R}^n) = \{x(t) \mid x(t) \in C^{\infty}(\mathbb{R}^n), x(t+2\pi k) = x(t)$, for every $k \in \mathbb{Z}^n\}$, where $\mathcal{D}_{2\pi}(\mathbb{R}^n)$ is defined in [1]. Because the family of semi-norms $\{\|x\|_{\alpha,\infty} = \|D^{\alpha}x\|_{2}, \alpha \in (\mathbb{Z}_+)^n, x \in \Phi\}$ is equivalent to the family of semi-norms $\{\|x\|_{\alpha,\infty} = \|D^{\alpha}x\|_{\infty}, \alpha \in (\mathbb{Z}_+)^n, x \in \Phi\}$, we have $\Phi' = \mathcal{D}'_{2\pi}(\mathbb{R}^n)$.

EXAMPLE 1.3. Let $H = L^2(\mathbb{R}^n)$, $A_j = 2^{-1}(t_j^2 - 1 - D_j^2)$, $1 \le j \le n$. We have

$$\Phi = \{x(t)|x(t) \in C^{\infty}(\mathbb{R}^n), \|A^{\alpha}x\|_2 < +\infty, \text{ for every } \alpha \in (\mathbb{Z}_+)^n\}.$$

Because the family of semi-norms $\{\|x\|_{\alpha} = \|A^{\alpha}x\|_{2}, \alpha \in (\mathbb{Z}_{+})^{n}\}$ is equivalent to the family of semi-norms $\{\|x\|_{\beta,\gamma,2} = \|t^{\beta}D^{\gamma}x\|_{2}, \beta, \gamma \in (\mathbb{Z}_{+})^{n}\}$ ([4]), we have

$$\Phi = S(\mathbb{R}^n) = \{x(t) | x(t) \in C^{\infty}(\mathbb{R}^n), \| t^{\beta} D^{\gamma} x \|_2 < +\infty, \text{ for every } \beta, \gamma \in (\mathbb{Z}_+)^n \},\$$

where $S(\mathbb{R}^n)$ is the set of all rapid descent C^{∞} functions on \mathbb{R}^n . The topology of Φ is equivalent to the well-known topology of $S(\mathbb{R}^n)$, thus $\Phi' = S'(\mathbb{R}^n)$, the set of all slow growth generalized functions.

2. The criterion for the completeness and nuclearity of a fundamental space

How do we decide about the completeness and nuclearity of a fundamental space associated with self-adjoint operators? In this section we give a complete answer to this problem.

The completeness and nuclearity of a countable Hilbert space are defined in [2]. Now let Hilbert space H, commutative self-adjoint operators A_1, A_2, \ldots, A_n and the associated basic space Φ be as in Section 1.

LEMMA 2.1. $U_m = \left(\sum_{0 \le |\alpha| \le m} A^{2\alpha}\right)^{1/2}$ is a unitary operator from Hilbert space Φ_m onto $H, m \in \mathbb{Z}_+$.

PROOF. In Proposition 1.1, we have defined the spectral measure $E(d\lambda) = E^{(1)}(d\lambda_1)$ $E^{(2)}(d\lambda_2) \cdots E^{(n)}(d\lambda_n)$ on \mathbb{R}^n . Now we can set up the functional calculus for the spectral measure as follows. Suppose $f(\lambda)$ is a complex Borel measurable function on \mathbb{R}^n . We define a linear operator $T_f = \int_{\mathbb{R}^n} f(\lambda) E(d\lambda)$ on H as follows

$$(T_f x, y) = \int_{\mathbb{R}^n} f(\lambda)(E(d\lambda)x, y), \quad \text{for every } x \in \mathcal{D}_{T_f}, y \in H,$$
$$\mathcal{D}_{T_f} = \left\{ x \mid x \in H, \int_{\mathbb{R}^n} |f(\lambda)|^2 \|E(d\lambda)x\|^2 < +\infty \right\},$$

and we have $||T_f x||^2 = \int_{\mathbb{R}^n} |f(\lambda)|^2 ||E(d\lambda)x||^2$, $x \in \mathcal{D}_{T_f}$ (see [5] about the functional calculus).

Let $p_m(\lambda) = \left(\sum_{0 \le |\lambda| \le m} \lambda^{2\alpha}\right)^{1/2}$, where $2\alpha = (2\alpha_1, 2\alpha_2, \dots, 2\alpha_n)$. Obviously $U_m = T_{p_m}, \mathcal{D}_{U_m} = \bigcap_{0 \le |\alpha| \le m} \mathcal{D}_{A^\alpha} = \Phi_m$. Since U_m is a self-adjoint operator on H, and $||U_m x||^2 = ||x||_m^2 \ge ||x||^2$, so zero is a regular point of U_m , and U_m^{-1} is defined on the whole H. Therefore, U_m is an operator from Φ_m onto H and U_m is unitary.

LEMMA 2.2. Suppose that the imbedding operator from Φ_{m+k} to Φ_m is denoted by I_m^{m+k} , $m \ge 0$, $k \ge 1$. Then we have the equalities of operators on H, that is

$$U_{m+k}|I_m^{m+k}|U_{m+k}^{-1} = U_m U_{m+k}^{-1}, \text{ for every } m \ge 0, \ k \ge 1,$$

where $|I_m^{m+k}| = [(I_m^{m+k})^* I_m^{m+k}]^{1/2}$ is a non-negative self-adjoint operator on Φ_{m+k} .

PROOF. Because p_{m+k}^{-1} is a bounded continuous function on \mathbb{R}^n , we have

$$T_{p_m p_{m+k}^{-1}} = T_{p_m} T_{p_{m+k}^{-1}} = U_m U_{m+k}^{-1},$$

by the functional calculus for the spectral measure $E(d\lambda)$. Since $p_m p_{m+k}^{-1}$ is also bounded, it follows that $U_m U_{m+k}^{-1}$ is a bounded self-adjoint operator on H. For any $x, y \in H$, we have

$$(U_{m+k} (I_m^{m+k})^* I_m^{m+k} U_{m+k}^{-1} x, y) = ((I_m^{m+k})^* I_m^{m+k} U_{m+k}^{-1} x, U_{m+k}^{-1} y)_{m+k} = (I_m^{m+k} U_{m+k}^{-1} x, I_m^{m+k} U_{m+k}^{-1} y)_m = (U_{m+k}^{-1} x, U_{m+k}^{-1} y)_m = (U_m U_{m+k}^{-1} x, U_m U_{m+k}^{-1} y) = ((U_m U_{m+k}^{-1})^2 x, y).$$

Since the square root of a non-negative self-adjoint operator is unique, it follows that

$$U_{m+k} \left| I_m^{m+k} \right| U_{m+k}^{-1} = U_m U_{m+k}^{-1}.$$

LEMMA 2.3. Φ is a complete space (or nuclear space) if and only if there exists some positive integer k, such that U_k^{-1} is a compact operator (or nuclear operator) on H.

PROOF. First we show necessary condition. Suppose Φ is complete (or nuclear). Then there exists some positive integer k_m for each $m \ge 0$, such that $I_m^{m+k_m}$ is a compact (or nuclear) operator. In particular, $I_0^{k_0}$ is a compact (or nuclear) operator from Φ_{k_0} . Therefore, $|I_0^{k_0}|$ is a compact (or nuclear) operator on Φ_{k_0} . By Lemma 2.2, it follows that $U_{k_0}^{-1}$ is a compact (or nuclear) operator on H.

Next we show sufficiency condition. Suppose that U_k^{-1} is a compact (or nuclear) operator on H, where k is some positive integer. Because $p_m p_{m+k}^{-1} = p_k^{-1} p_k p_m p_{m+k}^{-1}$, and $p_k p_m p_{m+k}^{-1}$ is a bounded continuous function for each $m \in \mathbb{Z}_+$, then $U_m U_{m+k}^{-1} = U_k^{-1} T_{p_k p_m p_{m+k}^{-1}}$, and $T_{p_k p_m p_{m+k}^{-1}}$ is a bounded linear operator on H by the functional calculus for the spectral measure $E(d\lambda)$. Thus $U_m U_{m+k}^{-1}$ is a compact (or nuclear) operator on H.

From Lemma 2.2, it follows that $|I_m^{m+k}|$ is a compact (or nuclear) operator on Φ_{m+k} , and I_m^{m+k} is a compact (or nuclear) operator from Φ_{m+k} to Φ_m for every $m \in \mathbb{Z}_+$. So Φ is a complete (or nuclear) space.

THEOREM 2.1. Φ is a complete (or nuclear) space if and only if there exists some positive integer k, such that $(I+R)^{-k}$ is a compact (or nuclear) operator on H, where $R = \sqrt{A_1^2 + A_2^2 + \cdots + A_n^2}$.

PROOF. Note that $(I + R)^{-k} = T_{q_k^{-1}}$, where $q_k(\lambda) = (1 + r(\lambda))^k$, and $r(\lambda) = \sqrt{\lambda_1^2 + \lambda_2^2 + \dots + \lambda_n^2}$. Since $p_k^{-1} = q_k^{-1}q_kp_k^{-1}$, $q_k^{-1} = p_k^{-1}p_kq_k^{-1}$, if both $q_kp_k^{-1}$ and

305

 $p_k q_k^{-1}$ are bounded continuous functions on \mathbb{R}^n , then $T_{p_k^{-1}}$ and $T_{q_k^{-1}}$ are compact (or nuclear) simultaneously.

Since

$$\max_{1 \le i \le l} |a_i| \le \left(\sum_{i=1}^l a_i^2\right)^{1/2} \le |a_1| + |a_2| + \dots + |a_l| \le l \left(\sum_{i=1}^l a_i^2\right)^{1/2}$$

we have that

$$\begin{aligned} q_k(\lambda) &\leq (1+|\lambda_1|+|\lambda_2|+\dots+|\lambda_n|)^k = \sum_{0 \leq |\alpha| \leq k} \frac{k!}{(k-|\alpha|)!\alpha_1!\alpha_2!\dots\alpha_n!} |\lambda^{\alpha}| \\ &\leq \left(\max_{0 \leq |\alpha| \leq k} \frac{k!}{(k-|\alpha|)!\alpha_1!\alpha_2!\dots\alpha_n!} \right) \sum_{0 \leq |\alpha| \leq k} |\lambda^{\alpha}| \\ &\leq \left(\max_{0 \leq |\alpha| \leq k} \frac{k!}{(k-|\alpha|)!\alpha_1!\alpha_2!\dots\alpha_n!} \right) d_k \left(\sum_{0 \leq |\alpha| \leq k} |\lambda^{2\alpha}| \right)^{1/2}, \end{aligned}$$

where d_k is the number of elements of the set $\{\alpha \mid \alpha \in (\mathbb{Z}_+)^n, 0 \le |\alpha| \le k\}$. So $q_k p_k^{-1}$ is a bounded continuous function on \mathbb{R}^n . Moreover,

$$p_{k}(\lambda) \leq \sum_{0 \leq |\alpha| \leq k} |\lambda^{\alpha}| \leq \sum_{0 \leq |\alpha| \leq k} \frac{k!}{(k - |\alpha|)! \alpha_{1}! \alpha_{2}! \cdots \alpha_{n}!} |\lambda^{\alpha}|$$
$$= (1 + |\lambda_{1}| + |\lambda_{2}| + \cdots + |\lambda_{n}|)^{k} \leq (1 + nr(\lambda))^{k}.$$

Thus

$$p_k(\lambda)q_k^{-1}(\lambda) \leq \left(\frac{1+nr(\lambda)}{1+r(\lambda)}\right)^k \xrightarrow{r \to +\infty} n^k,$$

and $p_k q_k^{-1}$ is a bounded continuous function on \mathbb{R}^n . Use Lemma 2.3 to finish the proof.

DEFINITION 2.1. *R* is called the *absolute value operator* of the commutative selfadjoint operators $\{A_j \mid 1 \le j \le n\}$.

DEFINITION 2.2. Let *B* be a self-adjoint operator on Hilbert space H, $\sigma(B)$ be the spectrum of *B*, $P_{\sigma}(B)$ be the point spectrum of *B*. Suppose that $\sigma(B) = P_{\sigma}(B) = \{\lambda_m\}, |\lambda_m| \uparrow +\infty$, and also the multiplicity of each eigenvalue in $P_{\sigma}(B)$ is finite and is exactly the number of times the eigenvalue is repeated in the sequence $\{\lambda_m\}$. Then we say that *B* has spectral property *C*. In addition, if there exists some positive integer k, such that $\sum_{\lambda_m \neq 0} |\lambda_m|^{-k} < +\infty$, then we say that *B* has spectral property *N*.

Generalized functions

THEOREM 2.2. Φ is a complete space (or nuclear space) if and only if the absolute value operator R has spectral property C (or N).

PROOF. From Theorem 2.1, it suffices to show the compactness (or nuclearity) of $(I + R)^{-k}$. Since $(I + R)^{-1}$ is a bounded self-adjoint operator on H, it follows that $(I + R)^{-k} (k \ge 1)$ is compact if and only if $(I + R)^{-1}$ is compact. By the spectral decomposition of a self-adjoint operator, it is clear that the compactness of $(I + R)^{-1}$ means that R has spectral property C. Furthermore, the nuclearity of $(I + R)^{-k}$ means that R has spectral property N.

THEOREM 2.3. Suppose \mathscr{H} is a Hilbert space, A is a self-adjoint operator on \mathscr{H} . Let $\mathscr{H}_1 = \mathscr{H}_2 = \cdots = \mathscr{H}_n = \mathscr{H}$, $H = \bigotimes_{j=1}^n \mathscr{H}_j$, where \otimes denotes the tensor product. For each $1 \leq j \leq n$ let $A_j = I \otimes I \otimes \cdots \otimes I \otimes A \otimes I \otimes \cdots \otimes I$, where A is on the *j*th position. Then the fundamental space Φ associated with $\{A_j \mid 1 \leq j \leq n\}$ is complete (or nuclear) if and only if A has spectral property C (or N).

PROOF. By Theorem 2.2, we want to prove that R has spectral property C (or N) if and only if A has spectral property C (or N). Without loss of generality we assume that n = 2.

We show sufficiency first. Suppose that A has spectral property C, $\sigma(A) = P_{\sigma}(A) = \{\lambda_m\}$ is as in Definition 2.2. From the spectral decomposition of A, we can take e_m as an eigenvector corresponding to an eigenvalue λ_m , such that $\{e_m; m \in \mathbb{N}\}$ is an orthonormal basis of \mathcal{H} . Then $\{e_m \otimes e_l; m, l \in \mathbb{N}\}$ is an orthonormal basis of \mathcal{H} .

In addition, $R^2 = A^2 \otimes I + I \otimes A^2$ is a diagonal operator: $R^2(e_m \otimes e_l) = (\lambda_m^2 + \lambda_l^2)(e_m \otimes e_l), m, l \in \mathbb{N}$. It is obvious that $\sigma(R^2) = P_{\sigma}(R^2) = \{\lambda_m^2 + \lambda_l^2; m, l \in \mathbb{N}\}$ has unique cluster point ∞ . Therefore, $\sigma(R) = \{\sqrt{\lambda_m^2 + \lambda_l^2}; m, l \in \mathbb{N}\}$, and R has spectral property C. Suppose that A has spectral property N, that is $\sum |\lambda_m|^{-k} < +\infty$ for some positive integer k. Since

$$\sum \left(\sqrt{\lambda_m^2 + \lambda_l^2}\right)^{-2k} \leq \sum \left(2|\lambda_m||\lambda_l|\right)^{-k} = 2^{-k} \left(\sum |\lambda_m|^{-k}\right)^2,$$

it follows that R has spectral property N.

Next we show necessity. If R has spectral property C (or N), then R^2 has spectral property C (or N). Suppose $\sigma(R^2) = \{\gamma_m\}$ is as in Definition 2.2, and $0 \le \gamma_m \uparrow +\infty$. Because $B_1 = A^2 \otimes I$, $B_2 = I \otimes A^2$ and R^2 are commutative, so in each finite dimensional eigensubspace of R^2 , we can find an orthogonal basis, such that B_1 , B_2 are both diagonal in this subspace. Then there exists an orthonormal basis $\{u_m|_{m=1}^{+\infty}\}$ of $\mathcal{H} \otimes \mathcal{H}$, such that $R^2 u_m = \gamma_m u_m$, $B_1 u_m = \alpha_m u_m$, $B_2 u_m = \beta_m u_m$, $\gamma_m = \alpha_m + \beta_m$, $m \in \mathbb{N}$. Since B_1 , B_2 are both diagonal in the basis $\{u_m\}$, it follows

307

that $P_{\sigma}(B_1) = \{\alpha_m|_{m=1}^{+\infty}\}, P_{\sigma}(B_2) = \{\beta_m|_{m=1}^{+\infty}\} \text{ and } \sigma(B_1) = \overline{P_{\sigma}(B_1)}, \sigma(B_2) = \overline{P_{\sigma}(B_2)}$ (see [3]). Let $A^2 = \int_0^{+\infty} \mu F(d\mu)$ be the spectral decomposition of A^2 on \mathcal{H} . Then $B_1 = \int_0^{+\infty} \mu(F(d\mu) \otimes I), B_2 = \int_0^{+\infty} \mu(I \otimes F(d\mu))$ on $\mathcal{H} \otimes \mathcal{H}$. Therefore, $\sigma(B_1) = \sigma(A^2) = \sigma(B_2), P_{\sigma}(B_1) = P_{\sigma}(A^2) = P_{\sigma}(B_2), \text{ and } \sigma(A^2) = \overline{P_{\sigma}(A^2)},$ $P_{\sigma}(A^2) = \{\alpha_m|_{m=1}^{+\infty}\} = \{\beta_m|_{m=1}^{+\infty}\}.$

If α is an eigenvalue of A^2 , then there exists $e \in \mathcal{H}$, $e \neq 0$, such that $A^2 e = \alpha e$. Clearly, $R^2(e \otimes e) = 2\alpha(e \otimes e)$ and $2\alpha \in P_{\sigma}(R^2)$. Since $2P_{\sigma}(A^2) \subset P_{\sigma}(R^2)$, we have that ∞ is the unique cluster point of $P_{\sigma}(A^2)$, and $\sigma(A^2) = P_{\sigma}(A^2)$. If α is an eigenvalue with infinite multiplicity of A^2 , then 2α is an eigenvalue with infinite multiplicity of A^2 , then 2α is an eigenvalue with infinite multiplicity of A^2 . This contradicts the spectral property C of R^2 . Hence the multiplicity of each eigenvalue of A^2 is finite, so A^2 has spectral property C. It is immediate that A has spectral property C. If R^2 has spectral property N, then there exists some positive integer k, such that $\sum |\gamma_m|^{-k} < +\infty$. By $\{2\alpha_m|_{m=1}^{+\infty}\} \subset \{\gamma_m|_{m=1}^{+\infty}\}$, we have $\sum |\alpha_m|^{-k} < +\infty$. Then A^2 has spectral property N, and so does A.

Now we use Theorem 2.2 to analyse the three examples from Section 1.

In Example 1.1, we take $\mathscr{H} = L^2(\mathbb{R}^1)$, $A = -iD_t$, $D_t = d/dt$. It is known that $\sigma(A) = C_{\sigma}(A) = \mathbb{R}^1$, so $\Phi = \mathcal{D}_{L^2}$ is not a complete space.

In Example 1.2, we take $\mathscr{H} = L^2[0, 2\pi]$, $A = -iD_t$, $\mathscr{D}_A = \{x(t) \mid x, x' \in L^2[0, 2\pi], x(0) = x(2\pi)\}$. It is known that $\sigma(A) = \mathbb{Z}$, $Ae^{ikt} = ke^{ikt}$, $k \in \mathbb{Z}$, and dim ker(A - k) = 1. Since $\sum_{k \in \mathbb{Z}, k \neq 0} k^{-2} < +\infty$, we have that $\Phi = \mathscr{D}_{2\pi}(\mathbb{R}^n)$ is a nuclear space.

In Example 1.3, we take $\mathscr{H} = L^2(\mathbb{R}^1)$, $A = 2^{-1}(t^2 - 1 - D_t^2)$. It is known that $\sigma(A) = \mathbb{Z}_+$, $A\phi_k = k\phi_k$, $k \in \mathbb{Z}_+$, $\phi_k(t) = (2^k k! \sqrt{\pi})^{-1/2} e^{-t^2/2} H_k(t)$, where $H_k(t) = (-1)^k e^{t^2} D_t^k e^{-t^2}$ is a Hermite polynomial. Since dim ker(A - k) = 1, $\sum_{k=1}^{+\infty} k^{-2} < +\infty$, so $\Phi = S(\mathbb{R}^n)$ is a nuclear space.

Below we will give a sufficient condition for the completeness and nuclearity of a fundamental space.

THEOREM 2.4. If some A_j $(1 \le j \le n)$ has spectral property C (or N), then Φ is a complete (or nuclear) space.

PROOF. Without loss of generality suppose A_1 has spectral property C (or N). This is equivalent to the fact that $(1 + |A_1|)^{-k}$ is compact (or nuclear), where k is some positive integer, and $|A_1| = \sqrt{A_1^2}$. Obviously, $(1 + |A_1|)^{-k} = T_s$, where $s(\lambda) = (1 + |\lambda_1|)^{-k}$. Since $q_k^{-1}(\lambda) = q_k^{-1}s^{-1}s$, it follows, by the functional calculus, that $(I + R)^{-k} = T_{q_k^{-1}} = T_{q_k^{-1}s^{-1}}(1 + |A_1|)^{-k}$. Since

$$q_k^{-1}s^{-1} = \left(\frac{1+|\lambda_1|}{1+r(\lambda)}\right)^k \le 1,$$

Generalized functions

we have that $T_{q_k^{-1}s^{-1}}$ is a bounded linear operator, and $(I + R)^{-k}$ is a compact (or nuclear) operator on H. We apply Theorem 2.1 to finish the proof.

3. Construction of generalized functions and their expansion in series

We continue to study the absolute value operator R. Since R is a self-adjoint operator on H, we have $\mathscr{D}_R = \{x \mid x \in H, \int_{\mathbb{R}^n} r^2(\lambda) \| E(d\lambda)x \|^2 < +\infty\}$. Noticing $p_1^2(\lambda) = 1 + r^2(\lambda), T_{p_1} = U_1$, we get

$$\mathscr{D}_{R} = \left\{ x \mid x \in H, \int_{\mathbb{R}^{n}} p_{1}^{2}(\lambda) \| E(d\lambda) x \|^{2} < +\infty \right\} = \mathscr{D}_{U_{1}} = \Phi_{1}.$$

On the other hand, we have

$$\|Rx\|_{m}^{2} = \|U_{m}Rx\|^{2} = \int_{\mathbb{R}^{n}} |p_{m}(\lambda)r(\lambda)|^{2} \|E(d\lambda)x\|^{2}$$
$$\leq \int_{\mathbb{R}^{n}} |p_{m+1}(\lambda)|^{2} \|E(d\lambda)x\|^{2} = \|x\|_{m+1}^{2},$$

for every $x \in \Phi_{m+1}$, so *R* is a bounded linear operator from Hilbert space Φ_{m+1} to $\Phi_m, m \in \mathbb{Z}_+$. Then its adjoint operator *R'* is a bounded linear operator from Φ'_m to Φ'_{m+1} . Furthermore, *R* is also a continuous linear operator from Φ to Φ , and *R'* is a continuous linear operator from Φ to Φ , and *R'* is an extension of *R* from Φ to Φ' , and there is an operator equality $R'^2 = A_1'^2 + A_2'^2 + \cdots + A_n'^2$.

THEOREM 3.1. For any $f \in \Phi'$, there exists a unique element $z \in H$, such that $f = (I + R'^k)z = \lim_{N \to +\infty} (I + R^k)P_Nz$, where k is some positive integer, $P_N(N \in \mathbb{N})$ is defined in the proof of Proposition 1.1, and the limit is taken for the weak * topology of Φ' .

PROOF. For each $m \in \mathbb{Z}_+$, $I + R^m$ is a self-adjoint operator on H, and zero is its regular point. In addition, $\mathcal{D}_{I+R^m} = \Phi_m$, so $I + R^m$ is a one-to-one bounded linear operator from Hilbert space Φ_m onto Hilbert space H. Therefore, $I + R'^m$ is a one-to-one bounded linear operator from H onto Φ'_m .

For each $f \in \Phi'$, there exists some positive integer k, such that $f \in \Phi'_k$. Then there exists a unique $z \in H$, such that $f = (I + R'^k)z$. Since $z = \lim_{N \to +\infty} P_N z$, the limit being in H, it follows that the limit equality is also true in Φ' . Hence $f = \lim_{N \to +\infty} (I + R^k) P_N z$.

REMARK. If $H = L^2(\mathbb{R}^n)$, and A_1, A_2, \ldots, A_n are partial differential operators, then Theorem 3.1 shows that every generalized function of Φ' is a finite sum of some partial derivatives of some L^2 function.

THEOREM 3.2. Suppose Φ is a complete space, $\sigma(R) = P_{\sigma}(R) = \{\lambda_m\}$ is as in Definition 2.2, and $0 \le \lambda_m \uparrow +\infty$. Then there exists an orthonormal basis $\{\phi_m; m \in \mathbb{N}\}$ in H, such that $R\phi_m = \lambda_m\phi_m$, $A_j\phi_m = \mu_{jm}\phi_m$, $1 \le j \le n$, $\sum_{j=1}^n \mu_{jm}^2 = \lambda_m^2$, $m \in \mathbb{N}$, and

$$\Phi = \left\{ \phi \mid \phi = \sum_{m=1}^{+\infty} a_m \phi_m, a_m = (\phi, \phi_m), \{a_m\} \text{ is } a \{\lambda_m\} \text{-rapid descent sequence,} \\ \text{the series is convergent in } \Phi \right\},$$

$$\Phi' = \begin{cases} f \mid f = \sum_{m=1}^{+\infty} c_m \phi_m, c_m = \langle f, \phi_m \rangle, \{c_m\} \text{ is a } \{\lambda_m\} \text{-slow growth sequence,} \\ \text{the series is weakly * convergent in } \Phi' \end{cases}$$

where $\{\lambda_m\}$ -rapid descent sequence means that $\{\lambda_m^k a_m\} \in l^2$, for every $k \in \mathbb{Z}_+$, and $\{\lambda_m\}$ -slow growth sequence means that $\{c_m(1 + \lambda_m^k)^{-1}\} \in l^2$ for some $k \in \mathbb{Z}_+$. Moreover, $A'_j f = \sum_{m=1}^{+\infty} c_m \mu_{jm} \phi_m$, for every $f \in \Phi', 1 \leq j \leq n$.

PROOF. Because A_1, A_2, \ldots, A_n , and R are commutative, so in every finite dimensional eigensubspace of R, we can find an orthonormal basis, such that A_1, A_2, \ldots, A_n are all diagonal. By the spectral property C of R, there exists an orthonormal basis $\{\phi_m|_{m=1}^{+\infty}\}$ in H, such that $R\phi_m = \lambda_m\phi_m, A_j\phi_m = \mu_{jm}\phi_m, 1 \le j \le n, \sum_{j=1}^n \mu_{jm}^2 = \lambda_m^2, m \in \mathbb{N}$.

Since $\Phi_k = \mathscr{D}_{R^k}$, it follows that $\phi = \sum_{m=1}^{+\infty} a_m \phi_m \in \Phi_k$ if and only if $\{\lambda_m^k a_m |_{m=1}^{+\infty}\} \in l^2$. Thus $\phi = \sum_{m=1}^{+\infty} a_m \phi_m \in \Phi$ if and only if $\{\lambda_m^k a_m |_{m=1}^{+\infty}\} \in l^2$, for every $k \in \mathbb{Z}_+$. This means that $\{a_m\}$ is a $\{\lambda_m\}$ -rapid descent sequence. If $\phi = \sum_{m=1}^{+\infty} a_m \phi_m$ in H, $\phi \in \Phi$, then for each $k \in \mathbb{Z}_+$, we have $\|R^k \sum_{m=1}^{N} a_m \phi_m - R^k \phi\| \to 0$ in H by the closeness of R^k . Then $\|(I + R^k)(\sum_{m=1}^{N} a_m \phi_m - \phi)\| \to 0$, in H. It is clear that $U_k(I + R^k)^{-1}$ is a bounded linear operator on H, so $\|U_k(\sum_{m=1}^{N} a_m \phi_m - \phi)\| \to 0$ in H, that is $\sum_{m=1}^{N} a_m \phi_m \to \phi$ in Φ .

If $f \in \Phi'$, then there exist a unique $z \in H$ and some positive integer k, such that $f = (I + R'^k)z = \lim_{N \to +\infty} (I + R^k)P_Nz$ by Theorem 3.1. Let $z = \sum_{1}^{+\infty} b_m \phi_m$, $\{b_m\} \in l^2$, and $P_N Z = \sum_{1}^{N} b_m \phi_m$. Then $(I + R^k)P_N Z = \sum_{1}^{N} (1 + \lambda_m^k)b_m \phi_m$. Let $c_m = (1 + \lambda_m^k)b_m$. We have $f = \lim_{N \to +\infty} \sum_{1}^{N} c_m \phi_m$, here the limit being taken for the weak * topology of Φ' . We write $f = \sum_{1}^{+\infty} c_m \phi_m$, which means $\langle f, \phi \rangle = \lim_{N \to +\infty} \sum_{1}^{N} c_m (\phi_m, \phi)$, for every $\phi \in \Phi$. Because $\{a_m = (\phi_m, \phi)\}$ is a $\{\lambda_m\}$ -rapid descent sequence, and $\{c_m(1 + \lambda_m^k)^{-1}\} \in l^2$, thus $\langle f, \phi \rangle = \sum_{1}^{+\infty} c_m \overline{a}_m$ is an absolutely convergent series. Moreover, we see that $c_m = \langle f, \phi_m \rangle$ and $\{c_m\}$ is a $\{\lambda_m\}$ -slow growth sequence. Conversely, such a series $\sum_{m=1}^{+\infty} c_m \phi_m$ always converges to an element of Φ' .

EXAMPLE 3.1. In Example 1.2, $H = L^2([0, 2\pi]^n)$ has an orthonormal basis

$$\left\{ (2\pi)^{-n/2} e^{ikt}; \ k \in \mathbb{Z}^n, \ kt = \sum_{j=1}^n k_j t_j \right\},\$$

such that $A_j e^{ikt} = k_j e^{ikt}$, $Re^{ikt} = r(k)e^{ikt}$, $r(k) = \sqrt{k_1^2 + k_2^2 + \dots + k_n^2}$. Therefore,

$$\mathcal{D}_{2\pi} = \left\{ \phi(t) \mid \phi(t) = \sum_{k \in \mathbb{Z}^n} a_k e^{ikt}, \{a_k\} \text{ is an } \{r(k); k \in \mathbb{Z}^n\} \text{-rapid descent sequence} \right\},$$
$$\mathcal{D}'_{2\pi} = \left\{ f(t) \mid f(t) = \sum_{k \in \mathbb{Z}^n} c_k e^{ik \cdot t}, \{c_k\} \text{ is an } \{r(k); k \in \mathbb{Z}^n\} \text{-slow growth sequence} \right\}.$$

This result agrees with that in [1].

In Example 1.3, $H = L^2(\mathbb{R}^n)$ has an orthonormal basis $\{\psi_k(t) = \prod_{j=1}^n \phi_{k_j}(t_j); k \in (\mathbb{Z}_+)^n\}$, where $\phi_k(t)$ satisfies the following equation

$$\frac{1}{2}\left(t^2-1-\frac{d^2}{dt^2}\right)\phi_k(t)=k\phi_k(t),\quad k\in\mathbb{Z}_+,\ t\in\mathbb{R}^1,$$

and $\phi_k(t) = (2^k k! \sqrt{\pi})^{-1/2} e^{-t^2/2} H_k(t)$, here $H_k(t) = (-1)^k e^{t^2} D_t^k e^{-t^2}$ being a Hermite polynomial. Then we have $A_j \psi_k = k_j \psi_k$, $R \psi_k = r(k) \psi_k$, $k \in (\mathbb{Z}_+)^n$. So $S(\mathbb{R}^n)$ is equivalent to the set of all $\{r(k); k \in (\mathbb{Z}_+)^n\}$ -rapid descent sequences. $S'(\mathbb{R}^n)$ is equivalent to the set of all $\{r(k); k \in (\mathbb{Z}_+)^n\}$ -slow growth sequences. This result agrees with that in [4].

References

- [1] Chou Chin-Cheng, Séries de Fourier et théorie des distributions (Éditions Scientifiques, Beijing, 1983).
- [2] I. M. Gel'fand and N. Ya. Vilenkin, *Generalized Functions. IV. Applications of harmonic analysis* (Academic Press, New York, 1964).
- [3] P. R. Halmos, A Hilber space problem book, Graduate Texts in Math. 19 (Springer, New York, 1982).
- [4] M. Reed and B. Simon, Methods of modern physics. I. Functional analysis (Academic Press, New York, 1980).
- [5] F. Riesz and B. Sz.-Nagy, Leçons d'analyse fonctionnelle, 4th edition (Akad. Kiadó, Budapest, 1965).
- [6] L. Schwartz, Théorie des distributions (Hermann, Paris, 1966).

Institute of Mathematics Chinese Academy of Sciences Beijing 100080 China e-mail: libr@public2.east.net.cn