GREEN'S POTENTIALS WITH PRESCRIBED BOUNDARY VALUES

JANG-MEI G. WU

1. Introduction. Let U, C denote the open unit disk and unit circumference, respectively and G(z, w) be the Green's function on U. We say v is the *Green's potential* of a mass distribution v on U if

(1.1) $v(z) = \int_{U} G(z, w) dv(w) \text{ and}$ $\int_{U} (1 - |z|) dv(z) < +\infty.$

Littlewood [3, p. 391] showed that the radial limit of a Green's potential is zero at almost all points of *C*. Zygmund [5, pp. 644–645] pointed out that the nontangential limit of a Green's potential need not exist at any point on *C*. Several other authors, Tolsted [6], Arsove and Huber [1] have given conditions on the mass distribution v sufficient for the almost everywhere existence of the nontangential limit of the Green's potential v. (Tolsted's variant of Zygmund's example [5, p. 646, (4.7)] violates the minimum principle for superharmonic functions.)

Our object is to study the existence of Green's potential v with a preassigned radial limit on a certain subset of C and nontangential limit almost everywhere on C; we give a simple application to Blaschke products. The following three theorems are proved. (Theorem 1 is an analogue of a theorem of Rudin [4, p. 808].)

THEOREM 1. Suppose E is a closed set of measure zero on C, f is a nonnegative continuous function on E and $\epsilon > 0$. Then there exists a continuous Green's potential v such that

(1) $\lim_{r>1} v(re^{i\phi}) = f(e^{i\phi})$

uniformly for $e^{i\phi} \in E$, u has boundary value zero on $C \setminus E$, and

(2)
$$v(0) < \epsilon$$
.

THEOREM 2. Suppose E is a set of measure zero on C. Then there exists a Green's potential v with non-tangential limit almost everywhere on $C \setminus E$, such that for $e^{i\phi} \in E$,

$$\limsup_{r\to 1} v(re^{i\phi}) = +\infty.$$

Received May 13, 1975 and in revised form, June 22, 1976.

Moreover, the mass distribution v of v can be given by a density function $\lambda(z)$ which is $O((1 - |z|)^{-2})$ as $|z| \rightarrow 1$. Here the exponent 2 can not be replaced by any smaller number.

THEOREM 3. Let E be a set of measure zero on C. Then there exists a Blaschke product B such that

$$\liminf_{r\to 1} |B(re^{i\phi})| = 0$$

whenever $e^{i\phi} \in E$.

2. Lemmas.

LEMMA 1. A bounded positive superharmonic function v on U is a Green's potential if and only if the radial limit of v is zero almost everywhere on C.

Proof. The necessary part is a result of Littlewood [3, p. 391]. To prove the sufficient part, we apply the Riesz decomposition theorem for superharmonic functions [2, p. 116] to v; v is the sum of a Green's potential and a positive harmonic function h. Since h is bounded harmonic with radial limit zero almost everywhere on C, $h \equiv 0$. Hence v is a Green's potential.

LEMMA 2. Suppose 0 < a < 1, |Arg z| < 1 - a and |z| > (1 + a)/2. Then

$$|G(a, z)| > \frac{1}{100} \frac{1 - |z|}{1 - a}.$$

Proof. Write z as $re^{i\theta}$, where $|\theta| < 1 - a$ and (1 + a)/2 < r < 1. Thus we have

(2.1)
$$\left|\frac{z-a}{1-az}\right|^2 \ge \frac{\left[(1+a)/2-a\right]^2}{(1-ar)^2+2ar(1-\cos\theta)} \\ \ge \frac{(1-a)^2/4}{\left[1-a(1+a)/2\right]^2+\theta^2} > \frac{1}{13} > \frac{1}{25}.$$

Using (2.1) and the mean value theorem, we proceed to find an lower bound for G(a, z).

$$G(a, z) = \frac{1}{2} \log \left| \frac{1 - az}{z - a} \right|^2$$

= $\frac{1}{2} \frac{1}{c} \left(\left| \frac{1 - az}{z - a} \right|^2 - 1 \right)$ where $1 < c < \left| \frac{1 - az}{z - a} \right|^2$
> $\frac{1}{50} \frac{(1 - a^2)(1 - r^2)}{(r - a)^2 + 2ra(1 - \cos \theta)}$
> $\frac{1}{50} \frac{(1 - a)(1 - r)}{(1 - a)^2 + \theta^2}$
> $\frac{1}{100} \frac{1 - r}{1 - a}.$

We also need the following lemma, which was used by W. Rudin [4, p. 810] to prove a theorem similar to Theorem 1 for analytic functions.

LEMMA 3. Suppose E is a closed totally disconnected set on C (for example, E is a closed set of measure zero). If f is a nonnegative continuous function on E, bounded above by M, then there exists a sequence $\{f_n\}$ of simple continuous functions on E such that

$$f(z) = \sum_{n=1}^{\infty} f_n(z)$$
 and $0 \leq f_n(z) \leq 2^{-n} M$ for $1 \leq n < \infty$.

We quote a theorem by Arsove and Huber [1, p. 125], which will be used to prove Theorem 2.

THEOREM (Arsove and Huber). Let v be a Green's potential and suppose the mass distribution for v is given by a density function λ . If $\lambda(z) = O((1 - |z|)^{-2})$ as $|z| \to 1$, then v has nontangential limit zero at almost all points on C. The exponent 2 is the largest possible.

3. Proof of Theorem 1. For each a in (0, 1) and each set S on C, let $T_a(S) = \{cz : a \leq c < 1, z \in S\}$. For the moment we fix a and omit the subscript.

First we shall construct a continuous Green's potential with property (1) in Theorem 1.

In case f is a simple continuous function with values α_i on closed sets E_i , $1 \leq i \leq k$, we introduce w_i as follows. Each w_i is a continuous function on U, harmonic on $U \setminus T(E_i)$ with value α_i on $T(E_i)$ and with boundary value 0 on $C \setminus E_i$. Because $U \setminus T(E_i)$ is a Dirichlet region, each w_i is well-defined. We note that each w_i is superharmonic on U and $\sum_{i=1}^{k} w_i$ satisfies (1) of Theorem 1.

For an arbitrary continuous function f on E, let M be an upper bound for fand let $\{f_n\}$ be a sequence of continuous functions with the properties in Lemma 3. To each f_n , following the argument in the last paragraph, we may find a continuous superharmonic function w_n satisfying (1) of Theorem 1 with respect to the function f_n . Let u be the continuous superharmonic function on U, harmonic on $U \setminus T(E)$ with value M on T(E) and boundary value 0 on $C \setminus E$. By the continuity of w_n , the function v_n defined by min $\{2^{-n}u, w_n\}$ is still continuous superharmonic on U and satisfies (1) of Theorem 1 relative to f_n . Since $0 \leq v_n \leq 2^{-n}u \leq 2^{-n}M$, $\sum_{n=1}^{\infty} v_n$ converges uniformly on U; we denote the sum by v. Thus v is bounded continuous superharmonic and has the desired boundary limiting property (1). From Lemma 1, v is indeed a Green's potential.

We note that v and u are dependent on a. For this reason we denote v, u by v_a , u_a respectively and observe that $v_a \leq u_a$. Hence we may conclude Theorem 1 by showing that $u_a(0) < \epsilon$ if a is chosen to be sufficiently small.

Because *E* may be covered by an open set *S* of arbitrarily small measure and $u_{1/2}$ converges to 0 uniformly on *C**S*, there exists a number *b* close to 1, 1/2 < b < 1, such that the average of $u_{1/2}$ on |z| = b is less than ϵ . Choose *a*,

b < a < 1. From the maximum principle we see that $u_{1/2} > u_a$ on U. Since u_a is harmonic on |z| < a,

$$u_a(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u_a(be^{i\theta}) d\theta.$$

Consequently,

$$u_a(0) < \frac{1}{2\pi} \int_{-\pi}^{\pi} u_{1/2}(be^{i\theta})d\theta < \epsilon.$$

This completes the proof of Theorem 1.

4. Proof of Theorem 2. Let l be the Lebesgue measure on C. Let $\{V_m\}$ be a sequence of coverings of E by disjoint open arcs such that

i) V_{m+1} is a refinement of V_m ;

ii) the total length of the open arcs in V_{m+1} is less than half that of V_m ; and iii) if S is an arc in V_m then $(2 \cdot n!)^{-1} \leq l(s) \leq (n!)^{-1}$ for some $n \geq 3$ and those arcs in V_{m+1} which are contained in S are of length at most $[(n + 1)!]^{-1}$.

To each open arc S in V_m , $1 \leq m < \infty$, we use n to denote the chosen integer satisfying $(2 \cdot n!)^{-1} \leq l(S) \leq (n!)^{-1}$ and use B to denote the annular sector $\{re^{i\theta}: e^{i\theta} \in S \text{ and } 1 - (n!)^{-1} < r < 1 - (m \cdot n!)^{-1}\}$. We may regard n and B as functions of S and observe that n > m. We shall sometimes identify S with the corresponding segment on $[0, 2\pi)$.

From i) and iii) above, we see that to two different S's the corresponding annular sectors B are disjoint. Thus we may introduce the density function λ by

$$\lambda(z) = \begin{cases} (1 - |z|)^{-2} & \text{if } z \in \bigcup_{m=1}^{\infty} \bigcup_{S \in V_m} B\\ 0 & \text{outside.} \end{cases}$$

The mass distribution $\lambda(z)dz$ satisfies (1.1). In fact,

$$\int_{U} (1 - |z|) \lambda(z) dz$$

= $\sum_{m=1}^{\infty} \sum_{S \in V_m} \int_{B} (1 - |z|) (1 - |z|)^{-2} dz$
= $\sum_{m=1}^{\infty} \sum_{S \in V_m} \int_{1 - (n!)^{-1}}^{1 - (m \cdot n!)^{-1}} \int_{S} (1 - r)^{-1} r d\theta dr$
= $\sum_{m=1}^{\infty} \sum_{S \in V_m} \int_{(m \cdot n!)^{-1}}^{(n!)^{-1}} l(S) x^{-1} (1 - x) dx$
 $\leq \sum_{m=1}^{\infty} \log m \sum_{S \in V_m} l(S)$

which is finite from ii) above. Therefore the Green's potential v given by $\lambda(z)dz$ is well-defined.

We now show $\lim \sup_{r\to 1} v(re^{i\phi}) = +\infty$ for each $e^{i\phi}$ in *E*. For each m, $1 \leq m < \infty$, let S_m be the arc in V_m that contains $e^{i\phi}$. Assume $(2 \cdot n_m!)^{-1} \leq l(S_m) \leq (n_m!)^{-1}$, $1 \leq m < \infty$. Let $r_m = 1 - 2(n_m!)^{-1}$ and B_m be the annular sector corresponding to S_m , $1 \leq m < \infty$. If z is in B_m , we observe that $|\operatorname{Arg}(ze^{-i\phi})| < l(S_m) < 1 - r_m$. With the aid of Lemma 2, we have

$$\begin{aligned} v(r_m e^{i\phi}) &\geq \int_{B_m} G(r_m e^{i\phi}, z) (1 - |z|)^{-2} dz \\ &> 10^{-2} \int_{1 - (n_m!)^{-1}}^{1 - (m \cdot n_m!)^{-1}} \int_{S_m} \frac{1 - r}{1 - r_m} (1 - r)^{-2} r d\theta dr \\ &= 10^{-2} \int_{1 - (n_m!)^{-1}}^{1 - (m \cdot n_m!)^{-1}} \frac{l(S_m)}{1 - r_m} \frac{r}{1 - r} dr \\ &> 10^{-3} \log m. \end{aligned}$$

Consequently, $\limsup_{r \to 1} v(re^{i\phi}) = +\infty$.

The nontangential limit of v is zero almost everywhere on C by the cited theorem of Arsove and Huber.

If $\alpha(z)$ is a density function defined by $(1 - |z|)^{\epsilon-2}$, $\epsilon > 0$, clearly $\int_U (1 - |z|)\alpha(z)dz < \infty$; let *u* be the Green's potential of $\alpha(z)dz$. From Littlewood's theorem [3, p. 391], u(z) has radial limit zero at almost all points on *C*. Since u(z) is constant on each circle, *u* can be continued up to *C* and with value 0 on *C*. Thus the exponent 2 is the best possible.

The proof of Theorem 2 is complete.

5. Proof of Theorem 3. First we want to construct a point mass distribution v such that the Green's potential v given by v has the property

$$\limsup_{r\to 1} v(re^{i\phi}) = +\infty$$

if $e^{i\phi} \in E$. We retain the definition for $\{V_m\}$ from Section 4. To each S in V_m , $1 \leq m < \infty$, we assign a point mass δ_S of weight *m* at the midpoint P_S of the arc (1 - 2/n!)S, where $(2 \cdot n!)^{-1} \leq l(S) \leq (n!)^{-1}$. The mass distribution v is defined as $\sum_{m=1}^{\infty} \sum_{s \in V_m} \delta_s$. We have

$$\int_{U} (1 - |z|) dv$$

= $\sum_{m=1}^{\infty} \sum_{S \in V_m} \frac{2}{n!} \cdot m$
 $\leq \sum_{m=1}^{\infty} 4m \sum_{S \in V_m} l(S) < +\infty,$

from ii) of the definition of $\{V_m\}$.

Let v be the Green's potential of v, and let $e^{i\phi} \in E$. For each $m, 1 \leq m < \infty$, let S_m be the arc in V_m that contains $e^{i\phi}$. Assume $(2 \cdot n_m!)^{-1} \leq l(S_m) \leq (n_m!)^{-1}$, $1 \leq m < \infty$. Let r_m be $1 - 2(n_m!)^{-1}$, and P_m be the midpoint of the arc $r_m S_m$, $1 \leq m < \infty$. We observe that $|P_m - r_m e^{i\phi}| \leq (n_m!)^{-1}$. Therefore,

$$v(r_m e^{i\phi}) \ge mG(P_m, r_m e^{i\phi})$$

= $m \log \left| \frac{1 - P_m r_m e^{-i\phi}}{P_m - r_m e^{i\phi}} \right|$
$$\ge m \log \left| \frac{1 - r_m}{P_m - r_m e^{i\phi}} \right| = m \log 2.$$

Hence we proved $\limsup_{r \to 1} v(re^{i\phi}) = +\infty$.

Now if *B* is the Blaschke product with zeros of multiplicity *m* at $P_S, S \in V_m$, $1 \leq m < \infty$, then $\log 1/|B| = v$. This *B* is our example for Theorem 3.

References

- 1. M. Arsove and A. Huber, On the existence of non-tangential limits of subharmonic functions, Jour. London Math. Soc. 42 (1967), 125-132.
- 2. L. L. Helms, Introduction to potential theory (Wiley-Interscience, New York, 1969).
- J. E. Littlewood, On functions subharmonic in a circle (II), Proc. London Math. Soc. (2) 28 (1928), 383–394.
- 4. W. Rudin, Boundary values of continuous analytic functions, Proc. American Math. Soc. 7 (1956), 808-811.
- E. B. Tolsted, Limiting values of subharmonic functions, Proc. American Math. Soc. 1 (1950), 636–647.
- E. B. Tolsted, Nontangential limits of subharmonic functions, Proc. London Math. Soc. (3) 7 (1957), 321-333.

University of Illinois, Urbana, Illinois