GREEN'S POTENTIALS WITH PRESGRIBED BOUNDARY VALUES

JANG-MEI G. WU

1. Introduction. Let U, C denote the open unit disk and unit circumference, respectively and $G(z, w)$ be the Green's function on U. We say v is the Green's potential of a mass distribution v on U if

$$
\begin{align*}
v(z)= & \int_{U} G(z, w) d v(w) \text { and } \\
& \int_{U}(1-|z|) d v(z)<+\infty \tag{1.1}
\end{align*}
$$

Littlewood [3, p. 391] showed that the radial limit of a Green's potential is zero at almost all points of C. Zygmund [5, pp. 644-645] pointed out that the nontangential limit of a Green's potential need not exist at any point on C. Several other authors, Tolsted [6], Arsove and Huber [1] have given conditions on the mass distribution v sufficient for the almost everywhere existence of the nontangential limit of the Green's potential v. (Tolsted's variant of Zygmund's example [5, p. 646, (4.7)] violates the minimum principle for superharmonic functions.)

Our object is to study the existence of Green's potential v with a preassigned radial limit on a certain subset of C and nontangential limit almost everywhere on C; we give a simple application to Blaschke products. The following three theorems are proved. (Theorem 1 is an analogue of a theorem of Rudin [4, p. 808].)

Theorem 1. Suppose E is a closed set of measure zero on C, f is a nonnegative continuous function on E and $\epsilon>0$. Then there exists a continuous Green's potentialv such that

$$
\begin{equation*}
\lim _{t \rightarrow 1} v\left(r e^{i \phi}\right)=f\left(e^{\iota \phi}\right) \tag{1}
\end{equation*}
$$

uniformly for $e^{i \phi} \in E$, u has boundary value zero on $C \backslash E$, and (2) $v(0)<\epsilon$.

Theorem 2. Suppose E is a set of measure zero on C. Then there exists a Green's potential v with non-tangential limit almost everywhere on $C \backslash E$, such that for $e^{i \phi} \in E$,

$$
\limsup _{r \rightarrow 1} v\left(r e^{i \phi}\right)=+\infty
$$

Received May 13, 1975 and in revised form, June 22, 1976.

Moreover, the mass distribution v of v can be given by a density function $\lambda(z)$ which is $O\left((1-|z|)^{-2}\right)$ as $|z| \rightarrow 1$. Here the exponent 2 can not be replaced by any smaller number.

Theorem 3. Let E be a set of measure zero on C. Then there exists a Blaschke product B such that

$$
\underset{r \rightarrow 1}{\liminf }\left|B\left(r e^{\ell \phi}\right)\right|=0
$$

whenever $e^{i \phi} \in E$.

2. Lemmas.

Lemma 1. A bounded positive superharmonic function v on U is a Green's potential if and only if the radial limit of v is zero almost everywhere on C.

Proof. The necessary part is a result of Littlewood [3, p. 391]. To prove the sufficient part, we apply the Riesz decomposition theorem for superharmonic functions [2, p. 116] to $v ; v$ is the sum of a Green's potential and a positive harmonic function h. Since h is bounded harmonic with radial limit zero almost everywhere on $C, h \equiv 0$. Hence v is a Green's potential.

Lemma 2. Suppose $0<a<1$, $|\operatorname{Arg} z|<1-a$ and $|z|>(1+a) / 2$. Then

$$
|G(a, z)|>\frac{1}{100} \frac{1-|z|}{1-a} .
$$

Proof. Write z as $r e^{i \theta}$, where $|\theta|<1-a$ and $(1+a) / 2<r<1$. Thus we have

$$
\begin{align*}
\left|\frac{z-a}{1-a z}\right|^{2} & \geqq \frac{[(1+a) / 2-a]^{2}}{(1-a r)^{2}+2 a r(1-\cos \theta)} \\
& \geqq \frac{(1-a)^{2} / 4}{[1-a(1+a) / 2]^{2}+\theta^{2}}>\frac{1}{13}>\frac{1}{25} . \tag{2.1}
\end{align*}
$$

Using (2.1) and the mean value theorem, we proceed to find an lower bound for $G(a, z)$.

$$
\begin{aligned}
G(a, z) & =\frac{1}{2} \log \left|\frac{1-a z}{z-a}\right|^{2} \\
& =\frac{1}{2} \frac{1}{c}\left(\left|\frac{1-a z}{z-a}\right|^{2}-1\right) \text { where } 1<c<\left|\frac{1-a z}{z-a}\right|^{2} \\
& >\frac{1}{50} \frac{\left(1-a^{2}\right)\left(1-r^{2}\right)}{(r-a)^{2}+2 r a(1-\cos \theta)} \\
& >\frac{1}{50} \frac{(1-a)(1-r)}{(1-a)^{2}+\theta^{2}} \\
& >\frac{1}{100} \frac{1-r}{1-a} .
\end{aligned}
$$

We also need the following lemma, which was used by W. Rudin [4, p. 810] to prove a theorem similar to Theorem 1 for analytic functions.

Lemma 3. Suppose E is a closed totally disconnected set on C (for example, E is a closed set of measure zero). If f is a nonnegative continuous function on E, bounded above by M, then there exists a sequence $\left\{f_{n}\right\}$ of simple continuous functions on E such that

$$
f(z)=\sum_{n=1}^{\infty} f_{n}(z) \quad \text { and } \quad 0 \leqq f_{n}(z) \leqq 2^{-n} M \quad \text { for } 1 \leqq n<\infty
$$

We quote a theorem by Arsove and Huber [1, p. 125], which will be used to prove Theorem 2.

Theorem (Arsove and Huber). Let v be a Green's potential and suppose the mass distribuition for v is given by a density function λ. If $\lambda(z)=O\left((1-|z|)^{-2}\right)$ as $|z| \rightarrow 1$, then v has nontangential limit zero at almost all points on C. The exponent 2 is the largest possible.
3. Proof of Theorem 1. For each a in $(0,1)$ and each set S on C, let $T_{a}(S)=$ $\{c z: a \leqq c<1, z \in S\}$. For the moment we fix a and omit the subscript.

First we shall construct a continuous Green's potential with property (1) in Theorem 1.

In case f is a simple continuous function with values α_{i} on closed sets E_{i}, $1 \leqq i \leqq k$, we introduce w_{i} as follows. Each w_{i} is a continuous function on U, harmonic on $U \backslash T\left(E_{i}\right)$ with value α_{i} on $T\left(E_{i}\right)$ and with boundary value 0 on $C \backslash E_{i}$. Because $U \backslash T\left(E_{i}\right)$ is a Dirichlet region, each w_{i} is well-defined. We note that each w_{i} is superharmonic on U and $\sum_{i=1}^{k} w_{i}$ satisfies (1) of Theorem 1.

For an arbitrary continuous function f on E, let M be an upper bound for f and let $\left\{f_{n}\right\}$ be a sequence of continuous functions with the properties in Lemma 3. To each f_{n}, following the argument in the last paragraph, we may find a continuous superharmonic function w_{n} satisfying (1) of Theorem 1 with respect to the function f_{n}. Let u be the continuous superharmonic function on U, harmonic on $U \backslash T(E)$ with value M on $T(E)$ and boundary value 0 on $C \backslash E$. By the continuity of w_{n}, the function v_{n} defined by $\min \left\{2^{-n} u, w_{n}\right\}$ is still continuous superharmonic on U and satisfies (1) of Theorem 1 relative to f_{n}. Since $0 \leqq v_{n} \leqq 2^{-n} u \leqq 2^{-n} M, \sum_{n=1}^{\infty} v_{n}$ converges uniformly on U; we denote the sum by v. Thus v is bounded continuous superharmonic and has the desired boundary limiting property (1). From Lemma $1, v$ is indeed a Green's potential.

We note that v and u are dependent on a. For this reason we denote v, u by v_{a}, u_{a} respectively and observe that $v_{a} \leqq u_{a}$. Hence we may conclude Theorem 1 by showing that $u_{a}(0)<\epsilon$ if a is chosen to be sufficiently small.

Because E may be covered by an open set S of arbitrarily small measure and $u_{1 / 2}$ converges to 0 uniformly on $C \backslash S$, there exists a number b close to 1 , $1 / 2<b<1$, such that the average of $u_{1 / 2}$ on $|z|=b$ is less than ϵ. Choose a,
$b<a<1$. From the maximum principle we see that $u_{1 / 2}>u_{a}$ on U. Since u_{a} is harmonic on $|z|<a$,

$$
u_{a}(0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} u_{a}\left(b e^{i \theta}\right) d \theta
$$

Consequently,

$$
u_{a}(0)<\frac{1}{2 \pi} \int_{-\pi}^{\pi} u_{1 / 2}\left(b e^{i \theta}\right) d \theta<\epsilon
$$

This completes the proof of Theorem 1 .
4. Proof of Theorem 2. Let l be the Lebesgue measure on C. Let $\left\{V_{m}\right\}$ be a sequence of coverings of E by disjoint open arcs such that
i) V_{m+1} is a refinement of V_{m};
ii) the total length of the open arcs in V_{m+1} is less than half that of V_{m}; and
iii) if S is an arc in V_{m} then $(2 \cdot n!)^{-1} \leqq l(s) \leqq(n!)^{-1}$ for some $n \geqq 3$ and those arcs in V_{m+1} which are contained in S are of length at most $[(n+1)!]^{-1}$.

To each open $\operatorname{arc} S$ in $V_{m}, 1 \leqq m<\infty$, we use n to denote the chosen integer satisfying $(2 \cdot n!)^{-1} \leqq l(S) \leqq(n!)^{-1}$ and use B to denote the annular sector $\left\{r e^{i \theta}: e^{i \theta} \in S\right.$ and $\left.1-(n!)^{-1}<r<1-(m \cdot n!)^{-1}\right\}$. We may regard n and B as functions of S and observe that $n>m$. We shall sometimes identify S with the corresponding segment on $[0,2 \pi)$.

From i) and iii) above, we see that to two different S 's the corresponding annular sectors B are disjoint. Thus we may introduce the density function λ by

$$
\lambda(z)= \begin{cases}(1-|z|)^{-2} & \text { if } z \in \bigcup_{m=1}^{\infty} \bigcup_{S \in V_{m}} B \\ 0 & \text { outside }\end{cases}
$$

The mass distribution $\lambda(z) d z$ satisfies (1.1). In fact,

$$
\begin{aligned}
\int_{U} & (1-|z|) \lambda(z) d z \\
& =\sum_{m=1}^{\infty} \sum_{S \in V_{m}} \int_{B}(1-|z|)(1-|z|)^{-2} d z \\
& =\sum_{m=1}^{\infty} \sum_{S \in V_{m}} \int_{1-(n!)-1}^{1-(m \cdot n \mid)^{-1}} \int_{S}(1-r)^{-1} r d \theta d r \\
& =\sum_{m=1}^{\infty} \sum_{S \in V_{m}} \int_{(m \cdot n!)^{-1}}^{(n!-1} l(S) x^{-1}(1-x) d x \\
& \leqq \sum_{m=1}^{\infty} \log m \sum_{S \in V_{m}} l(S)
\end{aligned}
$$

which is finite from ii) above. Therefore the Green's potential v given by $\lambda(z) d z$ is well-defined.

We now show $\lim \sup _{r \rightarrow 1} v\left(r e^{i \phi}\right)=+\infty$ for each $e^{i \phi}$ in E. For each m, $1 \leqq m<\infty$, let S_{m} be the arc in V_{m} that contains $e^{i \phi}$. Assume $\left(2 \cdot n_{m}!\right)^{-1} \leqq$ $l\left(S_{m}\right) \leqq\left(n_{m}!\right)^{-1}, 1 \leqq m<\infty$. Let $r_{m}=1-2\left(n_{m}!\right)^{-1}$ and B_{m} be the annular sector corresponding to $S_{m}, 1 \leqq m<\infty$. If z is in B_{m}, we observe that $\left|\operatorname{Arg}\left(z e^{-i \phi}\right)\right|<l\left(S_{m}\right)<1-r_{m}$. With the aid of Lemma 2, we have

$$
\begin{aligned}
v\left(r_{m} e^{i \phi}\right) & \geqq \int_{B_{m}} G\left(r_{m} e^{i \phi}, z\right)(1-|z|)^{-2} d z \\
& >10^{-2} \int_{1-\left(n_{m}!\right)^{-1}}^{1-\left(m \cdot n_{m}!\right)^{-1}} \int_{S_{m}} \frac{1-r}{1-r_{m}}(1-r)^{-2} r d \theta d r \\
& =10^{-2} \int_{1-\left(n_{m}!\right)^{-1}}^{1-\left(m \cdot n_{m}!-1\right.} \frac{l\left(S_{m}\right)}{1-r_{m}} \frac{r}{1-r} d r \\
& >10^{-3} \log m .
\end{aligned}
$$

Consequently, $\lim \sup _{r \rightarrow 1} v\left(r e^{i \phi}\right)=+\infty$.
The nontangential limit of v is zero almost everywhere on C by the cited theorem of Arsove and Huber.

If $\alpha(z)$ is a density function defined by $(1-|z|)^{\epsilon-2}, \epsilon>0$, clearly $\int_{U}(1-|z|) \alpha(z) d z<\infty$; let u be the Green's potential of $\alpha(z) d z$. From Littlewood's theorem [3, p. 391], $u(z)$ has radial limit zero at almost all points on C. Since $u(z)$ is constant on each circle, u can be continued up to C and with value 0 on C. Thus the exponent 2 is the best possible.

The proof of Theorem 2 is complete.
5. Proof of Theorem 3. First we want to construct a point mass distribution v such that the Green's potential v given by v has the property

$$
\limsup _{\tau \rightarrow 1} v\left(r e^{\imath \phi}\right)=+\infty
$$

if $e^{i \phi} \in E$. We retain the definition for $\left\{V_{m}\right\}$ from Section 4. To each S in V_{m}, $1 \leqq m<\infty$, we assign a point mass δ_{S} of weight m at the midpoint P_{S} of the $\operatorname{arc}(1-2 / n!) S$, where $(2 \cdot n!)^{-1} \leqq l(S) \leqq(n!)^{-1}$. The mass distribution v is defined as $\sum_{m=1}^{\infty} \sum_{s \in V_{m}} \delta_{S}$. We have

$$
\begin{aligned}
\int_{U} & (1-|z|) d v \\
& =\sum_{m=1}^{\infty} \sum_{S \in V_{m}} \frac{2}{n!} \cdot m \\
& \leqq \sum_{m=1}^{\infty} 4 m \sum_{S \in V_{m}} l(S)<+\infty
\end{aligned}
$$

from ii) of the definition of $\left\{V_{m}\right\}$.
Let v be the Green's potential of v, and let $e^{i \phi} \in E$. For each $m, 1 \leqq m<\infty$, let S_{m} be the arc in V_{m} that contains $e^{i \phi}$. Assume $\left(2 \cdot n_{m}!\right)^{-1} \leqq l\left(\mathrm{~S}_{m}\right) \leqq\left(n_{m}!\right)^{-1}$,
$1 \leqq m<\infty$. Let r_{m} be $1-2\left(n_{m}!\right)^{-1}$, and P_{m} be the midpoint of the arc $r_{m} S_{m}, 1 \leqq m<\infty$. We observe that $\left|P_{m}-r_{m} e^{i \phi}\right| \leqq\left(n_{m}!\right)^{-1}$. Therefore,

$$
\begin{aligned}
v\left(r_{m} e^{i \phi}\right) & \geqq m G\left(P_{m}, r_{m} e^{i \phi}\right) \\
& =m \log \left|\frac{1-P_{m} r_{m} e^{-i \phi}}{P_{m}-r_{m} e^{i \phi}}\right| \\
& \geqq m \log \left|\frac{1-r_{m}}{P_{m}-r_{m} e^{i \phi}}\right|=m \log 2 .
\end{aligned}
$$

Hence we proved $\lim \sup _{t \rightarrow 1} v\left(r e^{i \phi}\right)=+\infty$.
Now if B is the Blaschke product with zeros of multiplicity m at $P_{s}, S \in V_{m}$, $1 \leqq m<\infty$, then $\log 1 /|B|=v$. This B is our example for Theorem 3 .

References

1. M. Arsove and A. Huber, On the existence of non-tangential limits of subharmonic functions, Jour. London Math. Soc. 42 (1967), 125-132.
2. L. L. Helms, Introduction to potential theory (Wiley-Interscience, New York, 1969).
3. J. E. Littlewood, On functions subharmonic in a circle (II), Proc. London Math. Soc. (2) 28 (1928), 383-394.
4. W. Rudin, Boundary values of continuous analytic functions, Proc. American Math. Soc. 7 (1956), 808-811.
5. E. B. Tolsted, Limiting values of subharmonic functions, Proc. American Math. Soc. 1 (1950), 636-647.
6. E. B. Tolsted, Nontangential limits of subharmonic functions, Proc. London Math. Soc. (3) 7 (1957), 321-333.

University of Illinois, Urbana, Illinois

