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RANDOM MOTIONS AT FINITE VELOCITY
IN A NON-EUCLIDEAN SPACE
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Abstract

In this paper telegraph processes on geodesic lines of the Poincaré half-space and Poincaré
disk are introduced and the behavior of their hyperbolic distances examined. Explicit
distributions of the processes are obtained and the related governing equations derived.
By means of the processes on geodesic lines, planar random motions (with independent
components) in the Poincaré half-space and disk are defined and their hyperbolic random
distances studied. The limiting case of one-dimensional and planar motions together with
their hyperbolic distances is discussed with the aim of establishing connections with the
well-known stochastic representations of hyperbolic Brownian motion. Extensions of
motions with finite velocity to the three-dimensional space are also hinted at, in the final
section.
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1. Introduction

A type of random motions in non-Euclidean spaces (called hyperbolic Brownian motions)
have been examined in some papers appearing in the probabilistic and physical literature.

The first works devoted to diffusions in hyperbolic spaces were published in 1959 in Theory
of Probability and its Applications (see Gertsenshtein and Vasiliev (1959) and Karpelevich et al.
(1959)), where the propagation of waves in inhomogeneous cables was studied.

Many papers concerning hyperbolic Brownian motion in the upper half-space H+
2 =

{(x, y) : y > 0, x ∈ R} have appeared since (Gruet (1996), (1998), (2000)), also in an
applied context (Yor (1992)). Generalizations of hyperbolic Brownian motion in upper spaces
H+

n = {(x1, . . . , xn) : xn > 0, xj ∈ R, j = 1, . . . , n − 1} have been studied in the particular
case n = 3 by Karpelevich et al. (1959), Comtet and Monthus (1996), and, for arbitrary
values of n, Gruet (1996). The branching hyperbolic Brownian motion has also been studied
(see Lalley and Sellke (1997)).

The half-plane H+
2 endowed with the metric

ds =
√

dx2 + dy2

y
(1.1)
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Random motions at finite velocity 589

is a model of hyperbolic spaces introduced by Poincaré. The geodesic curves in H+
2 are either

half-circles whose centers lie on the x-axis or vertical half-lines. For an inhomogeneous optical
medium where light rays move with speed c(x, y) = y (independent of direction), on the basis
of Fermat’s principle the possible paths for the light are those curves L which satisfy the equality

sin α(y)

y
= k, (1.2)

where α(y) is the angle between the vertical and the tangent to L at the point with ordinate y.
It is easy to see that a circle with center on the x-axis and radius 1/k satisfies (1.2) (for k = 0
we get the vertical lines).

In the Poincaré half-plane model the half-circles play the role that straight lines do in the
Euclidean space. If the points A = (x, y) and B = (u, v) are such that x �= u, then the
hyperbolic distance between A and B is the length of the arc of the circle (with center on the
x-axis) passing through these points, evaluated by means of the metric (1.1). If x = u then
the distance between A and B is also evaluated by means of (1.1) and obviously differs from
the usual Euclidean distance (for the geometric properties of H+

2 , consult Royster (2004) or
Terras (1985, Chapter 3, p. 120)).

For the convenience of the reader we sum up some basic results concerning hyperbolic
Brownian motion, which is defined as a diffusion on H+

2 with generator

y2

2

{
∂2

∂x2 + ∂2

∂y2

}
, y > 0.

Most of the papers dealing with hyperbolic Brownian motion study essentially the behavior
of the geodesic distance, η ≡ η(t), of the moving particle from the origin, (0, 1), of H+

2 . Its
distribution, denoted by pH+

2
≡ pH+

2
(η, t), is obtained by solving the following initial-value

problem:

∂p

∂t
= 1

2 sinh η

∂

∂η

(
sinh η

∂

∂η

)
p, η > 0, t > 0, p(η, 0) = δ(η), (1.3)

where δ is the Dirac function.
In order to reobtain most of the results appearing in the literature, it is better to get rid of

the factor 1
2 in (1.3), by means of the time-scale transformation t → t ′ = t/2. The explicit

distribution, i.e. pH+
2

≡ pH+
2

(η, t), emerging from the solution to (1.3) was obtained first
by Gertsenshtein and Vasiliev (1959), without an explicit proof and with some typographical
errors.

A detailed derivation of pH+
2

was given in Lao and Orsingher (2007). It takes the form

pH+
2

(η, t) = e−t/4

√
π (

√
2t )3

∫ ∞

η

ϕe−ϕ2/4t

√
cosh ϕ − cosh η

dϕ, (1.4)

which coincides with Equation (78) of Monthus and Texier (1996) once the hyperbolic element
sinh η dη is considered. In the original time-scale the distribution (1.4) takes the form

pH+
2

(η, t) = e−t/8

√
π

√
t3

∫ ∞

η

ϕe−ϕ2/2t

√
cosh ϕ − cosh η

dϕ, (1.5)
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590 E. ORSINGHER AND A. DE GREGORIO

and coincides with Equation (b) of Gruet (1996), up to some constants. Some asymptotic
results concerning (1.4) were obtained by Simon (2002). On integrating (1.4) and (1.5) we
must take into account the hyperbolic element sinh η dη. The calculations necessary to check
that ∫ ∞

0
pH+

2
(η, t) sinh η dη = 1

permit us to identify the exact normalizing constants given (1.4) and (1.5).
The planar hyperbolic Brownian motion also possesses the following stochastic representa-

tion, where B1 and B2 are independent standard Brownian motions:

X(t) =
∫ t

0
eB1(s)−s/2 dB2(s), Y (t) = eB1(t)−t/2. (1.6)

In other words, the current coordinates of hyperbolic Brownian motion X and Y satisfy the
stochastic differential system

dX = Y dB2, X(0) = 0, dY = Y dB1, Y (0) = 1.

For the fractional version of (1.3) (without the normalizing constant 1
2 ), that is,

∂αp

∂tα
= 1

sinh η

∂

∂η

(
sinh η

∂

∂η

)
p, 0 < α ≤ 1, p(η, 0) = δ(η), (1.7)

we obtain a generalization of (1.4) in the following form:

pα(η, t) = 2

π

∫ ∞

0
xEα,1

(
− tα

4
− x2tα

)
dx

∫ ∞

η

sin xϕ√
2 cosh ϕ − 2 cosh η

dϕ. (1.8)

The fractional derivative in (1.7) must be understood in the Dzherbashyan–Caputo sense and
Eα,1(x) is the Mittag-Leffler function. The result in (1.8) is particularly interesting when α = 1

2 ,
because in this case the distribution in (1.8) coincides with that of the hyperbolic Brownian
motion where the time is a reflecting Brownian motion |B(t)|, that is,

η1/2 = η(|B(t)|), t > 0.

In this paper we first consider one-dimensional motions on the geodesic curves of H+
2 .

In particular, we study motions on half-circles orthogonal to the x-axis and motions on the
positive y-axis such that the corresponding hyperbolic distance from (0, 1) evaluated by means
of (1.1) is equal to |T (t)|, where T is the usual symmetric telegraph process. The telegraph
process is the simplest one-dimensional motion at finite velocity and many of its properties
and distributions have been obtained over the years. Furthermore, it represents a reasonable
approximation of Brownian motion and, thus, its hyperbolic version is somehow connected
with the so-called stochastic representation of hyperbolic Brownian motion.

If the motion is considered on a vertical half-line (for example the positive y-axis), then

Y (t) = eT (t), t > 0, (1.9)

has hyperbolic distance from (0, 1) given by

η(t) =
∫ max(1,Y (t))

min(1,Y (t))

dy

y
= |T (t)|.
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If the finite-velocity random motion develops on the circle of radius 1 and with the origin at
(0, 0), then the process

θ(t) = 2 arctan tanh
U(t)

2
, −ct ≤ U(t) ≤ ct, (1.10)

has hyperbolic distance from (0, 1) given by

η(t) =
∫ max(0,2 arctan tanh(U(t)/2))

min(0,2 arctan tanh(U(t)/2))

dθ

cos θ
= |U(t)|.

The hyperbolic distance between the moving points (0, eT (t)) and (tanh U(t), 1/cosh U(t)) is
evaluated by means of

cosh η = (x1 − x2)
2 + y2

1 + y2
2

2y1y2
,

which yields
cosh η = cosh T (t) cosh U(t),

the so-called non-Euclidean Pythagorean theorem. Thus, the distance between the moving
points on the hyperbolic lines depends on the product of the hyperbolic distances of each point
from (0, 1). These finite-velocity motions can also be studied in the Poincaré disk obtained
from H+

2 by means of the conformal mapping

w = z − i

−iz + 1
.

The processes in (1.9) and (1.10) can be used to construct two-dimensional motions in H+
2

in different manners. The most natural one is perhaps to take

X1(t) = tanh U(t), Y1(t) = eT (t), (1.11)

where X1(t) represents the abscissa of a point moving on the half-circle centered at the origin.
This motion has the drawback that it develops only inside the strip S = {(x, y) : y > 0,

|x| ≤ 1}.
In the authors’ view, however, the most tractable planar motion is described by

X2(t) = sinh U(t), Y2(t) = eT (t), (1.12)

which covers the whole half-space H+
2 as time goes on. Furthermore, it possesses an interesting

limiting relationship with the classical planar hyperbolic Brownian motion. As the parameters
λ and c tend to ∞, the telegraph processes U and T converge weakly to Brownian motions
(Kolesnik (2001)). Thus, the vector process (1.12) converges to

X2(t) = sinh B(t), Y2(t) = eB1(t),

where B1 and B are independent Brownian motions. By Bougerol’s identity (see Alili et al.
(1997)) we have the following relationship (valid in distribution, i.d.):

sinh B(t)
i.d.=

∫ t

0
eB1(s) dB2(s),
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592 E. ORSINGHER AND A. DE GREGORIO

which represents the x-component of the hyperbolic Brownian motion governed by

dY = Y dB1 + 1
2Y dt, dX = Y dB2. (1.13)

This permits us to state that the planar motion (1.12) is a finite-velocity counterpart of a slightly
different version of hyperbolic Brownian motion.

Another alternative definition of a planar motion is given by

X3(t) = eT (t) tan

(
2 arctan tanh

U(t)

2

)
= eT (t) sinh U(t), Y3(t) = eT (t), (1.14)

which also can move throughout all of H+
2 , but does not have independent components.

The hyperbolic distances, ηj , j = 1, 2, 3, of the processes in (1.11), (1.12), and (1.14) from
(0, 1) are given by

cosh η1 = cosh T (t) + 1
2 e−T (t) tanh2 U(t),

cosh η2 = cosh T (t) + 1
2 e−T (t) sinh2 U(t), (1.15)

cosh η3 = cosh T (t) + 1
2 eT (t) sinh2 U(t). (1.16)

We note that

cosh η3 − cosh η1 = sinh2 U(t)(sinh T (t) + 1
2 e−T (t) tanh2 U(t)),

and that the hyperbolic distance of (X3, Y3) from the origin is greater than the hyperbolic
distance of the first moving particle if tanh2 U(t) > 1 − e2T (t).

If we compare the hyperbolic distances in (1.15) and (1.16), we find that

cosh η3 − cosh η2 = sinh T (t) sinh2 U(t). (1.17)

For points of H+
2 such that 0 < y < 1, a swift inspection of (1.17) shows that η2 > η3.

Furthermore, because of the independence and symmetry of U and T , we have

E(cosh η3 − cosh η2) = 0,

E((cosh η3 − cosh η2)
2) = 1

2
E(e2T − 1)

1

23 E(e4U − 4e2U + 3).

We study the distribution of the hyperbolic distance η2 and give an explicit formula in terms
of the distributions of U and T . Simple and explicit expressions are presented for the mean
values E cosh ηj , j = 1, 2, 3.

The reader must keep in mind that all processes considered here have a double nature. The
processes moving with space-varying velocity appear to the Euclidean observer as decelerated
or accelerated motions, while the non-Euclidean observer perceives them as movements with
constant velocity.

2. One-dimensional motions with finite velocity in H+
2

The simplest motions at finite velocity which can be studied in H+
2 are telegraph processes

of some type on the geodesic lines. Here we start our analysis with the motions on the positive
y-axis and on the half-circle with radius 1 and center (0, 0).
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Random motions at finite velocity 593

Let T be a symmetric telegraph process and let

Y (t) = eT (t), (2.1)

which develops on the y-axis and starts from (0, 1) at t = 0. The explicit form of T is given by

T (t) = V (0)

∫ t

0
(−1)N(s) ds, (2.2)

where V (0) is a two-valued random variable (taking the values ±c with respective probabili-
ties 1

2 ) independent of N(t), the number of Poisson events in [0, t]. The process T depends on
the parameters λ (the rate of the Poisson process) and c (its speed). The explicit distribution of
T is

pT (x, t) = e−λt

2c

[
λI0

(
λ

c

√
c2t2 − x2

)
+ ∂

∂t
I0

(
λ

c

√
c2t2 − x2

)]
1{|x|<ct}

+ e−λt

2
[δ(x − ct) + δ(x + ct)], (2.3)

where δ is the Dirac function, I0(x) = ∑∞
k=0(x/2)2k(1/(k!)2) (see Orsingher (1990)), and 1{·}

is the indicator function.
By applying (1.1) we easily see that the hyperbolic distance of the particle performing the

process in (2.1) from the origin, O ≡ (0, 1), is

η(t) =
∫ max(1,Y (t))

min(1,Y (t))

dy

y
= |T (t)|.

If the particle approaches the x-axis, the Euclidean observer perceives a slowing down in the
motion, while the non-Euclidean observer will not notice an analogous phenomenon.

We obtain the mean value of the process in (2.1) in the next theorem.

Theorem 2.1. The mean value of Y (t), t > 0, is given by

E Y (t) = e−λt

2

[(
1 + λ√

λ2 + c2

)
et

√
λ2+c2 +

(
1 − λ√

λ2 + c2

)
e−t

√
λ2+c2

]

= e−λt

[
cosh(t

√
λ2 + c2) + λ√

λ2 + c2
sinh(t

√
λ2 + c2)

]
(2.4)

for all values of λ and c.

Proof. We first note that, under the condition that N(t) = n, from (2.2) the displacement at
time t can be written in the form

V (0)

n+1∑
k=1

(−1)k−1(sk − sk−1),

where 0 = s0 < s1 < · · · < sk < · · · < sn < sn+1 = t and the instants, s1, . . . , sn, where the
Poisson events occur have uniform distribution, that is, its density g reads

g(s1, . . . , sn) = n!
tn

, 0 < s1 < · · · < sk < · · · < sn < t.
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Therefore, we have

E(eT (t) | N(t) = n)

= n!
tn

∫ t

0
ds1 · · ·

∫ t

sn−1

dsn
1

2

{
exp

(
c

n+1∑
k=1

(−1)k(sk − sk−1)

)

+ exp

(
−c

n+1∑
k=1

(−1)k(sk − sk−1)

)}

= n!
tn

∫ t

0
ds1 · · ·

∫ t

sn−1

dsn cosh

(
c

n+1∑
k=1

(−1)k(sk − sk−1)

)

=: n!
tn

�n(t).

We show now that the multiple integrals �n(t), as a function of time t , satisfy the difference
differential equation

d2�n

dt2 = c2�n + �n−2, (2.5)

where �0(t) = cosh ct and �−1(t) = 0, by assumption. Equation (2.5) can be obtained by
successive differentiations of �n(t) and by taking into account the fact that the (n + 1)th term
inside �n(t) contains t . This means that

d�n

dt
=

∫ t

0
ds1 · · ·

∫ t

sn−2

dsn−1 cosh

(
c

n∑
k=1

(−1)k(sk − sk−1)

)

+
∫ t

0
ds1 · · ·

∫ t

sn−1

dsn sinh

(
c

n+1∑
k=1

(−1)k(sk − sk−1)

)
c(−1)n+1

= �n−1 +
∫ t

0
ds1 · · ·

∫ t

sn−1

dsn sinh

(
c

n+1∑
k=1

(−1)k(sk − sk−1)

)
c(−1)n+1. (2.6)

A further differentiation then gives

d2�n

dt2 = d�n−1

dt
+

∫ t

0
ds1 · · ·

∫ t

sn−2

dsn−1 sinh

(
c

n∑
k=1

(−1)k(sk − sk−1)

)
c(−1)n+1

+
∫ t

0
ds1 · · ·

∫ t

sn−1

dsn cosh

(
c

n+1∑
k=1

(−1)k(sk − sk−1)

)
c2(−1)2(n+1)

= d�n−1

dt
+ c2�n +

(
−d�n−1

dt
+ �n−2

)

because, from (2.6), we have

d�n−1

dt
= �n−2 +

∫ t

0
ds1 · · ·

∫ t

sn−2

dsn−1 sinh

(
c

n∑
k=1

(−1)k(sk − sk−1)

)
c(−1)n.

This concludes the proof of (2.5).
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If we write

G(t) = E Y (t) =
∞∑

n=0

E(eT (t) | N(t) = n) P(N(t) = n) = e−λt
∞∑

n=0

λn�n(t),

then from (2.5) we can extract the differential equation

∞∑
n=0

λn d2�n

dt2 = c2
∞∑

n=0

λn�n(t) + λ2
∞∑

n=2

λn−2�n−2(t),

whence
d2

dt2 (eλtG(t)) = c2eλtG(t) + λ2eλtG(t).

After some calculations we see that the mean value G(t) is a solution to the second-order linear
equation

d2G(t)

dt2 + 2λ
dG(t)

dt
= c2G(t). (2.7)

The initial conditions are

G(0) = 1,
dG(t)

dt

∣∣∣∣
t=0

= 0. (2.8)

While the first condition is straightforward, the second one can be shown by observing that

dG(0)

dt
= E

(
dT (t)

dt
eT (t)

)∣∣∣∣
t=0

= E(V (0)eT (0)) = E V (0) = 0

because T (0) = 0 and V (0) is symmetrically distributed. The solution to (2.7) with the initial
conditions in (2.8) immediately gives (2.4).

Remark 2.1. In view of the symmetry of the distribution of T (t), we have

E e−T (t) = E eT (t)

and, thus,
E cosh T (t) = E eT (t).

Furthermore, it is obvious from the above calculations that, for all real values of β,

g(β, t) := E eβT (t)

satisfies
∂2g

∂t2 + 2λ
∂g

∂t
= c2β2y

and its explicit form is again as in (2.4) with c replaced by cβ.
The mean value E Y (t) increases with c, because the larger the velocity, the bigger becomes

the domain where the particle can be located at time t . However, E Y (t) decreases with λ,
because the larger the rate of the Poisson process, the smaller becomes the distance that the
particle can run.
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For large values of t we see that

E Y (t) ∼ 1

2

(
1 + λ√

λ2 + c2

)
e−λt+t

√
λ2+c2

.

It is interesting to note that, as λ, c → ∞ (in such a way that c2/λ → 1), the telegraph process
converges weakly to Brownian motion (Kolesnik (2001)), and, thus,

lim
λ,c→∞ E Y (t) = E eB(t) = et/2,

as (2.4) confirms after an expansion of
√

λ2 + c2. In view of all this we note that the normalized
process

Ẑ(t) = eT (t)

E eT (t)

converges to the y-component of the stochastic representation of the planar hyperbolic Brownian
motion in (1.6) (without normalization, it tends to the y-component of (1.13)).

Now we study a one-dimensional telegraph process on the half-circle orthogonal to the
x-axis, depicted in Figure 1 (and denoted by C+

0 for the sake of brevity). We evaluate the
hyperbolic distance, η ≡ η(t), of P from O by applying the metric (1.1), and obtain

η(t) =
∫ P

O

√
(dx/dt)2 + (dy/dt)2

y
dt =

∫ θ(t)

0

dθ

cos θ
=

∫ π/2

π/2−θ(t)

dθ

sin θ

=
[

log

∣∣∣∣tan
θ

2

∣∣∣∣
]π/2

π/2−θ(t)

= −log

∣∣∣∣tan

(
π

4
− θ(t)

2

)∣∣∣∣
= −log

∣∣∣∣1 − tan(θ(t)/2)

1 + tan(θ(t)/2)

∣∣∣∣ = −log
1 − tan(θ(t)/2)

1 + tan(θ(t)/2)
(2.9)

for θ(t) > 0 (i.e. P is in the first quadrant). For θ(t) < 0 (i.e. P is in the second quadrant) it
can easily be seen that

η(t) =
∫ O

P

√
(dx/dt)2 + (dy/dt)2

y
dt = −

∫ P

O

√
(dx/dt)2 + (dy/dt)2

y
dt

= log
1 − tan(−|θ(t)|/2)

1 + tan(−|θ(t)|/2)
= −log

1 − tan(|θ(t)|/2)

1 + tan(|θ(t)|/2)
. (2.10)

If we want η(t) = |U(t)|, where U is a symmetric telegraph process with parameters (λ, c),
then from (2.9) we have

θ(t) = 2 arctan tanh
U(t)

2
. (2.11)

Since arctanh z = 1
2 log[(1 + z)/(1 − z)], from (2.9) and (2.10) we obtain

η(t) = 2 arctanh tan
|θ(t)|

2
,

and in view of (2.11) it is straightforward that η(t) = |U(t)|.
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0 1 x

y

O

Q = (0, e )T t( )

P U t U t= (tanh ( ), 1/cosh ( ))

θ

Figure 1: Motions at finite velocity on the y-axis and on the half-circle C+
0 .

Remark 2.2. The Cartesian coordinates of the moving point on the half-circle C+
0 are

(tanh U(t), 1/cosh U(t)). The hyperbolic distance between the moving points (0, eT (t)) and
(tanh U(t), 1/cosh U(t)) is evaluated by means of

cosh η = (x1 − x2)
2 + y2

1 + y2
2

2y1y2
,

again yielding
cosh η = cosh T (t) cosh U(t), (2.12)

the non-Euclidean Pythagorean theorem. Thus, the distance between two points moving on
geodesic lines considered above depends from the product of the hyperbolic distances of each
of them from the origin. The right triangle OPQ (see Figure 1) has two sides which are chords
of half-circles and (2.12) measures the hyperbolic length of its hypotenuse.

We can easily obtain an explicit expression for the mean of (2.12), having in mind (2.4) and
performing some calculations. Since T and U are independent, identically distributed random
variables, we have

E cosh η = E cosh T (t) E cosh U(t)

=
{

e−λt

2

[(
1 + λ√

λ2 + c2

)
et

√
λ2+c2 +

(
1 − λ√

λ2 + c2

)
e−t

√
λ2+c2

]}2

= E cosh T (2t) − c2

λ2 + c2 (e−λt sinh(t
√

λ2 + c2))2.

Remark 2.3. We observe that the formula for the hyperbolic distance of (x, y) from (0, 1),

cosh η = x2 + y2 + 1

2y
, (2.13)

can be inferred from the relationships between the hyperbolic coordinates. These formulae
read (see Rogers and Williams (1987, p. 213))

x = sinh η cos α

cosh η − sinh η sin α
, y = 1

cosh η − sinh η sin α
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Figure 2: Motions on the half-circle and the Lobachevsky angle of parallelism.

and can also be rewritten as

sinh η = x

y

1

cos α
,

1

y
= cosh η − sinh η sin α. (2.14)

By α we denote the angle formed by the tangent at (0, 1) to the geodesic line passing through
(x, y).

From (2.14) we have

sinh η = x

y

1√
1 − (1/sinh2η)(cosh η − 1/y)2

= x

y

sinh η√−1 − 1/y2 + 2 cosh η/y
.

In conclusion, x = √−y2 − 1 + 2y cosh η, and this leads to (2.13).

Remark 2.4. Another, slightly different, process is obtained by considering the half-circle with
center C and radius 1 depicted in Figure 2. The origin on the circumference is now assumed at
the point R (the angle R̂OM is equal to π/4 radians). The moving point Q possesses coordinates
(x = 1 + cos θ, y = sin θ ), and we let Q̂CM = θ .

The hyperbolic distance, η, of Q from R (note that θ decreases when the length of the arc
RQ increases) is equal to

RQ =
∫ Q

R

ds

y
= −

∫ Q

R

dθ

sin θ
=

[
−log tan

∣∣∣∣θ2
∣∣∣∣
]θ(t)

π/2
= −log tan

θ(t)

2
, (2.15)

for 0 < θ < π/2. For π/2 < θ < π , from analogous calculations we have

RQ =
∫ R

Q

ds

y
=

[
−log tan

∣∣∣∣θ2
∣∣∣∣
]π/2

θ(t)

= log tan
θ(t)

2
.

If we want the hyperbolic distance to perform a reflecting telegraph process, then

θ(t) = 2 arctan e−U(t), (2.16)

which is certainly simpler than (2.11).
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Since θ ′ = π/4−θ/2 (see Figure 2), the coordinates of Q are (2 cos2(π/4−θ ′), cos 2θ ′) =
(1 + sin 2θ ′, cos 2θ ′), and, thus,

RQ =
∫ Q

R

ds

y
=

∫ Q

R

2 dθ ′

cos 2θ ′ =
∫ 2θ ′(t)

0

dw

cos w
=

∫ π/2

π/2−2θ ′(t)

dw

sin w

= −log

∣∣∣∣tan

(
π

4
− θ ′(t)

)∣∣∣∣ = −log tan
θ(t)

2
.

This confirms the result in (2.15) for 0 < θ < π/2. Analogous calculations can be done for
the other interval.

We can interpret the process in (2.16) as the angle of parallelism (in the sense of Lobachevsky)
between two lines separated by a distance U(t) (randomly changing according to a telegraph
process). If we imagine a particle moving on the y-axis and we draw the parallel to the x-axis
at the distance U(t) (see Figure 2), then for 0 < θ < π/2 we have the right parallel and
for π/2 < θ < π we have the left parallel, and (2.16) gives the well-known Lobachevsky
relationship

tan
θ

2
= e−U(t). (2.17)

If U(t) is negative then we have a similar representation in the lower half-plane.

Remark 2.5. From the Lobachevsky relationship (2.17) we have

E tan
θ(t)

2
= E e−U(t) = e−λt

[
cosh(t

√
λ2 + c2) + λ√

λ2 + c2
sinh(t

√
λ2 + c2)

]
. (2.18)

From (2.16) we see that, for λ, c → ∞ in such a way that c2/λ → 1, θ̂ , the limiting process
of θ , becomes θ̂ (t) = 2 arctan e−B(t). Therefore,

E tan
θ̂ (t)

2
= E e−B(t) = et/2,

which is the limit of (2.18) as λ, c → ∞.

3. Motion inside the Poincaré disk

The conformal transformation

w = z − i

−iz + 1
(3.1)

maps the upper half-plane H+
2 onto the unit-radius disk

D = {(x, y) : x2 + y2 < 1} (3.2)

lying in the complex plane C. In particular, the x-axis is mapped by (3.1) onto the border, ∂D,
of (3.2) and the origin, (0, 1), of H+

2 is mapped onto the center of D.
The processes dealt with in Section 2, namely

zT = ieT (t), zU = tanh U(t) + i

cosh U(t)
,
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are respectively mapped onto

W(t) = i tanh
T (t)

2
, Z(t) = tanh

U(t)

2
.

The motion on the half-circle C+
0 of H+

2 is transformed by (3.1) into a simple function of
the telegraph processes on the x-axis of D. However, the motion on the y-axis maintains its
structure. We check that the point (tanh U(t), 1/cosh U(t)) is mapped onto the point of D with
abscissa Z(t), as follows:

Z(t) = tanh U(t) + i/cosh U(t) − i

−i(tanh U(t) + i/cosh U(t)) + 1

= sinh U(t) + i(1 − cosh U(t))

−i sinh U(t) + 1 + cosh U(t)

= 2 sinh(U(t)/2) cosh(U(t)/2) − 2i sinh2(U(t)/2)

−2i sinh(U(t)/2) cosh(U(t)/2) + 2 cosh2(U(t)/2)

= tanh
U(t)

2
.

The hyperbolic distance η and the Euclidean distance d in D are related by

η = log
1 + d

1 − d
, (3.3)

whence

cosh η = 1 + d2

1 − d2 . (3.4)

By applying either (3.3) or (3.4) it is easy to prove that the hyperbolic distance of the process
W(t) from the origin is equal to |T (t)| and the hyperbolic distance from the center O of D of
the process Z(t) is equal to |U(t)|.
Remark 3.1. We observe that, since the hyperbolic distance between the points (x, y) and
(0, 1) of H+

2 is

cosh η = x2 + y2 + 1

2y
,

the distance between their images under the mapping (3.1) does not change. A direct proof of
the property of isometry of (3.1) is the following. While (0, 1) is mapped onto O, the center
of D, the point (x, y) is mapped onto the point with coordinates(

2x

x2 + (y + 1)2 ,
x2 + y2 − 1

x2 + (y + 1)2

)
.

This can be ascertained by writing

w(z) = w(x + iy) = x + iy − i

1 − i(x + iy)
= x + i(y − 1)

y + 1 − ix
= 2x + i(x2 + y2 − 1)

x2 + (y + 1)2 .

In order to check that the hyperbolic distance of the image of (x, y) from O is η, we perform
the following calculations. We start by evaluating d, the Euclidean distance of (x, y) from O,
which is given by

d2 = 4x2 + (x2 + y2 − 1)2

(x2 + (y + 1)2)2 . (3.5)
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From (3.5) we then have

1 + d2 = 2x4 + 2(y4 + 2y3 + 2y2 + 2y + 1) + 4x2(y2 + y + 1)

(x2 + (y + 1)2)2

= 2(x2 + y2 + 1)(x2 + (y + 1)2)

(x2 + (y + 1)2)2

and

1 − d2 = 4y(x2 + (y + 1)2)

(x2 + (y + 1)2)2 .

In conclusion,

cosh η = 1 + d2

1 − d2 = x2 + y2 + 1

2y
,

as claimed.

Remark 3.2. The simple form of the one-dimensional motions on the x- and y-axes of the
Poincaré disk permits us to give distribution of Z(t) = tanh U(t), which reads

P(tanh U(t) < w) = P(−ct < U(t) < arctanh w) = P

(
−ct < U(t) <

1

2
log

1 + w

1 − w

)
,

where −1 < w < 1. Let pU(u, t) be the absolutely continuous component of the telegraph
process U (see (2.3)). Then

pZ(w, t) = 1

1 − w2 pU

(
1

2
log

1 + w

1 − w
, t

)

for −tanh ct < w < tanh ct.

4. Planar motions at finite velocity with independent components

The one-dimensional motions considered in Section 2 provide the tools for constructing
planar motions with finite velocity in the hyperbolic plane H+

2 .
The first possible motion in the plane has independent components given by

X1(t) = tanh U(t), Y1(t) = eT (t). (4.1)

The hyperbolic distance, η1, of the moving point from the origin is given by

cosh η1 = cosh T (t) + 1
2 e−T (t) tanh2 U(t).

Since E cosh T = E eT = E e−T , the independence of the processes T and U implies that

E cosh η1 = E eT (t){1 + 1
2 E tanh2 U(t)}.

An alternative planar motion in H+
2 is performed by the point with coordinates

X2(t) = tan θ(t) = tan

(
2 arctan tanh

U(t)

2

)
= sinh U(t), Y2(t) = eT (t). (4.2)
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In this case the hyperbolic distance of the moving point from the origin is given by

cosh η2 = cosh T (t) + 1
2 e−T (t) sinh2 U(t), (4.3)

and its mean value is

E cosh η2 = E eT (t)

{
1 + 1

2
E sinh2 U(t)

}
= 1

22 E eT (t){3 + E e2U(t)}, (4.4)

because
E sinh2 U(t) = 1

2 (E e2U(t) − 1).

We note that, as λ, c → ∞ (in such a way that c2/λ → 1), U(t)
w−→ B(t) and, thus, the

x-component in (4.2) converges to sinh B(t). By Bougerol’s identity, we can write

sinh B(t)
i.d.=

∫ t

0
eB1(s) dB2(s),

showing that the planar process in (4.2) can be viewed as a finite-velocity version of the
hyperbolic Brownian motion in (1.13). We also note that, while the motion in (4.1) covers
the strip S = {(x, y) : −1 < x < 1, y > 0}, the planar movement in (4.2) can enter all regions
of H+

2 .
Another planar motion the components of which are obtainable from the one-dimensional,

finite-velocity processes examined in Section 2 has components

X3(t) = eT (t) sinh U(t), Y3(t) = eT (t). (4.5)

In this case we clearly lose the independency of the components of the motion, but maintain
the property that the motion is supported all over H+

2 . The hyperbolic distance, η3, of (4.5)
from the origin is given by

cosh η3 = cosh T (t) + 1
2 eT (t) sinh2 U(t),

and has mean value equal to that in (4.4). We also observe that

cosh η3 − cosh η2 = sinh T (t) sinh2 U(t),

and when T (t) < 0 the moving point is inside the half-circle and the hyperbolic distance η3
is less than η2. Of course, if T (t) > 0 then η3 > η2, as a check of the diagram in Figure 3
straightforwardly shows.

The randomly moving point (tanh U(t), eT (t)) is mapped by (3.1) onto the point of D with
Cartesian coordinates(

2 sinh U(t)

(eT (t) + 1)2 + sinh2 U(t)
,

e2T (t) − 1 + sinh2 U(t)

(eT (t) + 1)2 + sinh2 U(t)

)
.

The Euclidean distance, d , of this point from the origin is given by

d2 = 1 − 4eT (t)

(eT (t) + 1)2 + sinh2 U(t)

= 1 − 2

1 + cosh η2
(in view of (4.3))

= cosh η2 − 1

cosh η2 + 1
.
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y

Y = eT t( )

O

−1 0 1 x

θ

X2 = sinh ( )U t

X1 = tanh ( )U t

X3 = T t( )e sinh ( )U t

Figure 3: Possible definitions of planar motions in the plane.

This is clearly the relationship in (3.4). Furthermore, at each time t the moving particle lies
inside a circle with center coinciding with the center of D and radius given by

max d2 = 1 − min
2

1 + cosh η2

= 1 − 2

1 + max cosh η2

= 1 − 2

1 + cosh ct + 1
2 ect sinh2 ct

.

Clearly, max d2 = 0 for t = 0 and coincides with the whole of D as t → ∞.
Similar formulae hold for the other two vector processes.

5. Governing equations of the probability distributions

The process Y = eT (t) developing on the y-axis has law pY (y, t) given by

pY (y, t) = 1

y
pT (log y, t), y > 0,

where

pT (log y, t) = e−λt

2c

[
λI0

(
λ

c

√
c2t2 − log2 y

)
+ ∂

∂t
I0

(
λ

c

√
c2t2 − log2 y

)]
1{| log y|<ct}

+ e−λt

2
[δ(y − ect) + δ(y − e−ct)]. (5.1)

Furthermore, the distribution in (5.1) is the solution to the equation

∂2p

∂t2 + 2λ
∂p

∂t
= c2y

∂

∂y

(
y

∂

∂y

)
p, y > 0, t > 0, (5.2)

subject to the initial condition
p(y, 0) = δ(y − 1).
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This is because the law of the telegraph process solves the telegraph equation

∂2p

∂t2 + 2λ
∂p

∂t
= c2 ∂2p

∂x2 ,

and the transformation y = ex immediately leads to (5.2).
Equation (5.2) can also be obtained by considering a persistent random walk with velocity

depending linearly on the ordinate y of the current position and with changes of direction
occurring at Poisson times. Therefore, the joint densities of the distributions

f (y, t) dy = P{Y (t) ∈ dy, V (t) = cy}, b(y, t) dy = P{Y (t) ∈ dy, V (t) = −cy}
satisfy the system of differential equations

∂f

∂t
= −cy

∂f

∂y
+ λ(b − f ),

∂b

∂t
= cy

∂b

∂y
+ λ(f − b). (5.3)

From (5.3), (5.2) can easily be extracted.
For the process developing on the half-circle C+

0 we have the following result.

Theorem 5.1. The angle process θ(t) = 2 arctan tanh(U(t)/2) has distribution with density

pθ(θ, t) = pU

(
−log

cos θ

1 + sin θ
, t

)
1

cos θ
(5.4)

for −2 arctan tanh(ct/2) < θ < 2 arctan tanh(ct/2), with pU as given by (2.3). Furthermore,
the distribution in (5.4) satisfies the partial differential equation

∂2p

∂t2 + 2λ
∂p

∂t
= c2 cos θ

∂

∂θ

(
cos θ

∂

∂θ

)
p. (5.5)

Proof. We obtain the exact distribution of (2.11) by observing that

P

(
−2 arctan tanh

ct

2
< θ(t) < θ

)
= P

(
−2 arctan tanh

ct

2
< 2 arctan tanh

U(t)

2
< θ

)

= P

(
−tanh

ct

2
< tanh

U(t)

2
< tan

θ

2

)

= P

(
e−ct < eU <

1 + tan(θ/2)

1 − tan(θ/2)

)

= P

(
−ct < U < −log

1 − tan(θ/2)

1 + tan(θ/2)

)
.

In the above steps we have used the facts that the function θ(t) defined in (2.11) varies in
(−π/2, π/2), tanh x is a monotone increasing function, and the inverse of tanh x is also
increasing. Hence, we have

pθ(θ, t) = d

dθ
P(θ(t) < θ) = pU

(
−log

1 − tan(θ/2)

1 + tan(θ/2)
, t

)
1

cos θ

= pU

(
−log

cos θ

1 + sin θ
, t

)
1

cos θ
(5.6)
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for

−2 arctan tanh

(
ct

2

)
< θ < 2 arctan tanh

(
ct

2

)
.

We can also obtain explicitly the partial differential equation satisfied by the distribution
in (5.6). By (2.11) we must perform the transformation

θ = 2 arctan tanh
u

2

in the telegraph equation. We find that

∂

∂u
= ∂

∂θ

1

1 + tanh2(u/2)

1

cosh2(u/2)
= ∂

∂θ

1

cosh u
= ∂

∂θ
cos θ,

taking into account the fact that

tan θ = 2 tanh(u/2)

1 − tanh2(u/2)
= sinh u

and, thus, cosh u =
√

1 + sinh2 u = √
1 + tan2 θ = 1/cos θ . Therefore, in this case the

governing equation is

∂2p

∂t2 + 2λ
∂p

∂t
= c2 cos θ

∂

∂θ

(
cos θ

∂

∂θ

)
p.

Telegraph-type equations with space-varying velocities, like (5.2) and (5.5), have been
studied by Ratanov (1999). Models of this type can be fruitfully applied in the study of
motions in inhomogeneous media, where the velocity of particles is locally determined by the
irregular structure of the material.

6. On the behavior of the hyperbolic distance in H+
2 for motions with finite velocity

We here consider a planar motion in H+
2 and focus our attention on the behavior of the

hyperbolic distance of the randomly moving particle from the origin. The problem of finding
the exact distribution of the hyperbolic distance of the moving point from the origin of H+

2
is complicated by the awkward expressions for cosh ηj , j = 1, 2, 3. The simplest hyperbolic
distance is that in (4.3). We give an expression for it in the next theorem.

Theorem 6.1. The hyperbolic distance from the origin, η2, of the planar process with compo-
nents (sinh U(t), eT (t)) has distribution given by

P(1 ≤ cosh η2 ≤ z) =
∫ min(ct,log(z+√

z2−1))

max(−ct,−log(z+√
z2−1))

P(cosh v ≤ cosh η2 ≤ z | T (t) = v)

× P(T (t) ∈ dv), (6.1)

with density

d

dz
P(1 ≤ cosh η2 ≤ z) =

∫ min(ct,log(z+√
z2−1))

max(−ct,−log(z+√
z2−1))

√
2ev/2

√
z − cosh v

√
1 + 2ev(z − cosh v)

× pU(arcsinh(
√

2ev/2
√

z − cosh v), t) P(T (t) ∈ dv),

for 1 ≤ z ≤ cosh ct + (ect/2) sinh2 ct, where pU(z, t) dz = P(U(t) ∈ dz) is as given in (2.3).
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Proof. We first give the following conditional distribution:

P(cosh v ≤ cosh η2 ≤ z | T (t) = v)

= P(cosh v ≤ cosh T (t) + 1
2 e−T (t) sinh2 U(t) ≤ z | T (t) = v)

= 2 P(0 ≤ U(t) ≤ arcsinh(
√

2(z − cosh T (t))1/2eT (t)/2) | T (t) = v)

= 2 P(0 ≤ U(t) ≤ log(
√

2ev/2(z − cosh v)1/2

+ (1 + 2ev(z − cosh v))1/2) | T (t) = v). (6.2)

The conditional probability (6.2) is defined on the interval

K = {z : cosh v ≤ z ≤ cosh v + 1
2 e−v sinh2 ct},

as can be ascertained from (4.3). It is easy to check that

P(cosh v ≤ cosh η2 ≤ cosh v + 1
2 e−v sinh2 ct | T (t) = v)

= 2 P(0 ≤ U(t) ≤ log(sinh ct +
√

1 + sinh2 ct))

= 2 P(0 ≤ U(t) ≤ ct)

= 2
∫ ct

0
pU(u, t) du

= 1. (6.3)

The bounds in the term on the right-hand side of the first equality in (6.3) are obtained by taking
z equal to the right and left limits of K .

We can also extract from (6.2) the explicit form of the density of cosh η2, as follows:

d

dz
P(cosh v ≤ cosh η2 ≤ z | T (t) = v)

=
√

2ev/2

√
z − cosh v

√
1 + 2ev(z − cosh v)

pU(arcsinh (
√

2(z − cosh v)1/2ev/2), t)

for cosh v ≤ z ≤ cosh v + 1
2 e−v sinh2 ct. Here pU ≡ pU(u, t) is the density of the absolutely

continuous component of the telegraph process. The distribution of cosh η2 can be inferred
from (6.2) and takes the following form:

P(1 ≤ cosh η2 ≤ z)

=
∫ min(ct,log(z+√

z2−1))

max(−ct,−log(z+√
z2−1))

P(cosh v ≤ cosh η2 ≤ z | T (t) = v) P(T (t) ∈ dv).

The interval where the distribution (6.1) is defined is

J =
{

1, cosh ct + ect

2
sinh2 ct

}
.

The upper bound of J is obtained by observing that

max cosh η2 = max cosh T (t) + 1
2 e− min T (t) max sinh2 U(t).
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From (6.1) we can infer the explicit density of the distribution of the hyperbolic distance
cosh η2(t). Since

P(cosh v ≤ cosh η2 ≤ z | T (t) = v) = 0

for v = ± log(z + √
z2 − 1), we have

d

dz
P(1 ≤ cosh η2 ≤ z)

=
∫ min(ct,log(z+√

z2−1))

max(−ct,−log(z+√
z2−1))

√
2ev/2

√
z − cosh v

√
1 + 2ev(z − cosh v)

× pU(arcsinh(
√

2ev/2
√

z − cosh v), t) P{T (t) ∈ dv}
for z ∈ J .

Remark 6.1. In the limiting case (where λ, c → ∞ in such a way that c2/λ → 1), the
planar motion in (4.2) tends to a version of the hyperbolic Brownian motion with components
(eB1(t), sinh B2(t)), the hyperbolic distance of which is clearly given by

cosh η2 = cosh B1(t) + e−B1(t)

2
sinh2 B2(t).

In (6.2) and (6.1) the distributions of the telegraph processes must be replaced by those
of Brownian motions B1 and B2 and the intervals K and J must undergo the necessary
modifications.

Remark 6.2. A different approach to the problem of studying the evolution of the hyperbolic
distance η ≡ η(t) of planar motions consists in describing η(t) as a telegraph process with
space-dependent speed v(z) = c/z, where c is some positive constant. This represents a sort of
qualitative approximation to the process described by η. Near the origin, the particle is pushed
away at high velocity and slows down if its distance from the origin increases. A Poisson
process governs the durations of the periods in which η increases and decreases.

If we assume that the direction of motion is reversed at Poisson times, then the probability
functions

f (z, t) dz = P

(
X(t) ∈ dz, V (t) = c

z

)
, b(z, t) dz = P

(
X(t) ∈ dz, V (t) = −c

z

)
,

related to the particle position X(t) and the current speed V (t), satisfy the system of differential
equations

∂f

∂t
= −c

z

∂f

∂z
+ λ(b − f ), (6.4)

∂b

∂t
= c

z

∂b

∂z
+ λ(f − b). (6.5)

The reasoning leading to (6.4) is that the position z is reached at time t + dt if at time t the
particle starts at z − dz′ with speed c/(z − dz′), where the displacement dz′ must be such that

z − dz′ + c

z − dz′ dt = z,

so that dz′ = c dt/z (up to negligible infinitesimals).
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From (6.4) and (6.5) it is easy to show that p = f +b satisfies the partial differential equation

∂2p

∂t2 + 2λ
∂p

∂t
= c2

z

∂

∂z

(
1

z

∂

∂z

)
p. (6.6)

By means of the transformation z = sinh η, where η is the hyperbolic distance of a point
(x, y) of H+

2 from the origin, (0, 1), we extract from (6.6) the following equation, where
2η = η′:

∂2p

∂t2 + 2λ
∂p

∂t
= c2

sinh η cosh η

∂

∂η

(
1

sinh η cosh η

∂

∂η

)
p

= (2c)2

sinh(2η)

∂

∂η

(
1

sinh(2η)

∂

∂η

)
p

= 24c2

sinh η′
∂

∂η′

(
1

sinh η′
∂

∂η′

)
p. (6.7)

Equation (6.7) is therefore related to a motion where the hyperbolic distance from the origin
varies with speed c/sinh η, decreasing with η.

In the case of the Kac limit (λ, c → ∞ in such a way that c2/λ → 1), from (6.7) we obtain
the heat equation in the form

∂p

∂t
= 23

sinh η′
∂

∂η′

(
1

sinh η′
∂

∂η′

)
p

= 23

sinh η′

{
∂

∂η′

(
sinh η′ ∂

∂η′

)
+ ∂

∂η′

(
1 − sinh2 η′

sinh η′
∂

∂η′

)}
p. (6.8)

For sinh η′ ∼ 1, that is, for η′ ∼ log(1 + √
2), the second term in (6.8) is negligible. In the

neighborhood of η′ = log(1 +√
2), the solution of (6.7), subject to p(η′, 0) = δ(η′), is similar

to that of classical hyperbolic Brownian motion.

7. Some remarks concerning hyperbolic Brownian motion in the space H+
3

A possible three-dimensional motion with finite velocity can be obtained by generalizing
ideas of Section 4. We can define the process

X(t) = sinh U(t), Y (t) = sinh V (t), Z(t) = eT (t). (7.1)

The processes T , U , and V are independent telegraph processes. The idea underlying the
definition in (7.1) is to consider half-circle geodesics in the upper half-planes {(x, z) : x ∈ R,

z > 0} and {(y, z) : y ∈ R, z > 0} and processes similar to (2.11) on each of them. The X and
Y components of three-dimensional motion are then defined as in Section 3. This procedure
can be generalized to the space H+

n .
As λ, c → ∞ with c2/λ → 1, the vector process in (7.1) converges to

X̃(t) = sinh B1(t), Ỹ (t) = sinh B2(t), Z̃(t) = eB3(t), (7.2)

where B1, B2, and B3 are independent Brownian motions. By Bougerol’s identity, the vector
process in (7.2) is equal in distribution to

X(t) =
∫ t

0
eB3(s) dB1(s), Y (t) =

∫ t

0
eB3(s) dB2(s), Z(t) = eB3(t). (7.3)
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Clearly, the vector process in (7.3) is the solution to the system of stochastic differential
equations

dX = Z dB1, dY = Z dB2, dZ = Z dB3 + 1
2Z dt

with initial conditions X(0) = Y (0) = 0 and Z(0) = 1.
Recall that the hyperbolic Brownian motion in H+

3 = {(x, y, z) : z > 0, (x, y) ∈ R2} is a
diffusion with generator

z2

2

{
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

}
.

It possesses the simple stochastic representation (see Gruet (1996))

X(t) =
∫ t

0
eB1(s)−s/2 dB2(s), Y (t) =

∫ t

0
eB1(s)−s/2 dB3(s), Z(t) = eB1(t)−t/2,

where B1, B2, and B3 are independent Brownian motions.

Theorem 7.1. The hyperbolic distance η(t), t > 0, of hyperbolic Brownian motion from the
origin, (0, 0, 1), of H+

3 has distribution

pH+
3

(η, t) = e−t

2
√

πt3/2

ηe−η2/4t

sinh η
, η > 0, (7.4)

and is the solution to the initial-value problem

∂p

∂t
= 1

sinh2 η

∂

∂η

(
sinh2 η

∂

∂η

)
p, p(η, 0) = δ(η). (7.5)

Proof. We show that (7.4) satisfies (7.5) directly. Let us write

g(η, t) = e−t ηe−η2/4t

t3/2 sinh η
.

Some calculations show that

∂g

∂t
= e−t t−3/2ηe−η2/4t

sinh η

{
−1 − 3

2t
+ η2

4t2

}
, (7.6)

∂g

∂η
= e−t t−3/2e−η2/4t

sinh η

{
1 − η

cosh η

sinh η
− η2

2t

}
,(

sinh2 η
∂

∂η

)
g = e−t t−3/2e−η2/4t

{
sinh η − η cosh η − η2

2t
sinh η

}
,

∂

∂η

(
sinh2 η

∂

∂η

)
g = e−t t−3/2e−η2/4t η sinh η

{
−1 − 3

2t
+ η2

4t2

}
.

From this we easily find that

1

sinh2 η

∂

∂η

(
sinh2 η

∂

∂η

)
g = e−t t−3/2e−η2/4t η

sinh η

{
−1 − 3

2t
+ η2

4t2

}
,
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which coincides with (7.6), thus proving that the function g is a solution to the equation

∂p

∂t
= 1

sinh2 η

∂

∂η

(
sinh2 η

∂

∂η

)
p.

The value of the normalizing constant, C = 1/2
√

π , in (7.4) is evaluated below (and slightly
differs from that appearing in Karpelevich et al. (1959)). Taking into account the hyperbolic
element sinh2 η dη, we have

1 = Ce−t t−3/2
∫ ∞

0
ηe−η2/4t sinh η dη

= C
e−t

2
t−3/2

∫ ∞

0
ηe−η2/4t (eη − e−η) dη

= C
1

2
t−3/2

∫ ∞

0
η(e−(η−2t)2/4t − e−(η+2t)2/4t ) dη

= C
1

2
t−3/2

√
2t

{∫ ∞

−√
2t

(2t + w
√

2t)e−w2/2 dw −
∫ ∞

√
2t

(w
√

2t − 2t)e−w2/2 dw

}

= C
1

2
t−3/2

√
2t2t

∫ ∞

−∞
e−w2/2 dw

= 2
√

πC.

Therefore, the explicit expression for pH+
3

(η, t) is

pH+
3

(η, t) = 1

2
√

π
g(η, t),

which coincides with (7.4).
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