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Abstract

In this paper we study a variational inequality in which the principal operator is a generalised
Laplacian with fast growth at infinity and slow growth at 0. By defining appropriate sub-
and super-solutions, we show the existence of solutions and extremal solutions of this
inequality above the subsolutions or between the sub- and super-solutions.
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1. Introduction

In this paper, we study a variational inequality in which the principal operator is a
generalised Laplacian (</>-Laplacian) with fast growth at infinity and slow growth at
0 and where the lower order term is nonlinear. An example of such a variational
inequality is the following:

[ <t>(\Vv\)dx- f <t>(\Vu\)dx> [ f(x,u)(v-u)dx, VueWjL*.
Jn Jn Jn (1.1)
u € WjL

where <i> is the Young function given by

<D(0 = el"'""!"' ($(0) = 0), (1.2)

for p > 1. Here, ft is a bounded open set in KN (N > 1) with Lipschitz boundary
9ft, WQLO is the first-order Orlicz-Sobolev space of functions vanishing on 9ft (see,
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180 VyKhoiLe [2]

for example, Section 2.1 for more details), and / : f i x l ^ K is a Caratheodory
function with a certain growth condition to be specified later.

Note that for <J> given in (1.2) we have

d>(r) = o(/«) as t -+ 0+

and

tq = <?(<!>(/)) as t -> oo,

for any power tq (q > 0). Inequality (1.1) is the weak (variational) form of the
nonlinear degenerate elliptic boundary value problem

= f(x, u) in Q,
(1.3)

M = 0 on 3fi,

where </> = 4>'. Problem (1.3) and the variational inequality (1.1) are related to
a sandpile problem studied recently by Aronsson et al. [2], Evans et al. [15] and
Prigozhin [20,21]. In these works, the (dynamic) problem is formulated as a parabolic
equation that contains the p-Laplacian with large p:

»x(0 ,oo) ,

x {t = 0},

and also their limits when p —»• oo. The limit problem is in fact equivalent to the
following variational inequality:

if-u,edIK(u) f o r f > 0 ,

| u = g when t = 0.

Here, Apu = div(|Vw|p~2VK) and dIK(u) is the subdifferential of the indicator
function IK of the convex set K = [v : |Vu| < 1 a.e.}. The motivation of (1.4)
and (1.5) is the consideration of fast/slow diffusion operators such that within the
region {|Vw| < 1 — 8} (8 > 0, small), the diffusion coefficient IVHI''"2 is very small,
whereas within {|VM| < 1 + 5}, |Vw|p~2 is very large. The limit variational inequality
(1.5) is also closely related to the elastic-plastic torsion problem (see, for example,
[8,9] or [22]). In the variational form, Ap is the derivative of the functional

/„(«) = - f \Vu\pdx (1.6)
PJn

with the integrand |V«|P being very small in {|VM| < 1 — 8} and very large in
{|V«| < 1 + 8}. Because Ip is convex, the equation in (1.4) is (in the weak form)
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[3] Sub-supersolutions 181

equivalent to the variational inequality

f u,(v - u) dx + Ip(v) - lp{u) > f f(v- u) dx, (1.7)
Jn Jn

(for all v in a certain space of admissible functions). The limit inclusion in (1.5) is
equivalent to the inequality

[ u,{v-u)dx + IK(v)-IK(u)> f f(v-u)dx. (1.8)
n Jn

The functional lK in (1.8) and (1.5) can be written formally as an integral functional
similar to (1.6):

/*(")= f Q(\Vu\)dx,
Jn

where Q : K —> K U {oo} is the maximal graph:

| 0 for < e [ -1 , 1],
[oo for |?| > 1.

Note that the functions Qp given by Qp{t) = \t\p/p, ( e l , have limit Q (pointwise)
as p -+ oo. When / and u are independent of t, the stationary inequality associated
with (1.5) is / e dIK(u), which is not always solvable.

We propose here to study an intermediate problem between the /7-Laplacian prob-
lems (1.7) and their limit variational inequality (1.8). We consider the inequality

f u,(v-u)dx+ [ <P(\Vv\)dx- [ $>(\\>u\)dx > I f(v-u)dx, (1.9)
Jn Jn Jn Jn

for all v in some appropriate function space (to be defined later). Here, <i> is a convex
function such that, for every p > 1,

and <D(f) = o(Q{t)) for large t, (1.10)

and

Q(t) = o(®(t)) and <D(0 = o(Qp(t)) for small t. (1.11)

Thus, the function 4> plays an intermediate role between all functions Qp and their
limit Q. An example of Young functions that satisfy (1.10) and (1.11) is

o, i = o.
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182 VyKhoiLe [4]

or, more generally, the function given in (1.2) above. In what follows, we consider
the case where <J> is given by (1.2); however, the arguments can be adapted in a
straightforward manner to problems with <£ satisfying (1.10) and (1.11).

Furthermore, we propose to investigate in this paper the stationary inequality asso-
ciated with (1.9), that is, the variational inequality

I <b(\Vv\)dx- f <t>(\Vu\)dx> [ f(v-u)dx,
Ja Jn Jn

that is, the inequality (1.1) above. The evolutionary problem will be investigated in a
future project.

We are concerned here with the existence and properties of solutions of the vari-
ational inequality (1.1). In the case where the lower order term is linear, that is,
/ = f(x) does not depend on u, (1.1) has a unique solution, as can be proved by
classical existence theory for variational inequalities. In the general case where / also
depends on u, the problem is no longer coercive and thus may not have solutions. We
study (1.1) in that general case by a sub-supersolution approach. This approach, when
applicable, usually gives useful information not only on the existence of solutions of
the problem but also on the structure of the solution sets, such as their compactness,
directedness, or the existence of extremal solutions. The method was developed re-
cently in [16,17] for variational inequalities and has been extended to other types of
inequalities such as variational-hemivariational inequalities or systems of variational
inequalities in first-order Sobolev spaces WUp (see, for example, [3-7,18] and the
references therein). However, this technique has not been extended so far to apply
to equations or inequalities in nonreflexive Banach spaces such as Orlicz-Sobolev
spaces. Another point is that, in most previous works so far, the potential functionals
for the principal operators are smooth or at least Lipschitz continuous. In our problem
here, the principal functional is not differentiable and even not defined on the whole
associated function space. Therefore, a new sub-supersolution approach is needed for
the present problem. The sub- and super-solution approach for variational inequalities
where the potentials of their principal operators are nonsmooth do not appear to have
been studied. Also, since our functionals here do not satisfy A2 conditions, working
in nonreflexive Orlicz-Sobolev spaces also requires new arguments and techniques.
In this paper, we shall define the appropriate concepts of sub- and super-solutions for
(1.1). Next, we prove the existence of solutions and study some properties of solutions
of (1.1), between sub- and super-solutions.

The paper is organised as follows. In the second section, after a short review of
the basic properties of Orlicz-Sobolev spaces, we define sub- and super-solutions of
the inequalitity (1.1). Existence and enclosure properties of solutions of (1.1) above
subsolutions .and between the sub- and super-solutions are established in Section 3.
Section 4 is devoted to the existence of extremal solutions, that is, of the smallest and
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[5] Sub-supersolutions 183

greatest solutions of (1.1), between the sub- and super-solutions.

2. Sub- and super-solutions

First, let us recall some basic definitions and notation concerning Orlicz-Sobolev
spaces.

2.1. Preliminaries on Orlicz-Sobolev spaces Let <t> be a Young function (or N-
function). We denote by <t> the Holder conjugate function of 4>, which is defined by
<J>(0 = sup{fs — 4>(s) : s e R], and by <t>* the Sobolev conjugate of <I> (in (Rw), with

-f
Joprovided that

(we refer to [1], [13] or [14] for the properties of Young functions). The Orlicz class
L* := L<p(Q) is the set of all (equivalence classes of) measurable functions u defined
on Q such that fn <J>(|w(;c)|) dx < oo. The Orlicz space L* := L<t,(£2) is the linear
hull of L*, that is, the set of all measurable functions u o n ^ such that

dx < co, for some k > 0.

Then L* is a Banach space when equipped with the (Luxemburg) norm

IIKIU = IMU. = inf {* > 0 : ̂  <& (^j dx < 1 j .

It is clear that L°°(£2) c L* C L'(J2). The closure of L°°(fi) in L0 is denoted
by £•<$, which is a separable Banach space. The first-order Orlicz-Sobolev space
W'L* := W1LQ(Q) is the set of all u e L# such that the distributional derivatives
d,u = du/dxt, i = 1 , . . . , N, are also in L*. We note that W'L* is a Banach space
with respect to the norm

1=1

The Orlicz-Sobolev space WlE,t, is defined similarly. It is known (see, for example,
[13,14]) that L* is the dual space of E&, that is, L* = (£$)* and L* = (£»)*.
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184 Vy Khoi Le [6]

The spaces WXL<$ and WlE® can be identified with closed subspaces of the products
Flilo ^* anc* FI/Io £*> respectively. It is the case that

,=0

and if we denote by r = a(Y\L<t>, FI^*) m e weak* topology in
the restriction of r to the closed subspace W'L*, then W'L* is closed under weak*
convergence of J~[ L^. Since J~[ £^ is separable, we have the following properties of
WXLQ, which shall be used frequently in what follows (see, for example, [11]).

If {«„) is a bounded sequence in WXLQ (with respect to || • ||it4)), then {«„} has a
subsequence which converges with respect to the topology r to some u e WlL$, that
is, a bounded set in W'L* is relatively sequentially compact with respect to the weak*
topology r.

We denote by W^L® the closure of C™(Q) with respect to the weak* topology r.
By a Poincare inequality for Orlicz-Sobolev spaces (see [11]), we know that on WQ L*
the norm || • \\wiu is equivalent to the norm || • \\wiu given by ||M||W(itc, = || |VM||U«.

We define an ordering on L* and thus on WXL^ and WQLQ in a natural way as follows.
For M, v € L&, U < v -<=>̂  u(x) < v(x) for almost all x € £2. It is clear that "<" is
a partial ordering among functions in L*.

A Young function <!>! is said to grow essentially more slowly than another Young
function <&2 (at infinity) (see, for example, [1,13,14]), abbreviated by 4>i <£ <J>2, if

lim ° ' ( ? ) = 0, for all k > 0.
<D(fcr)

We have the following embeddings, similar to those among Sobolev spaces:

• The embedding WQLQ <->• L<j>. is continuous.
• If * <?C $>*, then the embedding W'L^, <̂+ L* is compact. In particular, since

$ « $ ' (see, for example, [11]), the embedding WlL<j, °-» L$ is compact.

Moreover, in the case

ds < oo
s(N+\)/N

in (2.1) (which is the case we study in this paper), it is shown that W' L$ is continuously
embedded in L°°(Q) (see [1,11]).

A Young function <$> is said to satisfy a A2 condition (at infinity) if there exist K > 0
and t0 > 0 such that <t>(2f) < K<t>(t) for all f > t0. Properties of the Orlicz space L*
and of the Orlicz-Sobolev spaces W'L$ and WQLQ when 4> and/or O satisfies a A2

condition are presented in detail in the references [1,11,13,14].
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[7] Sub-supersolutions 185

2.2. Definitions of sub- and super-solutions In what follows we assume that 4> is
given by (1.2). All results here are extended in a straightforward manner to the case
where 4> satisfies (1.10)—(1.11). Let us denote

~ Jn

and let D(J) = {u e IV'L* : J(u) < oo} = {u e WlL<p : |Vw| e L*} be the
effective domain of J.

We are now ready to define sub- and super-solutions for (1.1).

DEFINITION 2.1. (a) A function u e W'L* is a subsolution of (1.1) if

(i) u < 0 on 3ft,
(ii) / ( • , « ) € £ ' («) , _ (2.2)

(hi) fa <I>(|VM|) dx < oo (that is, |V«| € L*),

and for all v e u A [W£L9 n D(7)]

I <P(\Vv\)dx- I <P(\Vu\)dx> I f(x,u)(v-u)dx. (2.3)
Jn Jn Jn

(b) A function u e W lL<p is a supersolution of (1.1) if

(i) u > 0 on 3ft,
(ii) / (- ,«) eL'(f t ) , _ (2.4)

(hi) /n$(|VM|)dA: < oo (that is, |VM| e L*),

and for all v e ii v [WjL* n D(/)]

u\)dx> I f(x,u)(v — u)dx. (2.5)

In these definitions, we use the following notation:

u v v = max{M, v], A* B = {a *b : a z A,b € B],

u A v = min{«, v}, u * A = {u} * A,

where u, v e W'L*, A, B c WlL<j,, and * e {v, A}.
Let us illustrate Definition 2.1 by simple examples of constant sub- and super-

solutions. Let a G OS, a < 0. Then u = a is a subsolution of (1.1) if / (x , a) is in
L'(ft)and/(jc,a) > Ofora.e.x e ft. In fact, by the conditions in (2.2), Definition 2.1
is trivial. Moreover, for any v e UA [WjL* D D(/)] , we have u — u_ < 0 and thus

f f f f
/ ® Q V v \ ) d x - / O ( | V M | ) d x = / 4>( |Vu | ) r f jc > 0 > / / ( x , M) (W - w) d x ,

Jn Jn Jn Jn
that is, u also satisfies (2.3) in Definition 2.1. Similarly, if b > 0 is a number such
that / (• , b) € L'(ft) and f(x, b) < 0 for a.e. * e ft, then ii = Ms a supersolution
of (1.1).
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186 VyKhoiLe [8]

3. Existence of solutions above subsolutions
or between sub- and super-solutions

First, let us prove the following lattice property of Orlicz-Sobolev spaces WlL$
and WQLQ, which extends that of first-order Sobolev spaces.

LEMMA 3.1. WlL^, and W^L^, are closed under the operations v and A, that is, if
u, v e WlL$ (respectively W^L®), then u V v, u A v e W'L* (respectively

PROOF. Assume u, v e W'L*. We have u, v e Whl(Q) and from Stampacchia's
theorem (see, for example, [10] or [12]),

(3.1)
I Vu in {x e £2 : u(x) < v(x)}.

There exists e > 0 such that £M, £i>, |V(ew)|, |V(et>)| e £4,. Because

\eu in {* e £2 : M(X) > u(x)},
e(u V D ) =

I £i> in {JC e £2 : w(x) < v(x)},
we have

T f f
I <t>(e(u v v)) dx < I <$>(eu)dx+ / <£>(sv)dx < 00.

This proves that u v v e L<j,. Similarly, by using (3.1) on V(£w v £u) = V(e(u v u)),
one obtains

/ <&(e\S7(uvv)\)dx < I <i>(\V(eu)\)dx+ f <P(\V(ev)\)dx < 00.
Jn Jn Jn

Hence |V(MVU)| € L,p,thatis, V(MVV) e (L<t,)N. We have shown that u v i; € WlL<s>.
Analogous arguments hold for u A v. •

We assume that M,, . . . , u^ are subsolutions of (1.1) (in the sense of Definition 2.1)
and put

u = max{uj : l < i < k } (3.2)

and

Ho = min{u. : l < i < k } . (3.3)

From Lemma 3.1, u and MQ are in WXL$. Assume that / has the following growth
condition above u^:

(3.4)
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for a.e. x e £2, all u e [MQCC), OO), where a e L'(S2) and ^ is a Young function such
that

* « O (at infinity). (3.5)

Under these conditions, we have the following existence and comparison results
for (1.1).

THEOREM 3.2. Assume Mp • • •, «jt are subsolutions of (1.1) and that F has the
growth condition (3.4). Then there exists a solution u of (1.1) such that u > w.

In the proof of Theorem 3.2, we need the following estimate.

LEMMA 3.3. For any d > 0, there exists C > 0 such that

f <$(\Vu\)dx-d I \u\2dx>- I 4>(\Vu\)dx-C, WueW^L.p. (3.6)

PROOF. From [11, Lemma 5.7], there are positive constants D\, D2 such that

I <D(D,M) dx<D2 f O(| V«|) dx, V u e W*L*.
Jn Jn

This implies that

/ <i>(\Vu\)dx-d I \u\2dx

( f lU)dx-2dD2 [ \u\2dx).

Since t2 « $(t), there is a constant D3 > 0 such that ^ ( D ^ ) > 2cfD2|u|2 - D3, for
all M € K. This shows that

<f(\Vu\)dx-d I \u\2dx>\ [ 4>(\Vu\)dx-^-\Q\, (3.1)[ \ [
implying (3.6). D

We are now ready to prove Theorem 3.2.

PROOF OF THEOREM 3.2. For x e Q, t e R, put

— u(
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Because of the continuous (in fact, compact) embedding

l (3.8)

we have

\b(x, 01 < If I + Hulli-tfj) < \t\ + C\\u\\w,L9, (3.9)

for a.e. x e Q, all t e R. Here and in what follows, C denotes a generic positive
constant.

This estimate shows that the operator B given by

(B(u),4>)= Ib(x,u)<t>dx, (3.10)
Jn

is well defined and continuous from L°°(ft) into its dual and thus from WXL^ into its
dual. For u e L*, let us put T(u) = u v u and Tj(u) = u v Uj for j e { 1 , . . . , k}. It
follows from (3.8) and Lemma 3.1 that

T(u), Tj(u) e W ' L * ( ^ L~(Q)), V u e W'L*.

Also, if w e L* then T(M), r;(M) € L*. It can be easily verified that T and F,- are
continuous mappings from WlL<s, into itself and also from L* into itself. Because
T(u), Tj(u) > UQ a.e. on f2, we have from (3.4) that

for all u e L<j,. Therefore, the mapping u H^ / (• , T(u)) is continuous and bounded
from L* into L*(= (L*)*) and also from M '̂L* into (W'L,!,)*. Similar properties
hold for the mapping u t-+ / ( - , Tj{u)), 1 < j < k. Let us define

<roo,0) = jf

for all M, 0 G WlL<j>. The above arguments show that F is bounded and continuous
from L<j> to L*. Because the embedding V^'L* =-»• L* is compact, F is completely
continuous from W'L* with the weak* topology to (W'L*)*. Similarly, since the em-
bedding WlL<j, <L-> L°°(S2) is compact, the operator B defined in (3.10) is completely
continuous from WlL<t, (again with respect to the weak* topology) into (WL*)*. Let
us consider the variational inequality

u)0, VueWjL*,

https://doi.org/10.1017/S1446181100003023 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100003023


[11] Sub-supersolutions 189

with some fixed ft > 0. From the above arguments, we see that fiB — T is completely
continuous from WXL® (with respect to the weak* topology) to (WlL^)*. Let us
prove that /(•) + (({iB — F)(), •) is coercive in the following sense:

.. J(u) + (fSB(u)-r(u),u)
hm — = oo, (3.13)

< \\\\

i£n:uW<«(i)|

In fact, for j e { 1 , . . . , k}, u e WQLQ, we have

f \f(;Tj(u))\\u\dx
Jn

< [ \f(.,u)\\u\dx+ [

< f a(x)\u\dx+ /"*'(!«|)\u\dx+ [ \f(;Uj)\\u\dx
Jn Jn Jn

< ll«lli.-(n)(l|fl||t'(a) + ll/O,«,)lli. '(Q))+ I *'{\u\)\u\dx. (3.14)
Jn

Note that since ^ ' is nondecreasing and *I> is even, we have for all « e l ,

/

2|«| /.2|«|

}i''(s)ds> / *'(^)d5 > * ' ( |M | ) |M | (= *'(«)«).
For e, C > 0, it follows from (3.5) and the convexity of ^ that there exists D —
DeC > 0 such that

*'(l«l)l«l < *(2M) < £O(CM) + Z)eC, V « € K . (3.15)

Hence

[ V'(\u\)\u\dx <s I <P(Cu)dx + DeC\n\. (3.16)
Jn Jn

Combining (3.14M3.16) with (1.2), one gets, for any j € { 1 , . . . , k] and u € WjL*,

I/O, 7)(K))||II|</JC < llnllL-mdlfllLun) + H/0, «y-)

D,Dl|n|. (3.17)

We have a similar estimate to (3.17) in which fQ | / ( - , Tj(u))\\u\dx is replaced by

https://doi.org/10.1017/S1446181100003023 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100003023


190 Vy Khoi Le [12]

fQ | / ( - , r(«))||M| dx. Therefore, one obtains the following estimate:

< C ( * + l ) | | | | Z ( n ) ( ) | | / ( , ) | | 1 . ( n )

+ e{k+\)D2 [ <$>(\Vu\)dx + (k + l)D£Dl\Q\, VueW*L9. (3.18)

On the other hand, for all u e WlL<s,,

\(B(u),u)\< [\u-u\\u\dx< \ f\u\2dx+X- l\u\2dx. (3.19)

Choosing s > 0 sufficiently small in (3.18) and using (3.19), one gets (as above, C
denotes a generic constant),

> [ ®(\Vu\)dx-C\\u\\wiu-e(k+l)D2 [ Q(\Vu\)dx

-3J.[\u?dx-C

>\j^ *(|V«|)dx - C Uu\\Ku + j^ \u\2dx + \\ . (3.20)

From (3.6) of Lemma 3.3, (3.7) and (3.20), we obtain for all u e W*L$,

)dx-C(\\u\\wiu + \), (3.21)

for some C > 0 independent of u. Because

lim — i f <D(|V«|) dx = oo, (3.22)

(see, for example, [11]), (3.21) immediately implies (3.13).
It follows from the above arguments and classical existence theory for variational

inequalities (see, for example, [12] and [19]) that the inequality (3.12) has a solution
u. Let us verify that for all j e {1 , . . . , £ }

u>ur (3.23)

Let q e {1, . . . ,&}. Substituting v = u^Au eu^A [W^L® n D(J)] in (2.3) (with u^
instead of w) yields

^ A M ) - / (a , ) > - f f(x, U^)(U^ - U)+ dx.
Jn

(3.24)
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On the other hand, letting v = u^ v u in (3.12), we obtain

/(«, v u) - JQi) + {BB(u) - r(u), («, - u)+) > 0. (3.25)

Adding (3.24) to (3.25) and using the fact that for all v, w e WlL^

J(VAW) + J(WW)= / <J>(|V(u Aw)\)dx+ / ®(\V(vvw)\)dx
Jn Jn

= I <P(\Vv\)dx+ I <&(\Vw\)dx
Jn Jn

= J(v) + J(w),

which is a direct consequence of Stampacchia's theorem (see, for example, [12] or
[10]), we have

{u) - T{u), («, - u)+) + f f{x, u^)(u^ - u)+ dx > 0.

It follows from (3.11) that

).(M, -u)+)+ [ /(x^Ku^-urdx

= f [/('. «, (M, -

J=>

Hence

0 < {pB{u), (u - u)+) = p I b(-, u){u - u) dx

-Z u^(x)>u(x))

and thus

= B [
./(jcen-u,(Ar)>ii(j

(u-u)(u,-u)dx<0,

0=!
./(;t

Consequently, u^ — u = 0 a.e. in [x € Q : M^OO > u(;c)} and this set must have
measure 0. We have shown that u > u^ a.e. in Q. Since this holds for all q 6
{!,...,&}, one obtains u > u_.
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From the definitions of B and F, we have

B(u) = 0 and ( I » , 0) = / / ( - , u)<f>dx.
Jn

Therefore the variational inequality (3.12) reduces to our original inequality (1.1), that
is, u is a solution of (1.1). •

By using similar arguments, one can show the following existence result for solu-
tions lying between the subsolutions and the supersolutions when both exist. In this
case, we need only a more relaxed growth condition on the lower term between the
sub- and super-solutions. In fact, we have the following existence theorem.

THEOREM 3.4. Assume (1.1) has subsolutions w,, i = 1, . . . , k, and supersolutions
Hj, j = 1, . . . , m. Let u_ be as in (3.2) and u = min{w; : 1 < j' < m}. Suppose
furthermore that w < u a.e. in £2 and that f has the growth condition (3.4) for a.e.
x € SI, all u e [t*o(*), MoOOI where uo{x) = mzx{iij : 1 < j < m).

Then (1.1) has a solution u between u and u.

4. Existence of extremal solutions

In this section, we show a further property of the solution set of the inequality (1.1),
namely, we prove that under the assumptions of Theorems 3.2 or 3.4, there exist
greatest and/or smallest solutions of (1.1) between the sub- and super-solutions. First,
let us show the following result about the existence of greatest solutions above a
subsolution.

THEOREM 4.1. Under the assumptions of Theorem 3.2, there exists a greatest
solution u* above u, that is, u* is a solution of (1.1), u* > M, and ifu is any solution
of (1.1) such that u > M then u < u*.

PROOF. Let S be the set of solutions of (1.1) above u:

S := {u e WQ'L* : u is a solution of (1.1) and u > M a.e. in £2}. (4.1)

In the first step, we show that <S is bounded in WQLQ. In fact, assume u e S. Letting
v = 0 in (1.1) yields

I <f>(\Vu\)dx < f f{x,u)udx
Jn JQJn JQ

< f a\u\dx+ [ V'(\u\)\u\dx
Jn Jn

[ *(2\u\)dx, (4.2)
n
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(since * is a Young function, we have 0 < *I>'(|w|)|w| < *(2|u|), for all u e K).
Again, from [11, Lemma 5.7], there are constants C, k > 0 such that

/ <S>(\Vu\)dx > - f <5>(k\u\)dx, for all u e W0'L*.

From (3.5), there exists M > 0 such that

*(2|*|)
<t>(k\s\) 2C

As a consequence, one obtains

1
< — , for all J € R, \s\ >M.

<t(|Vii|)djr

n

< IIaIIz.*II"Ik* + / V(2M)dx + — I <P(k\u\)dx
J 2C J

{xen.\u(x)\<M) [xen-.lu(x)\>Mi

< I N I L J N I U + |£2|*(2A/)H / ®{k\u\)dx
2C JQ

1 f
< llalMNIt,,+ |£2|*(2M) + - / O(|VM|)dx.

Therefore
1 /"

(4.3)1 Jn

On the other hand, because <t> satisfies a A2 condition, we have from (3.22) a positive
number /?o such that

^'iNk'z.,, (4.4)

for all u € WQ'L*, UMIIIV̂ Z.* > ^o- Here /x is the best embedding constant for the
embedding WQL# «->• L^, that is,

M = inf{||M||v,.u : u 6 W0'L», ||«||L» = 1}.

In particular,

Mil" I k < ||«IIH^., for all M € W£U. (4.5)

If ll"llu > Ro/V, then from (4.3H4.5), it follows that jHalliJIullz.,, < |fil*(2M),
that is, ||«Hi.* < 2|^l*(2M)||a||^!. We have shown that if u € S then
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This estimate, together with (4.3) and (4.4), shows that the set {||H||WO'L» : M 6 <S} is
bounded, that is, <S is bounded in W^L®. From the boundedness of S in WQLQ, we
can choose M > 0 such that fn <$>(u/M) dx < 1, for all u e S.

Next, we show that S has a maximal element with respect to the ordering < in
WQL<S,, which is a maximal solution of (1.1). In view of Zorn's lemma, we only need
to check that every nonempty chain C in S has an upper bound. Suppose C ^ 0 is a
chain in S. Let u0 e C and put Co = {u e C : u > u0}. To prove that C has an upper
bound in <S, one only has to show that Co has an upper bound in S. Let

a0 := sup J / <D ( ^ ) dx : M € Co! (< 1).

By considering Co — u0 instead of Co, one can assume without loss of generality that
w > 0 a.e. in £2, for every u € Co- There are two cases:

(i) there is a u e Co such that fn 4>(«/M) dx = a0, and
(ii) for all u e Co, we have fu <$>(u/M) dx < a0.

If (i) holds then u is an upper bound of Co. In fact, for any v e Co, either u < v or
v < u. In the first case, we have from the monotonicity of <J> that

Thus fn<$>(u/M)dx — fn<P(v/M)dx. Because 0 < u < v and <I> is strictly
increasing on [0, oo), this occurs only if u = v. Hence u >v, for all v € Co, that is,
u is an upper bound of Co.

Assume now that case (ii) holds. In this case, from the definition of a0, we can
construct inductively a sequence {«„} in Co such that

and

dx, a0 - - \ , Vn > 1. (4.6)^ ) dx, a0M I n

We note that un > «n_i (for all n > 1). In fact, if this does not hold then «„_] > un

(because C is a chain) and as above, one must have

which contradicts (4.6). Consequently, {un} is an increasing sequence in L* and thus

un -¥• u a.e. in Q, (4.7)
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where u = sup{wn : n e N}. On the other hand, from the boundedness of {«„} in
WQL& and the compact embedding WQLQ «->• L*, by passing to a subsequence if
necessary, we can assume that un -*•* u in W^L®, and un —>• u in L*, and thus
in L'(^) . Comparing to (4.7) and by passing again to a subsequence if necessary, we
have u = u, which implies that un ->-* u in W^L®, and therefore

un -*• u in L<j>. (4.8)

Next, let us prove that u is an upper bound of Co. Let v e Co. If v < un for some n,
then v < M. Assume otherwise that v £ un for all «. Again, since Co is a chain, we
must have un < v for all n. Using again the above arguments, we get

<D (—) dx < [ * f—) d*, for all n € N. (4.9)

Letting n ->• oo in this inequality and using (4.6), one obtains a0 < / n <&(v/M) dx.
Because v e Co, this contradicts our assumption on a0. Hence u is an upper bound of
Co.

In this last step, let us prove that u belongs to <S. Since un > u for all n e N due to
{un} C S, we have u > u_. Because un e S, we have, for any v € WQLQ,

/"*(|Vw|)djc- [ 4>(\Vun\)dx> f f(x,un)(v-un)dx. (4.10)
Jn Jn Jn

It follows from (4.7) and (4.8) that

^ f f(x,u)(v-u)dx. (4.11)L
From the lower semicontinuity of J with respect to the weak* topology in W^L®, we
have

/ Q(\Vu\)dx < liminf / <b(\Vun\)dx. (4.12)
Jn n->0° Jn

Combining (4.10)-(4.12), one sees that u is a solution of (1.1). Hence u e S and u is
therefore an upper bound of C in S.

We have shown that every nonempty chain in S has an upper bound. By Zorn's
lemma, <S has a maximal element u*. Let us verify that u* is in fact the greatest
element of <S. Assume otherwise that there exists v € S such that

v £ u*. (4.13)

Because v >u_ and / has the growth condition (3.4)-(3.5), v satisfies (2.2) (ii). Also,
since v is a solution of (1.1), it clearly satisfies (2.2) (i) and (2.2) (iii). This means that
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v is asubsolution of (1.1). Similarly, u* is a subsolution of (1.1). Let« = max{u, u*}.
Note that the growth condition (3.4) also holds for v, «*, and u in our present case.
From Theorem 3.2, (1.1) has a solution w such that w > u(> U* > u). Hence w e S.
Because w > u* and u* is a maximal element of S, one must have w = u*. Thus
u* = w > u > v. This contradicts (4.13) and shows that u* is in fact the greatest
element of S. Our proof is complete. •

By employing analogous arguments, one can show the existence of solutions and
extremal solutions of (1.1) between the sub- and the super-solutions. In fact, we have
the following result.

THEOREM 4.2. Under the assumptions of Theorem 3.4, there exist a smallest solu-
tion u* and a greatest solution u* between u^andu, that is, M», U* are solutions of (I.I)
satisfying M < M » < M * < M , and if u is any solution of (1.1) such that u_ < u < u,
then w» < u < u*.
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