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FUNCTIONAL PEARLS
The Minout problem

RICHARD S. BIRD
Programming Research Group, Oxford University

1 Introduction

The problem of computing the smallest natural number not contained in a given set
of natural numbers has a number of practical applications. Typically, the given set
represents the indices of a class of objects 'in use' and it is required to find a 'free'
object with smallest index. Our purpose in this article is to derive a linear-time
functional program for the problem. There is an easy solution if arrays capable of
being accessed and updated in constant time are available, but we aim for an
algorithm that employs only standard lists. Noteworthy is the fact that, although an
algorithm using lists is the result, the derivation is carried out almost entirely in the
world of sets.

2 Specification

For the specification, let (—) denote set difference. Then we have

minout x = n / (nats — x), (1)

where nats denotes the set of natural numbers, n is a binary operator returning the
smaller of its two arguments, and n / (pronounced ' min reduce' or ' smallest')
applied to a set {a1,a2,...,an} returns

ar n a2 n ... n an.

Since the numeric ordering on naturals is well founded, the value of n / x, for an
infinite subset x of the naturals, is well defined.

Given a lazy functional language, definition (1) can easily be rendered as an
executable function. The essential idea is to represent nats as the infinite list [0..] and
replace n / by a function that returns the first element of a list. The result is a program
that takes O(n2) steps, where n = # x . If we sort x into increasing order, then this time
can be reduced to O(nlog«) steps. Our target, however, is a linear-time algorithm.

3 Derivation

The right-hand side of (1) refers to two sets, only one of which is named as an
argument to minout. It is reasonable to avoid commitment as to which of these sets
will turn out to be the more important for developing an algorithm, so we are led
to replace (1) with the more general specification

minout x U y - n / (x—y). (2)
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(For those in the know, the generalisation can be motivated in another way: the first
version of minout is not a homomorphism on sets while the second version is.)

In the specialization x = nats of (2), y is a finite, proper subset of x. It seems
reasonable to restrict (2) to arguments for which this property is maintained. In
particular, it follows that we do not have to introduce a fictitious identity element oo
of n for the value of n / {}. Hence we shall qualify (2) by requiring

y <= x (3)

(where c means strict set inclusion) as an invariant on the arguments of minout.
Since

(x\ U x2)-y = (x\ -y) U (x2-y)

we have by straightforward calculation that

minout(xl Ux2)y = minoutx\y n minoutx2y. (4)

In order to maintain our invariant (3) for this decomposition, we first use the fact that

x—y = x-(xOy)

to rewrite (4) in the form
minout(xl U x2)y = minoutx\y\ W minoutx2y2

where (yl,y2) = (xl dy,x2 f)y).

Clearly, y\ £ xl and y2 £ x2. Now we claim that

yc xl Ux2=z>yl c x\ Vy2cx2 (5)

The proof is by a contrapositive argument:

->O1 c xl v yl <= x2)
= {de Morgan,y\ £ xl,andj>2 £ X2)

y\ = xl A y2 = x2
= {definition of yl and y2}

xl [) y = xl A x2 f) y = x2
= {set theory}

xl £ y A x2 £ y.
= {set theory}

xl U x2 £ y.
=> {set theory}

- i / c x l U x2.

Condition (5) and y c xl U x2 ensures the invariant (3) holds on one of the
argument pairs in minout xlyl and minout x2y2. In order to eliminate that pair for
which (3) may not hold, we need to impose conditions on xl and x2, which so far have
been completely arbitrary. We shall take jcl and x2 to be disjoint, nonempty sets, with
jcl finite and preceding x2:

LJ/xl < U/x2. (6)
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Here, U takes the greater of its two arguments, so n / x returns the largest element
of the finite set x.

If we now appeal to the simple, but important, linear search theorem, which says
that the smallest value existing is the first value encountered during a search in
increasing order, we can replace the operator n in the equation for minout by a case
analysis:

minout{x\ U x2)y = minoutx\y\, ifyl c xl
= minout x2y2, if_yl = xl

where (y\,y2) = (xl 0y,x2 Oy).

With this step, property (5) guarantees invariant (3) is maintained.
If the above equation for minout is to be used as the recursive step of an efficient

computation, we have the obligation of providing a base case, together with a proof
that the recursion makes progress toward termination.

To determine an appropriate choice for xl and x2, we need the fact that (yl,y2)
is a partition of y:

2 {}. (7)

This assertion is an obvious consequence of y c xl U x2. If we now define xl by the
condition

#xl =[#>>-21, (8)

where # x denotes the size of the finite set x, we have, in the case y\ c xl, that

#J>1 sS # x l - l < #^div2

and, in the case y\ = xl, that

= #>>- #x l ^ #>>div2.

In either case, the size of the second argument to minout is decreased by a half if
#_y > 1, and reduced to zero if #_y = 1. To guarantee termination it is therefore
sufficient to take as base case:

minout x {} = n / x.

4 Implementation

So far, we have developed a set-theoretic algorithm. To implement it in a functional
language we have to choose suitable representations for the two arguments x and y
of minout x y. We suppose that y is given as a list with no duplicated elements (so that
the length of the list is the size of the set). It also seems reasonable to represent x as
a list. However, there is a simpler representation given that, initially, x = nats. From
(6) it follows that the first argument of minout is always a contiguous interval
of natural numbers. It is sufficient to represent this interval by its first element. If
n / x = a and
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we have, by (6) and (8), that n / xl = a and n / x2 = b. Furthermore, using o to
denote the filter operation, we have

(y\,y2) = {{< b ) ^ y,{> b ) ^ y ) .

Using these facts, the final algorithm is:

minout ay = a, ifj = [ ]
= minout a y\, if#yl<b — a
= minoutby2, if#j>l=6 — a

where (j\,y2) = (( < b)<=> y, ( ^ b) <a y),

We omit a final optimization that avoids recomputation of the size of the second
argument. If T(n) denotes the time to evaluate minout ay for a list y of size n, then

for n > 0, leading to an O(ri) algorithm.

5 Postscript

I posed the problem of deriving a linear-time functional program for minout at an
international workshop on program transformation in the Netherlands in February
1988. Among the audience were authors of transformation systems from Holland,
Germany, the USA and Great Britain. I challenged them to use their systems to
derive the algorithm, and said I would collate replies. To date I have received just one
reply, a far more complicated algorithm than the one given above, and - like the
present one - not based on mechanized assistance. Leaving aside the question of my
powers of exhortation, the only other conclusion is that existing transformation
systems are still quite inadequate for providing reasonable help in the derivation of
algorithms.
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