FUNCTIONAL PEARLS The Minout problem

RICHARD S. BIRD
Programming Research Group, Oxford University

1 Introduction

The problem of computing the smallest natural number not contained in a given set of natural numbers has a number of practical applications. Typically, the given set represents the indices of a class of objects 'in use' and it is required to find a 'free' object with smallest index. Our purpose in this article is to derive a linear-time functional program for the problem. There is an easy solution if arrays capable of being accessed and updated in constant time are available, but we aim for an algorithm that employs only standard lists. Noteworthy is the fact that, although an algorithm using lists is the result, the derivation is carried out almost entirely in the world of sets.

2 Specification

For the specification, let (-) denote set difference. Then we have

$$
\begin{equation*}
\text { minout } x=\Pi /(\text { nats }-x) \tag{1}
\end{equation*}
$$

where nats denotes the set of natural numbers, Π is a binary operator returning the smaller of its two arguments, and $\Pi /$ (pronounced 'min reduce' or 'smallest') applied to a set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ returns

$$
a_{1} \sqcap a_{2} \sqcap \ldots \sqcap a_{n} .
$$

Since the numeric ordering on naturals is well founded, the value of Π / x, for an infinite subset x of the naturals, is well defined.

Given a lazy functional language, definition (1) can easily be rendered as an executable function. The essential idea is to represent nats as the infinite list [$0 .$.$] and$ replace Π / by a function that returns the first element of a list. The result is a program that takes $O\left(n^{2}\right)$ steps, where $n=\# x$. If we sort x into increasing order, then this time can be reduced to $O(n \log n)$ steps. Our target, however, is a linear-time algorithm.

3 Derivation

The right-hand side of (1) refers to two sets, only one of which is named as an argument to minout. It is reasonable to avoid commitment as to which of these sets will turn out to be the more important for developing an algorithm, so we are led to replace (1) with the more general specification

$$
\begin{equation*}
\text { minout } x \sqcap y=\Pi /(x-y) \tag{2}
\end{equation*}
$$

(For those in the know, the generalisation can be motivated in another way: the first version of minout is not a homomorphism on sets while the second version is.)

In the specialization $x=$ nats of (2), y is a finite, proper subset of x. It seems reasonable to restrict (2) to arguments for which this property is maintained. In particular, it follows that we do not have to introduce a fictitious identity element ∞ of Π for the value of $\Pi /\{ \}$. Hence we shall qualify (2) by requiring

$$
\begin{equation*}
y \subset x \tag{3}
\end{equation*}
$$

(where \subset means strict set inclusion) as an invariant on the arguments of minout.
Since

$$
(x 1 \cup x 2)-y=(x 1-y) \cup(x 2-y)
$$

we have by straightforward calculation that

$$
\begin{equation*}
\text { minout }(x 1 \cup x 2) y=\text { minout } x 1 y \sqcap \text { minout } x 2 y . \tag{4}
\end{equation*}
$$

In order to maintain our invariant (3) for this decomposition, we first use the fact that

$$
x-y=x-(x \cap y)
$$

to rewrite (4) in the form

$$
\begin{aligned}
\text { minout }(x 1 \cup x 2) y= & \text { minout } x 1 y 1 \cap \text { minout } x 2 y 2 \\
& \text { where }(y 1, y 2)=(x 1 \cap y, x 2 \cap y) .
\end{aligned}
$$

Clearly, $y 1 \subseteq x 1$ and $y 2 \subseteq x 2$. Now we claim that

$$
\begin{equation*}
y \subset x 1 \cup x 2 \Rightarrow y 1 \subset x 1 \vee y 2 \subset x 2 \tag{5}
\end{equation*}
$$

The proof is by a contrapositive argument:

$$
\begin{aligned}
& \neg(y 1 \subset x 1 \vee y 2 \subset x 2) \\
= & \{\text { de Morgan, } y 1 \subseteq x 1, \text { and } y 2 \subseteq x 2\} \\
& y 1=x 1 \wedge y 2=x 2
\end{aligned} \quad\left\{\begin{array}{l}
\text { definition of } y 1 \text { and } y 2\}
\end{array}\right\}
$$

Condition (5) and $y \subset x 1 \cup x 2$ ensures the invariant (3) holds on one of the argument pairs in minout $x 1 y 1$ and minout $x 2 y 2$. In order to eliminate that pair for which (3) may not hold, we need to impose conditions on $x 1$ and $x 2$, which so far have been completely arbitrary. We shall take $x 1$ and $x 2$ to be disjoint, nonempty sets, with $x 1$ finite and preceding $x 2$:

$$
\begin{equation*}
\sqcup / x 1<\pi / x 2 \tag{6}
\end{equation*}
$$

Here, \cup takes the greater of its two arguments, so Π / x returns the largest element of the finite set x.

If we now appeal to the simple, but important, linear search theorem, which says that the smallest value existing is the first value encountered during a search in increasing order, we can replace the operator Π in the equation for minout by a case analysis:

$$
\begin{aligned}
\text { minout }(x 1 \cup x 2) y= & \text { minout } x 1 y 1, \quad \text { if } y 1 \subset x 1 \\
= & \text { minout } x 2 y 2, \quad \text { if } y 1=x 1 \\
& \text { where }(y 1, y 2)=(x 1 \cap y, x 2 \cap y)
\end{aligned}
$$

With this step, property (5) guarantees invariant (3) is maintained.
If the above equation for minout is to be used as the recursive step of an efficient computation, we have the obligation of providing a base case, together with a proof that the recursion makes progress toward termination.

To determine an appropriate choice for $x 1$ and $x 2$, we need the fact that $(y 1, y 2)$ is a partition of y :

$$
\begin{equation*}
y 1 \cup y 2=y \wedge y 1 \cap y 2=\{ \} . \tag{7}
\end{equation*}
$$

This assertion is an obvious consequence of $y \subset x 1 \cup x 2$. If we now define $x 1$ by the condition

$$
\begin{equation*}
\# x 1=\lceil \# y \div 2\rceil \tag{8}
\end{equation*}
$$

where $\# x$ denotes the size of the finite set x, we have, in the case $y 1 \subset x 1$, that

$$
\# y 1 \leqslant \# x 1-1 \leqslant \# y \operatorname{div} 2
$$

and, in the case $y 1=x 1$, that

$$
\# y 2=\# y-\# y 1=\# y-\# x 1 \leqslant \# y \operatorname{div} 2 .
$$

In either case, the size of the second argument to minout is decreased by a half if $\# y>1$, and reduced to zero if $\# y=1$. To guarantee termination it is therefore sufficient to take as base case:

$$
\text { minout } x\}=\Pi / x
$$

4 Implementation

So far, we have developed a set-theoretic algorithm. To implement it in a functional language we have to choose suitable representations for the two arguments x and y of minout $x y$. We suppose that y is given as a list with no duplicated elements (so that the length of the list is the size of the set). It also seems reasonable to represent x as a list. However, there is a simpler representation given that, initially, $x=$ nats. From (6) it follows that the first argument of minout is always a contiguous interval of natural numbers. It is sufficient to represent this interval by its first element. If $\Pi / x=a$ and

$$
b=a+\lceil \# y \div 2\rceil
$$

we have, by (6) and (8), that $\Pi / x 1=a$ and $\Pi / x 2=b$. Furthermore, using \square to denote the filter operation, we have

$$
(y 1, y 2)=((<b) \triangleleft y,(\geqslant b) \triangleleft y) .
$$

Using these facts, the final algorithm is:

$$
\begin{array}{rlrl}
\text { minout a } y= & a, & \text { if } y=[] \\
& =\text { minout a } y 1, & \text { if } \# y 1<b-a \\
& =\text { minout } b y 2, & \text { if } \# y 1=b-a \\
& \text { where }(y 1, y 2)=((<b) \triangleleft y,(\geqslant b) \triangleleft y), \\
& b=a+\lceil \# y \div 2] .
\end{array}
$$

We omit a final optimization that avoids recomputation of the size of the second argument. If $T(n)$ denotes the time to evaluate minout ay for a list y of size n, then

$$
T(n)=T(n \operatorname{div} 2)+O(n)
$$

for $n>0$, leading to an $O(n)$ algorithm.

5 Postscript

I posed the problem of deriving a linear-time functional program for minout at an international workshop on program transformation in the Netherlands in February 1988. Among the audience were authors of transformation systems from Holland, Germany, the USA and Great Britain. I challenged them to use their systems to derive the algorithm, and said I would collate replies. To date I have received just one reply, a far more complicated algorithm than the one given above, and - like the present one - not based on mechanized assistance. Leaving aside the question of my powers of exhortation, the only other conclusion is that existing transformation systems are still quite inadequate for providing reasonable help in the derivation of algorithms.

