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Abstract. We provide sufficient conditions for a Banach space-valued function
to be scalarly bounded, which do not require to test on the whole dual space. Some
applications in vector integration are also given.
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1. Introduction. Throughout this paper X is a Banach space, X∗ stands for its
topological dual and (�,�,μ) is a complete probability space. Recall that a function
f : � → X is said to be scalarly bounded if there is M > 0 such that, for each x∗ ∈ X∗,
we have

|x∗f | ≤ M‖x∗‖ μ-a.e.

(the exceptional μ-null set depending on x∗), where x∗f : � → � is the composition
of f with x∗. This notion plays an important role in vector integration, specially
within the Pettis integral theory; see [11, 12, 17]. Several questions can be reduced
to the scalarly bounded case, since for every scalarly measurable function f : � → X
(meaning that x∗f is measurable for all x∗ ∈ X∗) there is a countable partition � =⋃

En into measurable sets such that each restriction f |En is scalarly bounded (see e.g.
Proposition 3.1 in [11]). To check whether a function f : � → X is scalarly bounded,
it can be helpful to have criteria involving only the family

Zf,A := {x∗f : x∗ ∈ A}
for some set A ⊂ X∗. For instance, if X is the dual of another Banach space Y , one
may consider A = Y ⊂ Y∗∗ = X∗. The aim of this paper is to provide such criteria as
well as some applications in vector integration.

It turns out that the scalar boundedness of f is equivalent to the fact that Zf,X∗

is made up of essentially bounded functions (Theorem 1). In order to get a similar
statement with Zf,X∗ replaced by a subfamily Zf,A, the set A ⊂ X∗ must be w∗-thick
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(Proposition 5) and further assumptions on X are needed, like Corson’s property C
(Theorem 7). Furthermore, under some measurability requirements on f we obtain
some applications in vector integration: We prove that f is Pettis integrable whenever
it is scalarly measurable, Zf,A ⊂ L∞(μ) for some w∗-thick set A ⊂ X∗ and X has
the μ-Pettis Integral Property (Theorem 9). Sufficient conditions for the Bochner
and Birkhoff integrability with the same flavour are also given (Proposition 13 and
Theorem 15).

We use standard terminology and notation, which can be found in [3, 6, 17]. All
our linear spaces are real. The absolutely convex hull of a subset S of a linear space is
denoted by aco(S). Given a set H, we write Tp(H) to denote the topology on �H of
pointwise convergence on H. For a Banach space Y , we write BY (resp. SY ) to denote
its closed unit ball (resp. unit sphere) and the symbol rBY stands for the closed ball of
radius r centered at 0. The evaluation of y∗ ∈ Y∗ at y ∈ Y is denoted either by y∗(y)
or 〈y∗, y〉.

2. Testing scalar boundedness. We denote byB(μ) the linear space of all functions
h : � → �, for which there is K > 0 such that |h| ≤ K μ-a.e.

THEOREM 1. A function f : � → X is scalarly bounded if and only if Zf,X∗ ⊂ B(μ).

Proof. The ‘only if ’ part is obvious. Conversely, assume that Zf,X∗ ⊂ B(μ). The
formula

‖h‖∞ := inf{M > 0 : |h| ≤ M μ-a.e.}
defines a semi-norm on B(μ). It is standard to check that the quotient space B(μ)
obtained from B(μ) by identifying μ-a.e. equal functions is a Banach space.

Let T : X∗ → B(μ) be the linear mapping that sends each x∗ ∈ X∗ to the
equivalence class of x∗f . We claim that T has a closed graph. Indeed, let (x∗

n) be a
sequence in X∗ such that ‖x∗

n‖ → 0 and (T(x∗
n)) converges to some h ∈ B(μ) in the

norm topology of B(μ). Since x∗
n → 0 in the w∗-topology, we have x∗

nf → 0 pointwise
and therefore h = 0. This shows that T has a closed graph. By the Closed Graph
Theorem, T is continuous. Now, for each x∗ ∈ X∗ we have

|x∗f | ≤ ‖T(x∗)‖B(μ) ≤ ‖T‖‖x∗‖ μ-a.e.

Hence, f is scalarly bounded. �
In order to present an alternative proof of Theorem 1 we need the following lemma

(which will also be used later).

LEMMA 2. A function f : � → X is scalarly bounded if and only if there is M > 0
such that the set {x∗ ∈ X∗ : |x∗f | ≤ M μ-a.e.} contains a ball.

Proof. The ‘only if ’ part is obvious. Let us check the ‘if ’ part. Let x∗
0 ∈ X∗ and

δ > 0 be such that

x∗
0 + δBX∗ ⊂ {x∗ ∈ X∗ : |x∗f | ≤ M μ-a.e.}. (1)

Take any x∗ ∈ BX∗ and set y∗ := x∗
0 + δx∗, so that (1) yields |y∗f | ≤ M μ-a.e. Also,

(1) implies that |x∗
0 f | ≤ M μ-a.e. It follows that |x∗f | ≤ 2M/δ μ-a.e. As x∗ ∈ BX∗ is

arbitrary, f is scalarly bounded. �
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Another proof of Theorem 1. Suppose Zf,X∗ ⊂ B(μ). For each n ∈ �, set

An := {x∗ ∈ BX∗ : |x∗f | ≤ n μ-a.e.}
and observe that An is norm-closed. Indeed, if (x∗

k) is a sequence in An, which converges
in norm to some x∗ ∈ BX∗ , then we have x∗

k → x∗ in the w∗-topology. Hence, x∗
kf → x∗f

pointwise and so |x∗f | ≤ n μ-a.e.
Since BX∗ = ⋃

n∈� An, an appeal to Baire’s Category Theorem ensures the existence
of n ∈ �, x∗

0 ∈ BX∗ and δ > 0 such that the open ball

B := {x∗ ∈ X∗ : ‖x∗ − x∗
0‖ < δ}

satisfies B ∩ BX∗ ⊂ An. Since B ∩ BX∗ is non-empty, the same holds for the intersection
of B and the open unit ball, hence An contains a ball. The scalar boundedness of f
follows from Lemma 2. �

We now study the scalar boundedness of a function f : � → X via the family

Zf,A = {x∗f : x∗ ∈ A},
where A ⊂ X∗. The next example shows that, in general, the inclusion Zf,A ⊂ B(μ)
does not imply that f is scalarly bounded even if A is assumed to be a boundary. Recall
that a set A ⊂ BX∗ is said to be a boundary if for each x ∈ X there is some x∗ ∈ A such
that ‖x‖ = x∗(x).

EXAMPLE 3. For each n ∈ �, let e∗
n ∈ c∗

0 = �1 be the n-th coordinate projection.
Suppose μ is atomless and fix a sequence (En) of pairwise disjoint elements of � with
μ(En) > 0. Define

f : � → c0, f (t) := (
n1En (t)

)
n∈�

,

where 1En stands for the characteristic function of En. Then e∗
n f = n1En ∈ L∞(μ) for

every n ∈ �, but f is not scalarly bounded.

It turns out that the previous example is a particular case of a general phenomenon,
see Proposition 5. We first need to introduce some terminology. Recall that a set C ⊂ X∗

is said to be w∗-non-norming if

inf
x∈SX

sup
x∗∈C

|x∗(x)| = 0,

which is equivalent to saying (via the Hahn–Banach theorem) that acow∗
(C) does not

contain any ball. A subset of X∗ is called w∗-thin (resp. w∗-thick) if it can be written
as a countable increasing union of w∗-non-norming sets (resp. if it is not w∗-thin). For
instance, if X = Y∗ for another Banach space Y , then Y ⊂ X∗ is w∗-thick. On the other
hand, if X does not contain subspaces isomorphic to c0, then the following subsets
of X∗ are w∗-thick: any boundary [7], the set of norm-attaining functionals [7] and the
set of w∗-exposed points of BX∗ whenever X is separable [8]. For more information
on w∗-thin and w∗-thick sets in Banach spaces, we refer the reader to [1, 13] and the
references therein.

REMARK 4. Let f : � → X be a essentially separable-valued function. Then f is
scalarly bounded (if and) only if it is essentially bounded.
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Proof. Let Y ⊂ X be a separable closed subspace such that f (E) ⊂ Y for some
E ∈ � with μ(E) = 1. Since BY∗ is w∗-separable, there is a sequence (y∗

n) in BY∗ such
that ‖y‖ = supn∈� |y∗

n(y)| for every y ∈ Y . Pick x∗
n ∈ BX∗ extending y∗

n for each n ∈ �.
Then ‖f (t)‖ = supn∈� |x∗

nf (t)| for every t ∈ E. From this equality it follows that f is
essentially bounded whenever it is scalarly bounded. �

PROPOSITION 5. Let A ⊂ X∗ be w∗-thin and suppose μ is atomless. Then there is a
strongly measurable function f : � → X such that Zf,A ⊂ L∞(μ) but f is not scalarly
bounded.

Proof. Let (Cj) be a sequence of pairwise disjoint measurable sets with μ(Cj) > 0
for all j ∈ �. Since A is w∗-thin, we can write A = ⋃

j∈� Aj, where each Aj is w∗-non-
norming and Aj ⊂ Aj+1. For each j ∈ �, choose xj ∈ X such that

‖xj‖ = j and sup
x∗∈Aj

|x∗(xj)| ≤ 1.

Define f : � → X by f (t) := xj whenever t ∈ Cj, j ∈ � and f (t) := 0 if t 
∈ ⋃
j∈� Cj.

Then f is strongly measurable and fails to be essentially bounded, hence it is not
scalarly bounded (Remark 4). Take any x∗ ∈ A. Then there is some j0 ∈ � such that
x∗ ∈ Aj for all j ≥ j0. Hence, |x∗(xj)| ≤ 1 for all j ≥ j0 and so |x∗(f (t))| ≤ 1 for every
t ∈ ⋃

j≥j0 Cj. Since x∗f takes only finitely many values in � \ ⋃
j≥j0 Cj, it follows that

x∗f ∈ L∞(μ). This shows that Zf,A ⊂ L∞(μ). �
Recall that a Banach space is said to have Corson’s property C if every family of

convex closed subsets with empty intersection contains a countable subfamily with
empty intersection. All weakly Lindelöf (e.g. weakly compactly generated) Banach
spaces enjoy property C. For detailed information on this property, we refer the reader
to Chapter 12 in [6] and the references therein.

Within the wide class of Banach spaces with property C, testing on w∗-thick sets
is enough to check scalar boundedness (see Theorem 7). We first need a lemma, which
will be used several times in the sequel.

LEMMA 6. Let f : � → X be a function and, for each n ∈ �, define

Cn := {x∗ ∈ nBX∗ : |x∗f | ≤ n μ-a.e.}.
Suppose there is a w∗-thick set A ⊂ X∗ such that Zf,A ⊂ B(μ) and the inclusion

acow∗
(A ∩ Cn) ⊂ Cn (2)

holds for every n ∈ �. Then f is scalarly bounded.

Proof. Since Cn ⊂ Cn+1 for every n ∈ � and A = ⋃
n∈�(A ∩ Cn), the w∗-thickness

of A ensures the existence of some n ∈ � such that acow∗
(A ∩ Cn) contains a ball, say B.

By (2), we have B ⊂ Cn and an appeal to Lemma 2 finishes the proof. �
THEOREM 7. Suppose X has property C. Let f : � → X be a function for which there

is a w∗-thick set A ⊂ X∗ such that Zf,A ⊂ B(μ). Then f is scalarly bounded.

Proof. By Lemma 6, in order to prove that f is scalarly bounded, it suffices to
check that acow∗

(A ∩ Cn) ⊂ Cn for every n ∈ �, where

Cn := {x∗ ∈ nBX∗ : |x∗f | ≤ n μ-a.e.}.
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To this end, take any x∗ ∈ acow∗
(A ∩ Cn). Since A ∩ Cn is bounded and X has

property C, there is a countable set D ⊂ A ∩ Cn such that x∗ ∈ acow∗
(D), see for

example Theorem 12.41 in [6]. Let aco�(D) ⊂ X∗ be the set made up of all finite
linear combinations of the form

∑
i αiy∗

i , where y∗
i ∈ D, αi ∈ � and

∑
i |αi| ≤ 1. Since

aco�(D) ⊂ Cn and aco�(D) is countable, we can find S ∈ � with μ(S) = 1 such that

|y∗f (t)| ≤ n for every t ∈ S and every y∗ ∈ aco�(D).

Observe that x∗ ∈ acow∗
(D) = aco�

w∗
(D), hence x∗f belongs to the Tp(�)-closure of

Zf,aco�(D) in ��. It follows that |x∗f (t)| ≤ n for every t ∈ S, hence x∗ ∈ Cn. This shows
that acow∗

(A ∩ Cn) ⊂ Cn, as required. �
The previous result can fail for arbitrary Banach spaces, as we next show. We write

λ to denote the Lebesgue measure on [0, 1] and the symbol c stands for the cardinality
of the continuum.

EXAMPLE 8. There is a function f : [0, 1] → �1(c) such that Zf,c0(c) ⊂ L∞(λ), but f
is not scalarly bounded.

Proof. We have �1(c) = c0(c)∗ and the set c0(c) ⊂ �1(c)∗ = �∞(c) is w∗-thick. For
each α < c, let eα ∈ �1(c) be defined by eα(β) := δα,β (the Kronecker symbol). Let
φ : [0, 1] → c be any one-to-one function and let h : [0, 1] → � be any function such
that h 
∈ B(λ). Set

f : [0, 1] → �1(c), f (t) := h(t)eφ(t).

Let us check that f satisfies the required properties. Consider ξ ∈ �1(c)∗ defined by
ξ (x) := ∑

α<c x(α) for all x ∈ �1(c). Since 〈ξ, f (t)〉 = h(t) for every t ∈ [0, 1], the function
f is not scalarly bounded. On the other hand, the family Zf,c0(c) is made up of functions
vanishing λ-a.e. Indeed, fix y ∈ c0(c) and consider the countable set supp(y) := {α <

c : y(α) 
= 0}. Then φ−1(supp(y)) is also countable (because φ is one-to-one) and so
λ-null. For each t ∈ [0, 1] \ φ−1(supp(y)) we have

〈y, f (t)〉 = h(t)y(φ(t)) = 0,

hence the composition y f vanishes λ-a.e., as claimed. �

3. Application to the Pettis and Bochner integrals. Previously we have shown that
in several cases one can deduce the scalar boundedness of a function f : � → X from
the inclusion Zf,A ⊂ B(μ) for some w∗-thick set A ⊂ X∗. In this section we shall apply
those results to study the Pettis and Bochner integrability of f via the family Zf,A.

Recall that X is said to have the μ-Pettis Integral Property (shortly μ-PIP) if each
scalarly bounded and scalarly measurable function from � to X is Pettis integrable.
The space X has the PIP if it has the μ-PIP for every probability μ. It is known that
every Banach space with property C also has the PIP ((Theorem 5-2-4) in [17]). For
further examples and more information on the PIP, see [5, 11, 12, 17].

THEOREM 9. Suppose X has the μ-PIP. Let f : � → X be a scalarly measurable
function for which there is a w∗-thick set A ⊂ X∗ such that Zf,A ⊂ L∞(μ). Then f is
scalarly bounded and Pettis integrable.
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Proof. We only have to prove that f is scalarly bounded. By Lemma 6, it suffices
to check that acow∗

(A ∩ Cn) ⊂ Cn for each n ∈ �, where

Cn := {x∗ ∈ nBX∗ : |x∗f | ≤ n μ-a.e.}.

Fix n ∈ � and take any x∗ ∈ acow∗
(A ∩ Cn). As we mentioned in the Introduction, the

scalar measurability of f ensures that there is a countable partition � = ⋃
Em into

measurable sets such that each restriction f |Em is scalarly bounded. Fix m ∈ � and
write μEm to denote the restriction of μ to the trace of � on Em. Since X has the μ-PIP,
the function f |Em is Pettis integrable. Then, the mapping

Im : nBX∗ → L1(μEm ), Im(y∗) := y∗f |Em

is w∗-w-continuous, see for example Chapter 4 in [17]. Since x∗ ∈ acow∗
(A ∩ Cn), we

have

Im(x∗) ∈ Im
(
acow∗

(A ∩ Cn)
) ⊂ Im

(
aco(A ∩ Cn)

)w = Im
(
aco(A ∩ Cn)

)‖·‖1

because Im(aco(A ∩ Cn)) = aco(Im(A ∩ Cn)) is convex. Hence, there is a sequence
(y∗

k) in aco(A ∩ Cn) such that ‖y∗
kf |Em − x∗f |Em‖1 → 0 and, by passing to a further

subsequence, we can assume that y∗
kf → x∗f μ-a.e. on Em. Bearing in mind that

aco(A ∩ Cn) ⊂ Cn, it follows that |x∗f | ≤ n μ-a.e. on Em. As m ∈ � is arbitrary, we
conclude that |x∗f | ≤ n μ-a.e., so x∗ ∈ Cn and the proof is over. �

Let � ⊂ X∗ be a set separating the points of X and consider the (locally convex
Hausdorff) topology σ (X, �) on X of pointwise convergence on �. Then a function
f : � → X is Baire(X, σ (X, �))-measurable if (and only if) the family Zf,� is made up
of measurable functions [4] (cf. Theorem 2-2-4 in [17]). Therefore, if the equality

Baire(X, σ (X, �)) = Baire(X, w)

holds, then the scalar measurability of a function f : � → X is equivalent to the
measurability of the elements of Zf,�. This fact allows us to improve the criterion of
Theorem 9 in some cases, as follows.

COROLLARY 10. Suppose X∗ is w∗-angelic. Let f : � → X be a function for which
there is a w∗-thick set A ⊂ X∗ such that Zf,A ⊂ L∞(μ). Then f is scalarly bounded and
Pettis integrable.

Proof. The w∗-thickness of A implies that A separates the points of X and so the
angelicity of (X∗, w∗) yields Baire(X, σ (X, A)) = Baire(X, w), see [10]. According to
the comments preceding the corollary, we conclude that f is scalarly measurable. Since
X has the PIP (see e.g. [5]), an appeal to Theorem 9 finishes the proof. �

COROLLARY 11. Suppose X = Y∗ for another Banach space Y and suppose X has
property C. Let f : � → X be a function such that Zf,Y ⊂ L∞(μ). Then f is scalarly
bounded and Pettis integrable.

Proof. We have Baire(X, w∗) = Baire(X, w) because X has property C, see
Corollary 3.10 in [16]. Hence, f is scalarly measurable. The result now follows from
Theorem 9 bearing in mind that Y ⊂ X∗ is w∗-thick and that every Banach space with
property C has the PIP ((Theorem 5-2-4) in [17]). �
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It is known that �1(κ) has the PIP if κ is not a real-valued measurable cardinal,
while it fails property C whenever κ is uncountable, see [5]. In view of Example 8 above,
in Corollary 11 the assumption on X cannot be weakened to ‘X has the PIP’, at least
under the assumption that c is not real-valued measurable.

The following auxiliary lemma is needed to prove the criterion of Bochner
integrability isolated in Proposition 13 below.

LEMMA 12. Let Y be a closed subspace of X, let R : X∗ → Y∗ be the restriction
operator and let A ⊂ X∗ be a w∗-thick set. Then R(A) is w∗-thick.

Proof. Let (Bn) be an increasing sequence of sets such that R(A) = ⋃
n∈� Bn. Then

(A ∩ R−1(Bn)) is an increasing sequence such that A = ⋃
n∈� A ∩ R−1(Bn). Since A is

w∗-thick, there is some n ∈ � such that An := acow∗
(A ∩ R−1(Bn)) contains a ball.

By the Open Mapping Theorem, R(An) contains a ball as well. Since R is linear and
w∗-w∗-continuous, we also have

R(An) ⊂ acow∗
(R(A ∩ R−1(Bn))) ⊂ acow∗

(Bn).

Therefore acow∗
(Bn) contains a ball. This shows that R(A) is w∗-thick. �

PROPOSITION 13. Let f : � → X be an essentially separable-valued function for which
there is a w∗-thick set A ⊂ X∗ such that Zf,A ⊂ L∞(μ). Then f is essentially bounded
and Bochner integrable.

Proof. Assume without loss of generality that f (�) ⊂ Y for some separable closed
subspace Y ⊂ X . Let R : X∗ → Y∗ be the restriction operator so that R(A) ⊂ Y∗ is
w∗-thick (Lemma 12). Since Y∗ is w∗-angelic, we can apply Corollary 10 to f (as a
Y -valued function) and the w∗-thick set R(A) to conclude that f is scalarly bounded
and scalarly measurable. By Remark 4, f is essentially bounded. On the other hand, f
is strongly measurable by Pettis’ Measurability Theorem (see e.g. Theorem 2 on p. 42
in [3]). It follows that f is Bochner integrable. �

4. Application to the Birkhoff integral. We finish the paper with some applications
to the Birkhoff integral theory. Recall that a function f : � → X is said to be Birkhoff
integrable, with integral x ∈ X , if for every ε > 0 there is a countable partition � =⋃

Em into measurable sets such that for any choice of points tm ∈ Em, the series∑
m μ(Em)f (tm) converges unconditionally in X and ‖∑

m μ(Em)f (tm) − x‖ ≤ ε. This
notion of integrability lies strictly between Bochner and Pettis integrability and has
interesting features, see for example [2, 9]. For instance, it can be characterised via the
Bourgain property of certain families Zf,A where A ⊂ X∗, see [2, 15]. Following [14],
we say that a family H ⊂ �� has the Bourgain property if for every ε > 0 and every
E ∈ � with μ(E) > 0 there are E1, . . . , En ∈ �, Ei ⊂ E with μ(Ei) > 0 such that for
each h ∈ H there is at least one Ei on which the oscillation of h is smaller than ε.

LEMMA 14. Let F ⊂ �� be a family such that
(i) F is pointwise bounded;

(ii) F has the Bourgain property;
(iii) there is M > 0 such that for each f ∈ F we have |f | ≤ M μ-a.e.

If g ∈ �� belongs to the Tp(�)-closure of aco(F), then |g| ≤ M μ-a.e.
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Proof. The function g is measurable by (i) and (ii), see Proposition 4.1 in [15]. We
now argue by contradiction. Suppose μ(E) > 0, where

E := {t ∈ � : |g(t)| > M} ∈ �.

Since F is pointwise bounded, we can write � = ⋃
k∈� Dk, where

Dk := {t ∈ � : |f (t)| ≤ k for all f ∈ F}.

Since μ(E) > 0, there is some k0 ∈ � such that

μ∗(E ∩ Dk0 ) > 0. (3)

Consider the complete finite measure space (�0, �0, μ0), where �0 := E ∩ Dk0 , �0 :=
{C ∩ �0 : C ∈ �} and μ0(S) := μ∗(S) for all S ∈ �0. It is easy to check that the family
of restrictions F |�0 := {f |�0 : f ∈ F} has the Bourgain property with respect to μ0.
Bearing in mind that F |�0 is uniformly bounded, we infer that aco(F |�0 ) also has the
Bourgain property with respect to μ0, see Proposition 2.2 in [15]. Since g|�0 belongs
to the Tp(�0)-closure of aco(F |�0 ) in ��0 , there is a sequence (gn) in aco(F) such that
gn|�0 → g|�0 μ0-a.e. (Theorem 11 in [14]). By (iii) we have |gn| ≤ M μ-a.e. for every
n ∈ �, hence |g|�0 | ≤ M μ0-a.e., that is there is C ∈ � such that μ∗(C ∩ �0) = μ∗(�0)
and E ∩ (C ∩ �0) = ∅. Since �0 ⊂ E, we get C ∩ �0 = ∅ and so μ∗(�0) = 0, which
contradicts (3) and finishes the proof of the lemma. �

THEOREM 15. Let f : � → X be a function such that there is a w∗-thick set A ⊂ X∗

such that Zf,A ⊂ L∞(μ) and Zf,A has the Bourgain property. Then f is scalarly bounded.
Moreover, if A is convex, then f is Birkhoff integrable.

Proof. Fix n ∈ � and set Cn := {x∗ ∈ nBX∗ : |x∗f | ≤ n μ-a.e.}. Clearly, the family

F := {y∗f : y∗ ∈ A ∩ Cn} ⊂ ��

fulfills the requirements of Lemma 14. If x∗ ∈ aco(A ∩ Cn)
w∗

, then x∗f belongs to the
Tp(�)-closure of aco(F) and Lemma 14 ensures that |x∗f | ≤ n μ-a.e. Therefore,

aco(A ∩ Cn)
w∗

⊂ Cn.

As n ∈ � is arbitrary, Lemma 6 tells us that f is scalarly bounded. Moreover, the proof
of Lemma 6 shows that there exist n ∈ �, x∗

0 ∈ X∗ and δ > 0 such that

B := x∗
0 + δBX∗ ⊂ aco(A ∩ Cn)

w∗
. (4)

Now assume that A is convex. Set D := aco(A ∩ Cn) and

E := {θx∗ : x∗ ∈ A, |θ | ≤ 1}.

Since Zf,A has the Bourgain property, the same holds for Zf,E , as can be easily checked.
By the convexity of A, we have E − E ⊃ aco(A) ⊃ D, hence Zf,D has the Bourgain
property. The fact that Z

f,Dw∗ is contained in the Tp(�)-closure of Zf,D ensures that
Z

f,Dw∗ has the Bourgain property as well. By (4), the family Zf,B has the Bourgain
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property. Now, it is not difficult to check that the family

Zf,BX∗ =
{1

δ

(−x∗
0f + h

)
: h ∈ Zf,B

}

also has the Bourgain property. Since f is scalarly bounded, an appeal to Theorem 3.5
in [2] establishes that f is Birkhoff integrable. �

It was proved in Corollary 2.5 in [2] that the Birkhoff integrability of a bounded
function f taking values in a dual Banach space Y∗ is equivalent to the Bourgain
property of the family Zf,BY . The following corollary extends that result.

COROLLARY 16. Suppose X = Y∗ for another Banach space Y. Let f : � → X be a
function such that Zf,BY ⊂ L∞(μ) and Zf,BY has the Bourgain property. Then f is scalarly
bounded and Birkhoff integrable.
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boundedness in Banach spaces, J. Math. Anal. Appl. 314(1) (2006), 67–74.

2. B. Cascales and J. Rodrı́guez, The Birkhoff integral and the property of Bourgain, Math.
Ann. 331(2) (2005), 259–279.

3. J. Diestel and J. J. Uhl, Jr., Vector measures, Math. Surveys, No. 15 (American
Mathematical Society, Providence, RI, 1977).

4. G. A. Edgar, Measurability in a Banach space, Indiana Univ. Math. J. 26(4) (1977),
663–677.

5. G. A. Edgar, Measurability in a Banach space II, Indiana Univ. Math. J. 28(4) (1979),
559–579.
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de Mathématiques de la SMC, Vol. 8 (Springer-Verlag, New York, 2001).

7. V. P. Fonf, Weakly extremal properties of Banach spaces, Mat. Zametki 45(6) (1989),
83–92, 112 (English translation: Math. Notes 45(5–6) (1989), 488–494).

8. V. P. Fonf, On exposed and smooth points of convex bodies in Banach spaces, Bull.
Lond. Math. Soc. 28(1) (1996), 51–58.

9. D. H. Fremlin, The McShane and Birkhoff integrals of vector-valued functions, University
of Essex Mathematics Department Research Report 92-10, version of 18.05.07 available at
http://www.essex.ac.uk/maths/people/fremlin/preprints.htm

10. A. B. Gulisashvili, Estimates for the Pettis integral in interpolation spaces, and a
generalization of some imbedding theorems, Soviet Math., Dokl. 25 (1982), 428–432.

11. K. Musiał, Topics in the theory of Pettis integration, Rend. Istit. Mat. Univ. Trieste
23(1) (1991), 177–262.

12. K. Musiał, Pettis integral, in Handbook of measure theory, Vol. I, II (E. Pap, Editor)
(North-Holland, Amsterdam, 2002), 531–586.

13. O. Nygaard, Thick sets in Banach spaces and their properties, Quaest. Math. 29(1)
(2006), 59–72.

14. L. H. Riddle and E. Saab, On functions that are universally Pettis integrable, Illinois J.
Math. 29(3) (1985), 509–531.

15. J. Rodrı́guez, The Bourgain property and convex hulls, Math. Nachr. 280(11) (2007),
1302–1309.

16. J. Rodrı́guez and G. Vera, Uniqueness of measure extensions in Banach spaces, Studia
Math. 175(2) (2006), 139–155.

17. M. Talagrand, Pettis integral and measure theory, Mem. Am. Math. Soc. 51(307) (1984).

https://doi.org/10.1017/S0017089511000620 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089511000620

