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A function/, analytic in the unit disk, is said to have finite Dirichlet integral 
f 

(1) ||/||x>a = — If \f(z)\2rdrdd< » . 
7T | 2 | < 1 

Geometrically, this is equivalent t o / mapping the disk onto a Riemann surface 
of finite area. The class of Dirichlet integrable functions will be denoted by SJ. 
The condition above can be restated in terms of Taylor coefficients; if 
f(z) = Y,an%n, t h e n / £ & if and only if Y<n\an\2 < °° • Thus, Qf is contained 
in the Hardy class H2. 

In particular, every such function has boundary values 

f(eie) = lim f(ret9) 

almost everywhere and log \f(eie)\ £ Ll(dd). 
The zeros zn of a function/ £ 3) must satisfy the Blaschke condition 

E d - W ) < ». 
and/(s) = B(z)F(z), where F(z) has no zeros and 

B(z) =zmU Zn ~ Z 

1 - ZnZ 

is the Blaschke product with zeros zn; see (5). 
In earlier studies by Carleson (3) and by Shapiro and Shields (6), several 

results concerning the possible sets of zeros of functions of £iï were established. 
In particular, it was proved that if a sequence converges to the boundary 
fast enough, i.e., if 

^ V l o g ( l - | 2 r e | ) / > 

then there is a function of 2$ which vanishes at those points. On the other 
hand, sequences were constructed which satisfy the Blaschke condition, and 
in fact 2 ( 1 ~~ \zn\)

e < °° for every e > 0, but on which no non-zero function 
of 2f can vanish. 
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In these counterexamples, however, every point of the circumference is a 
limit point of the sequence, and it is natural to ask how "thin" the set of limit 
points of zeros may be. In Theorem 1, a sequence is constructed which con­
verges to 1 and which satisfies the Blaschke condition, but on which no 
non-zero function of 2 may vanish. This example is due to Professor Lennart 
Carleson and appears with his permission. His construction is presented in a 
modified form due to A. L. Shields, P. L. Duren, and the author. 

On the positive side, Theorem 2 shows that if a sequence satisfies the 
Blaschke condition and all its points lie within a curve making a finite degree 
of contact with the unit circle at 1, then the points of that sequence are the 
zeros of a function of 2f. Thus, one can infer that a Blaschke sequence is the 
set of zeros of a function of 2f solely from its geometric configuration. 

THEOREM 1. There exists a sequence {zn}, \zn\ < 1, which satisfies the Blaschke 
condition and which converges to 1, but on which no non-zero function with a 
finite Dirichlet integral can vanish. 

Proof. The expression in (1) has been shown (4) to satisfy 

where the points zn are the zeros of/. Applying the geometric-arithmetic mean 
inequality, we see that 

Since any such function has log-integrable boundary values, 

(2) f logfe i ^ r j ^ l ) ^ < », 
*̂  \ \e zn i / 

if the points zn are the zeros of a function satisfying (1). 
The construction begins with the choice of a sequence {en}, 0 < en < 1, for 

which S €n = 2w, but such that X *n log en = — oo . For example, 
{(n(log n)2)~l), suitably normalized, is such a sequence. Choose open, disjoint 
arcs In on the circumference, of lengths en, converging to 1 (see the figure). 
Let rn = 1 — en. On each circle of radius rn, place a point zn whose signum lies 
at the centre of In. Then the condition for the convergence of the Blaschke 
product with zeros zny £ ( 1 — rn) = S en < oo is satisfied. Notice that 
\eu - zn\ < 2en for eu G In. Thus, 

1 - |*»|8 . (1 + rn)en J_ 
\eu-zn\

2> 4e„2 > 4 . n 

in this interval. Hence, if 
i I I2 

77 ft\ — l \Zn\ 
* « W - \e" -Zn\

2' 
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rt + i 

zn + 2 

X l 

CONSTRUCTION OF THEOREM 1 

we see that 

f log( Ê Fn(t))dt ^ t , f log( Ë Fn(t))dt 

> Ê f logFk(t)dt 

> - E logée** 

oo 

= — Z ) €tl0g4€jfc. 
fc=l 

However, this series diverges by hypothesis, contradicting (2). 
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The following special case of a theorem of Beurling (1, p. 13) and Carleson 
(2) will be required for Theorem 2. A Carleson set is a closed set of measure 
zero with complementary arcs of lengths en, which satisfies 

E ^ l o g en> -oo. 

THEOREM. If f is an analytic function with a bounded derivative, then 
{eie:f(eie) = 0} is a Carleson set. Conversely, given a Carleson set E and a 
positive integer m, there is a function g, which vanishes on E, which is outer in the 
sense of Beurling, and for which g(w) (z) is bounded in the disk. 

In the example of Theorem 1, the points zn tend to 1 'Very tangentially". 
Theorem 2 implies that if the Blaschke condition is satisfied and the zn tend 
to 1 not "too tangentially", then there is a non-zero function/ which is analytic 
in the disk, whose derivative is continuous in the closed disk, and which 
vanishes at the points zn. A subset S of the disk is said to have finite degree of 
contact k at a subset E of the circle if there is a constant M > 0 such that 

dist(w, EY S Mil - \w\) 

for all w G S. 

THEOREM 2. Let {zn} be a sequence of points of the unit disk whose limit points 
lie in a Carleson set E and which satisfies the Blaschke condition. Then, if the 
set of points zn has a finite degree of contact at E, there is an analytic function f 
whose derivative is continuous in the closed disk and whose zeros are the points zn. 

Proof. By the Carleson theorem, there is an outer function g with continuous 
derivative, which vanishes on E. By integration, 

\g{z)\ ^ N dist (z,E) 

for some constant N > 0. By dividing g by N, we may assume that N = 1. 
Assume that dist (zn, E)k ^ M (I — \zn\) for all n, where we may assume that 

k is greater than 1. Let B be the Blaschke product 

Biz) = n - Zn — % 

\zn\ 1 - znz' 
and let 

Then 
f'(z) = (2k + l)g'(z)g(Z)uB(z) + g(z)u+1B'(z) 

= (2k + l)g'(z)g(z)ikB(z) + g(z)2*+1Z BH(z) v^j X ~ ^ , 

where 

\zn\ zn Z 

Since B and Bn are analytic on the closed disk except at points of £ (5, p. 68), 
if g(z)2k/(l — znz)2 is bounded for z in the unit disk independently of n, then 
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/ ; is continuous in the closed disk. By the maximum modulus principle, this 
will be the case if there is a constant C such that 

0) |g(OI*^ ci*"-*»! 
for all n. Let C = 2k(M + 1). Then 

\g(ei9)\* S dist(*", E)k 

^ 2k-'[\eie - zn\
k + d\st(zm E)k] 

^ 2k-'[\ei» - zn\
k + Mil - \zn\)]. 

If \eie — zn\ ^ 1, then \eie — zn\
k ^ \eie — zn\, and using 1 — \zn\ ^ \eie — zn\, 

we see that 
\g(ei9)\* S 2k~1(M+ l)\eid - zn\. 

If \eie - zn\ > 1, then 

\g{ei9)\* S 2k < 2k{M + 1 ) |*" - Zn\. 

Thus, in any case, (3) holds, a n d / i s the desired function. 

A generalization of this construction yields a function with any given 
number of continuous derivatives, with the same hypotheses on the points zn. 
Since a function f(z) ~ ^anz

n with bounded derivative satisfies ^n2\an\
2 < oo f 

such a function has finite Dirichlet integral. 
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