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BOUNDARY CONDITIONS IN OPTIMAL CONTROL

B. D. CRAVEN!

(Received February 1, 1988)

Abstract

A simple rigorous approach is given to finding boundary conditions for the adjoint
differential equation in an optimal control problem. The boundary conditions for
a time-optimal problem are calculated from the simpler conditions for a fixed-time
problem.

1. Introduction

When an optimal control problem is solved using the Pontryagin theory, the ad-
joint differential equation must be given suitable boundary conditions, depending
on the terminal conditions for the given problem. Even when, in a computation,
the Pontryagin maximum (or minimum) principle is not used (see e.g. [5], [6]),
the adjoint equation with boundary conditions is still needed, in order to com-
pute the gradient of the objective functional. K. L. Teo et al. [6] have obtained
boundary conditions for the adjoint equation, for a class of time-optimal control
problems, by a fairly complicated calculation. It will now be shown that such
boundary conditions can be deduced from those for a fixed-time problem, in a
manner that is simple and intuitive, as well as rigorous, and which could be
extended. The approach uses Dirac delta functions, which may be regarded ei-
ther as Schwartz distributions, or as functions with extended domain and range
spaces [3]. While the required results for fixed-time optimal control are well
known, a simple approach to them is first outlined, for the reader’s convenience.
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2. Pontryagin theory for a fixed-time optimal control problem

Consider the following fixed-time optimal control problem:
Minimise F(z,u) := / f(t,z(t),u(t))dt (P1)
I

subject to  z(0) = 2o, dz(t)/dt = m(t,z(t),u(t) (t € I),
u(t)e A(teI), n(z(t))eV(t) (tel).

Here I := [0, T], with T fixed; the functions f(.,.,.) and m(.,.,.) are continuously
differentiable; for each t € I, V(t) is a closed convex cone, representing constraint
components n;(z(t)) > 0 or = 0. The differential equation may be written
as Dz = M(z,u), where D = d/dt, and M is a mapping of the functions z
and u, defined by M(z,u)(t) := m(¢t, z(¢),u(t)). Similarly, define the mapping
N by N(z)(t) := n(z(t)). Consider the control function u(.) to be piecewise
continuous, and the state function z(.) to be piecewise smooth, with norms
[lull == |lulloo and ||z|| := ||zl + ||Dz|lco; denote these function spaces by
U and X respectively. It then follows [2] that F(.,.) and M(.,.) are Fréchet
differentiable, and the linear mapping D is continuous. Let T := {u € U :
(Vt € I'u(t) € A}. For convenience in developing the theory, assume [2] a shift
of origin in X to make the initial condition zg = 0; the reverse shift will be made
to the results. Denote by V (¢)* the dual cone to V(t).
For problem (P1), define

H(z,u) :=F(z,u) + AM(z,u) — vN(z),

where A and v are linear functionals in spaces dual to those in which M{z,u)
and N(z) take their values. Then

H(z,u) = / h(t, 2(6), u(t), A(t), v(2)) dt,
I
where the Hamiltonian

h(t,z(t), u(t), A(t), v(2)) := f(t z(2), u(t)) + A(B)m(t, z(1), u(t)) — v(t)n(z(t)),

and A(.) and v(.) are functions (possibly involving delta functions) which repre-
sent the functionals A and v respectively. (Thus the evaluation of the functional
A at a function v(.) equals [, A(t)u(t)dt.) Let p = [A, p).

Assume now that the differential equation for z(t), with initial condition,
defines a unique z = ®(u) for each u € T', where the mapping ®(.) satisfies a
Lipschitz condition. Let

P(z,u) :=[-Dz + M(z,u), N(z) — 9],

where s is a slack variable (thus, s(.) > 0). In the next calculation, assume that
z = ®(u) and z" = ®(u"), where u,u™ € I'. When there is a state constraint
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n(z(t)) € V(¢) (t € I), assume that s(.) is adjoined to z(.) as additional state

component(s). Define also Q(.,.) := F(.,.)+ pP(.,.). Assume that F is partially

Fréchet differentiable with respect to z, uniformly in u near u”, thus that
F(z,u) = F(z",u) = Fp(z",u")(z = 2") + o([|z — z"|| + flu — ™),

with F; denoting partial Fréchet derivative; and assume a similar property for M.
(Note that usual partial Fréchet differentiability would have, instead, Fy{z",u).)
Then
H(z",u") - H(z",u)

= F(:L‘A,'U,A) - F(z?u) + F(a:,u) - F(:CA,’U,) + p[P(zAauA) - P(IA’U)]

= F(z",u") - F(z,u) + F(z,u) — F(z",u) + pP(z,u) — pP(z",u)

= F(IAsuA) - F(l‘,u) + Q(I,u) - Q(ZA,U,)

= F(z",u") — F(z,u) + Qz(z",u™)(z — z") + o(||z — z™|| + |Ju — «*|))

=F(z",u") = F(z,u) + Qz(z",u")(z — 2) + o(|lu — u"|)), (Ham)
by the assumptions of differentiability uniformly in u, and the Lipschitz assump-
tion on 9.

Now, if (z*,u") minimises the control problem (P1), and if p satisfies the
equation Qg (z",u") = 0 (say with p = p"), then
H(z,u") — H(z",u") > o|lu — u"||) (ueT, u—-uh).
Thus (see [1], [2]) H(.,u") has a quasimin at z", subject to u € I'. If the
minimum of the control problem is either global, or a local minimum with respect
to the L!(I) norm for u, then Theorem 5.3.1 of [2] deduces from the quasimin
of H(.,u") the Pontryagin property, that
(Yw € A)h(t, =" (), w, A (t)) > h(t, 2" (t), u™(t), o7 (2))

for almost all t € I, where p"(.) = [A*(.),v(.)] is the function representing the
functional p. Denote by D the differential operator [D, 0] occurring in P, and
let DT denote its adjoint operator. Now

H;(z",v") =0 (Vz€ X)H (z",uM)z =0
(V2 € X) /[hz(t,:t(t), u(t), A(t))z(t) + p(¢)Dz(t)) dt = 0
I
(V2 € X) /[hz(t,z(t),U(t), A(t))2(t) — [DTA())2(t) dt + A(T)=(T) = 0,
I
on calculating the Fréchet derivative, and integrating by parts, using z(0) = 0.

Hence H;(z",u") = 0 holds exactly when A(.) satisfies the adjoint differential
equation:

—dp(t)/dt = hz(t, z(t), u(t), A(t))(t € I); p(T) =0,
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which expands to
—dA(t)/dt = h(t,z(t),u(t), A(t))(t € I); v(t)n(z(t)) = 0; A(T) = 0; v(t) € V(t)*.

Here, the requirement v(t) € V(t)* comes from the Karush-Kuhn-Tucker neces-
sary conditions for the control problem. The requirement v{t)n(z(t)) = O follows
from H,(.) = 0, which is part of the adjoint equation, since the adjoint of the zero
differential operator is 0. Then, whenever component n;(z(t)) > 0,Hs(.) = 0
requires v;(t) = 0.

Now suppose instead that the control problem (P1) includes also a parameter
p; denote the optimal objective value now also by J{(p). In (Ham), suppose
now that (z,u) correspond to parameter value p, and (z",u”) correspond to
parameter value p”. If also (z,u) is a Lipschitz function of p, then (Ham) shows
that

F(z,u) - F(z",u") = H(z",u) - H(z",v") - o(llp - p"||),

assuming that p = p” satisfies the adjoint differential equation. Hence, showing

now the explicit dependence of A( ) on p, arising from the explicit dependence
of f and m on p, there follows

J(p) - J(P") = /I[h(t,x"(t),p’\(t),z)) — h(t, z"(t),u"(t), (1), p)] dt
+o(llp = »"I)
= UI ho(t, 2"(t), u(t), " (t),P") dt] (p— ") +o(llp ~ P
Hence the Fréchet derivative J'(p") is given by
J'(p") = /Ihp(t,z’\(t),u(t), AN(t),p™) dt. (GRAD)

If, instead of introducing a parameter p, the gradient is sought of the objective
function J(u) := F(®(u), u), then a similar calculation gives that

J(u) — I(u") = /1 hu(t, 2 (2), u(t), o™ (8), PN u(t) — v (D)) dt + oflu — ™).

So the gradient of J(.) is thus calculable.

3. Boundary conditions for the time-optimal control problem

Consider now the time-optimal control problem:

Minimise J = R(z(t*)) + /t f(t,z(t), u(t)) dt subject to
0

z(0) = 29,  dz(t)/dt =m(t,z(t),u(t)) (0<t<t*);
u(tye A (0<t<t");  q(z=(t")) =0 (P2)
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Note that, in this problem, all of u(.),z(.), and t* are varied to reach the
optimum; ¢* denotes the (variable} time to optimality. The function ¢, describing
the terminal constraint, is here real valued. For brevity, * will be used to label
the values of functions evaluated at ¢t = ¢*.

Now J can be rewritten as

J= /1 /(6 (6)u(®))m(t* — &) + R(z(8)6(t — £*)] dt,

where I = [0, K}, for any fized K > t*, and n(r) = 0(r < 0),7(r) = 1(r > 0);
6(.) is Dirac’s delta function. For the resulting fized-time optimal control problem,
the Hamiltonian is

h(t, z(t), u(t), A(t),t°) = (¢, 2(t), u(t))m (¢ — t) + R(z(t))6(t - t°)
+ A()m(t, z(t), u(t)) — B6(t — t*)q(z(t)).

Here, A(t) is the costate (= Lagrange multiplier) function. The state constraint
g(z(t*)) = 0 has been rewritten as (Vt)q(z(t)) € V(t), where the cone V(t) = R
except at t = t*, where V(¢*) = {0}. So the corresponding costate function
v(t) = 0 except when ¢ = t*, so that v(t) = —36(t — t*), for some constant S,
may be appropriately assumed, subject to verification that this solution satisfies
all necessary conditions.

The adjoint differential equation is then

—dA(t)/dt = fz(t,2(t), w(®))7(t" = 8) + A(B)ma(t, 2(t), u(t)) — BE(t — £*)gz(2(2))
+ Ra(z(t))6(t - t°),

with boundary condition A(K) = 0. Without loss of generality, K = ¢* + 0 may
be assumed, in deriving necessary conditions. Integrating the adjoint differential
equation from ¢ = ¢t* — 0 to t = t* 4+ 0, only the delta function terms contribute,
and then there follows

At — 0) = Rz (2(t")) — Bz ((t")).-

which may be briefly written as A* = A(t* — 0) = R} — fq;.

So far, the optimality of ¢* has not been used in the calculation. To do this, ¢*
may be regarded as a parameter. For optimality, the derivative of J with respect
to t* should be equated to zero. From (GRAD) above, this gradient equals the
integral over I of Oh/0t*, where h is the Hamiltonian. Now (suppressing some
obvious arguments}),

Oh/ot* = f.6(t" —t) + B6'(t — t*).q — R(z(t))6'(t — t*). *)

Integrating with respect to t over I, and also integrating the §’ terms by parts,
the requirement is that

0=/"+R;m" - fgzm’,
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noting that
(8/0t)R(x(t)) = Ra(2(t))-(d/dt)z(t) = Ry (z(¢))-m(t, z(¢), u(t))-

Thus the optimal value of § is determined. Substituting it into (*) yields the
following boundary condition for the adjoint differential equation:

A" =R; - [f* + Rzm*lq; /lgzm”]. (BC)

The formula (BC) was first obtained by K. L. Teo et al [6], by a complicated
calculation of some four pages, using the chain rule. It is noted that this formula
is essential for numerically computing a time-optimal control problem, since the
costate function A(t) is needed in order to obtain the gradient of the objective
function with respect to u, allowing for the dependence of z on w.

4. An example

The following example of a time-optimal control problem is given, without
solution, in [4], p. 57. A vehicle moves in a plane with velocity of magnitude 1.
Its Cartesian coordinates z;(t) and z(t) in the plane, and its direction z3(t),
are described by the differential equations

dz,(t)/dt = cosz3(t), dza(t)/dt =sinzs(t), dzz(t)/dt =u(t),

where the control function u(t) is bounded by (Vt)|u(t)| < 1. The vehicle is to be
driven from (z,(0), z2(0),z3(0)) = (4,0,7/2) to (z,1(t*),z2(¢t*)) = (0,0), z3(¢*)
not specified, in minimum time ¢t*. In the objective function, f(.,.,.) =1, and
R(z(¢*)) = 0. An optimum solution has a switching time at t = ¢;, and a
singular arc for ¢ € (¢1,¢*), and takes the form:

O<t<ty) u(t)=1, z(t)=3+cost, =zo(t) =sint, z3(t)=7/2+1t,

A(t) = [A1(t), A2(t), A3(t)] = (ccos B, csin B, —c + csin(t — B));
(ti<t<t*) u(t)=0, zi(t)=({*—t)cosB, =za(t)=(t"—t)sing,

z3(t) = 7/2 + t1, A(t) = [A1(8), A2(t), A3(t)] = (ccos B, csin 3,0).
Here c is a positive constant, and § = t; —7 /2, with ¢; =~ 1.9806 and t* ~ 4.7386.
The Pontryagin theory requires A3(t) < 0 when u(t) = 1, which holds since
—1+sin(t — (¢ —7/2)) < 0for0 <t < t;,and =0att =12y, also A3(t) =0
for t; < t < t*. Since this problem is symmetric in sgn 22(t), there is another
optimal solution with the opposite sign of z2(t). Any positive constant ¢ will do

here.
Consider now the boundary condition formula (BC), taking

q(z(t)) = V(21 ()% + 22(1)?).

https://doi.org/10.1017/50334270000006287 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000006287

[7) Boundary conditions in optimal control 349

For t* —t small and positive, z2(t) &~ —(t — t*) cos § and z2(t) &~ —(t —t*)sin g,
where z3(t*) = 7 + §. (These approximations represent an informal use of
I’Hopital’s rule.) Hence

g =~ [(t* —t)cos B, (t* — t)sin 8,0)/((t* ~ t)(cos® B + sin® B)) = [cos B,sin 3,0].
Then gim* = [cos §3,sin 3,0]T [ cos B, — sin 3, 0] = —1. From (BC),

A" =0 - (1+0)[cos B,sin §3,0]/(—1) = [cos B,sin §,0]
= [-cosz3(t*), —sin z3(¢*), 0].

If instead q(z(t)) = (1/2)[z1(t)? + z2(t)?] then, since z;(t*) = 0 and z5(t*) =
0, the limiting case ¢; = 0, A* = 0 arises. Although this choice of g(z(t)) specifies
the same terminal point to the path as does the previous ¢(z(t)), they do not
appear to be computationally equivalent.
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