HEYDE'S CHARACTERIZATION THEOREM FOR DISCRETE ABELIAN GROUPS
 MARGARYTA MYRONYUK

(Received 19 May 2008; accepted 10 July 2009)

Communicated by M. G. Cowling

Abstract

Let X be a countable discrete abelian group with automorphism group $\operatorname{Aut}(X)$. Let ξ_{1} and ξ_{2} be independent X-valued random variables with distributions μ_{1} and μ_{2}, respectively. Suppose that $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \operatorname{Aut}(X)$ and $\beta_{1} \alpha_{1}^{-1} \pm \beta_{2} \alpha_{2}^{-1} \in \operatorname{Aut}(X)$. Assuming that the conditional distribution of the linear form L_{2} given L_{1} is symmetric, where $L_{2}=\beta_{1} \xi_{1}+\beta_{2} \xi_{2}$ and $L_{1}=\alpha_{1} \xi_{1}+\alpha_{2} \xi_{2}$, we describe all possibilities for the μ_{j}. This is a group-theoretic analogue of Heyde's characterization of Gaussian distributions on the real line.

2000 Mathematics subject classification: primary 60B15; secondary 62E10.
Keywords and phrases: characterization theorem, discrete abelian group, Heyde's theorem.

1. Introduction

Many studies have been devoted to characterizing Gaussian distributions on the real line. Specifically, in 1970 Heyde proved the following theorem, which characterizes a Gaussian distribution by the symmetry of the conditional distribution of one linear form given another.

Theorem 1.1 (Heyde [10]; see also [11, Section 13.4.1]). Suppose that $n \geq 2$, $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$, are independent random variables, and let α_{j} and β_{j} be nonzero constants, where $j=1,2, \ldots, n$, such that $\beta_{i} \alpha_{i}^{-1} \pm \beta_{j} \alpha_{j}^{-1} \neq 0$ whenever $i \neq j$. If the conditional distribution of L_{2} given L_{1} is symmetric, where $L_{2}=\beta_{1} \xi_{1}+\cdots+\beta_{n} \xi_{n}$ and $L_{1}=\alpha_{1} \xi_{1}+\cdots+\alpha_{n} \xi_{n}$, then all the random variables ξ_{j} are Gaussian.

The articles $[3-5,12]$ (see also [6, Ch. VI]) were devoted to finding group-theoretic analogues of Heyde's theorem. The present article continues this research.

[^0]ASSUMPTIONS 1.2. Suppose that $\operatorname{Aut}(X)$ is the set of topological automorphisms of a second countable locally compact abelian group X. Suppose also that $n \geq 2$ and ξ_{j} are independent X-valued random variables with distributions μ_{j}, where $j=1,2, \ldots, n$, and that $\alpha_{j}, \beta_{j} \in \operatorname{Aut}(X)$ are such that $\beta_{i} \alpha_{i}^{-1} \pm \beta_{j} \alpha_{j}^{-1} \in \operatorname{Aut}(X)$ whenever $i \neq j$. Here, whenever we make a statement involving the \pm symbol, we mean that both cases hold. Define the linear forms L_{1} and L_{2} by $L_{1}=\alpha_{1} \xi_{1}+\cdots+\alpha_{n} \xi_{n}$ and $L_{2}=\beta_{1} \xi_{1}+\cdots+\beta_{n} \xi_{n}$.

We formulate the following problem.
Problem 1.3. Describe groups X for which the symmetry of the conditional distribution of L_{2} given L_{1} implies that all of the μ_{j} either are Gaussian distributions or belong to a class of distributions which can be considered as a natural analogue of the class of Gaussian distributions.

Problem 1.3 has been studied in different important subclasses of the class of locally compact abelian groups, but has not yet been solved in general. In [3], Problem 1.3 was completely solved for the class of finite abelian groups, and in [5] it was solved for the class of countable discrete abelian groups. For these classes of groups, the class of idempotent distributions can be regarded as a natural analogue of the class of Gaussian distributions. In both cases, a corresponding class of groups can easily be described; it consists of groups that contain no elements of order two.

We now formulate the following general problem.
Problem 1.4. Let X be a second countable locally compact abelian group. Assume that the conditional distribution of L_{2} given L_{1} is symmetric. Describe the possible distributions μ_{j}.

Problem 1.4 was solved within the class of finite abelian groups in [12]. In this article, we solve Problem 1.4 for the class of countable discrete abelian groups. We note that the solution of Problem 1.4 in [12] was based on the finiteness of the automorphism group of a finite group; however, for a general discrete abelian group, the automorphism group may be infinite. Therefore, our solution of Problem 1.4 in the class of countable discrete abelian groups requires new and different reasoning.

We shall use various well-known facts from abstract harmonic analysis, the structure theory of locally compact abelian groups [9], and the theory of infinite abelian groups [7, 8].

First, let us fix some notation. Let X be a second countable locally compact abelian group. We denote by Y the character group X^{*} of X. Let $\langle x, y\rangle$ be the value of a character $y \in Y$ at an element $x \in X$. For $\alpha \in \operatorname{Aut}(X)$, we define the adjoint automorphism $\tilde{\alpha} \in \operatorname{Aut}(Y)$ via the formula

$$
\langle x, \tilde{\alpha} y\rangle=\langle\alpha x, y\rangle \quad \forall x \in X, \forall y \in Y .
$$

We denote by I the identity automorphism of a group. A subgroup G of the group X is said to be characteristic if G is invariant under all topological automorphisms of X.

Given a subgroup H of Y, we denote its annihilator $\{x \in X \mid \forall y \in H,\langle x, y\rangle=1\}$ by $A(X, H)$. We denote by b_{X} the subgroup of all compact elements of X. Given subsets A and B of X, we denote the sum set $\{x \in X \mid x=a+b$ with $a \in A, b \in B\}$ by $A+B$.

For any integer n, we put $X^{(n)}=\left\{x \in X \mid \exists x^{\prime} \in X\right.$ such that $\left.x=n x^{\prime}\right\}$ and $X_{(n)}=$ $\{x \in X \mid n x=0\}$. A group X is said to be bounded if the orders of the elements of X are bounded, that is, if there exists n such that $X=X_{(n)}$. For a discrete abelian group X and a prime number p, let X_{p} be the p-component of X, that is, the subgroup of X consisting of elements whose orders are powers of p.

Given a distribution μ, we define its characteristic function $\widehat{\mu}$ by

$$
\widehat{\mu}(y)=\int_{X}\langle x, y\rangle d \mu(x)
$$

and denote its support by $\sigma(\mu)$. We recall that if H is a closed subgroup of Y and $\widehat{\mu}(y)=1$ for all $y \in H$, then $\widehat{\mu}(y+h)=\widehat{\mu}(y)$ for all $y \in Y$ and $h \in H$, and $\sigma(\mu) \subseteq A(X, H)$. We define a distribution $\bar{\mu}$ by the formula $\bar{\mu}(B)=\mu(-B)$ for all Borel sets $B \subseteq X$. Let $I(X)$ be the set of idempotent distributions on X, that is, the set of translates of the Haar distributions m_{K} of compact subgroups K of X. We note that the characteristic function of the Haar distribution m_{K} is of the form

$$
\widehat{m}_{K}(y)= \begin{cases}1 & \text { if } y \in A(Y, K) \\ 0 & \text { if } y \notin A(Y, K)\end{cases}
$$

We denote by E_{x} the degenerate distribution concentrated at a point $x \in X$.

2. Main results

The main result of this article is the following theorem.
ThEOREM 2.1. Suppose that Assumptions 1.2 hold; moreover, assume that X is countable and discrete and that $n=2$. If the conditional distribution of L_{2} given L_{1} is symmetric, then $\mu_{j}=\rho_{j} * \pi_{j}$, where $\sigma\left(\rho_{j}\right) \subseteq X_{2}$ and $\pi_{j} \in I(X)$, for $j=1,2$.

To prove Theorem 2.1, we need some auxiliary results.
The next theorem, which solves Problem 1.3 for the class of countable discrete abelian groups, was proved in [5]. For convenience, we formulate this theorem in the following form.

Lemma 2.2 [5]. Let X be a countable discrete abelian group with no elements of order two. Let ξ_{1} and ξ_{2} be independent X-valued random variables with distributions μ_{1} and μ_{2}, respectively. Suppose that $\delta, I \pm \delta \in \operatorname{Aut}(X)$. If the conditional distribution of L_{2} given L_{1} is symmetric, where $L_{2}=\xi_{1}+\delta \xi_{2}$ and $L_{1}=\xi_{1}+\xi_{2}$, then $\mu_{j}=E_{k_{j}} * m_{F}$, where $k_{j} \in X$ and F is a finite subgroup of X such that $\delta(F)=F$.

Let Y be an arbitrary abelian group, let f be a function on Y, and let $h \in Y$. We denote by Δ_{h} the finite difference operator

$$
\Delta_{h} f(y)=f(y+h)-f(y) \quad \forall y \in Y
$$

A function f on Y is called a polynomial if

$$
\Delta_{h}^{n+1} f(y)=0
$$

for some natural number n and for all $y, h \in Y$.
Lemma 2.3 [1]. Let Y be a locally compact abelian group and f a continuous polynomial on Y. Then f is constant on b_{Y}.

Lemma 2.4 [4]. Suppose that Assumptions 1.2 hold. The conditional distribution of L_{2} given L_{1} is symmetric if and only if the characteristic functions of the distributions μ_{j} satisfy the functional equation

$$
\begin{equation*}
\prod_{j=1}^{n} \widehat{\mu}_{j}\left(\tilde{\alpha}_{j} u+\tilde{\beta}_{j} v\right)=\prod_{j=1}^{n} \widehat{\mu}_{j}\left(\tilde{\alpha}_{j} u-\tilde{\beta}_{j} v\right) \quad \forall u, v \in Y \tag{2.1}
\end{equation*}
$$

Lemma 2.4 reduces the solution of Problems 1.3 and 1.4 to the study of solutions to equation (2.1) in the class of characteristic functions.

It is well known that any locally compact abelian group X is topologically isomorphic to a group of the form $\mathbb{R}^{m} \times G$, where $m \geq 0$ and G contains a compact open subgroup (see [9, Section 24.30]).

Proposition 2.5 [5]. Suppose that Assumptions 1.2 hold and, moreover, that $X=\mathbb{R}^{m} \times G$, where $m \geq 0$ and G contains a compact open subgroup. Assume that the conditional distribution of L_{2} given L_{1} is symmetric. Then each of the random variables ξ_{j} can be replaced by a translate ξ_{j}^{\prime} in such a way that $\sigma\left(\mu_{j}^{\prime}\right) \subseteq \mathbb{R}^{m} \times b_{G}$ for all j and the conditional distribution of L_{2}^{\prime} given L_{1}^{\prime} is symmetric, where $L_{2}^{\prime}=$ $\beta_{1} \xi_{1}^{\prime}+\cdots+\beta_{n} \xi_{n}^{\prime}$ and $L_{1}^{\prime}=\alpha_{1} \xi_{1}^{\prime}+\cdots+\alpha_{n} \xi_{n}^{\prime}$.

For the class of countable discrete abelian groups, Proposition 2.5 may be strengthened. The following statement is the crucial point in the proof of Theorem 2.1 and is of interest in its own right.

Proposition 2.6. Suppose that Assumptions 1.2 hold and, moreover, that X is a countable discrete abelian group. Then each of the random variables ξ_{j} can be replaced by a translate ξ_{j}^{\prime} in such a way that, for some $k \geq 2, \sigma\left(\mu_{j}^{\prime}\right) \subseteq X_{(k)}$ for all j and the conditional distribution of L_{2}^{\prime} given L_{1}^{\prime} is symmetric, where $L_{2}^{\prime}=$ $\beta_{1} \xi_{1}^{\prime}+\cdots+\beta_{n} \xi_{n}^{\prime}$ and $L_{1}^{\prime}=\alpha_{1} \xi_{1}^{\prime}+\cdots+\alpha_{n} \xi_{n}^{\prime}$.
Proof. Taking into account Proposition 2.5 , we may assume from the beginning that X is a torsion group. We will prove that in this case there exists $k \geq 2$ such that $\sigma\left(\mu_{j}\right) \subseteq X_{(k)}$ for all j. Since $X_{(k)}$ is a characteristic subgroup, we can pass to the new
random variables $\alpha_{j} \xi_{j}$ and reduce the proof of Proposition 2.6 to consideration of the case where $L_{1}=\xi_{1}+\cdots+\xi_{n}$ and $L_{2}=\delta_{1} \xi_{1}+\cdots+\delta_{n} \xi_{n}$, for some $\delta_{j} \in \operatorname{Aut}(X)$. The condition $\beta_{i} \alpha_{i}^{-1} \pm \beta_{j} \alpha_{j}^{-1} \in \operatorname{Aut}(X)$ for all $i \neq j$ is transformed into the condition $\delta_{i} \pm \delta_{j} \in \operatorname{Aut}(X)$ for all $i \neq j$. By Lemma 2.4, the symmetry of the conditional distribution of L_{2} given L_{1} implies that the characteristic functions $\widehat{\mu}_{j}$ satisfy (2.1), which takes the form

$$
\begin{equation*}
\prod_{j=1}^{n} \widehat{\mu}_{j}\left(u+\widetilde{\delta}_{j} v\right)=\prod_{j=1}^{n} \widehat{\mu}_{j}\left(u-\widetilde{\delta}_{j} v\right) \quad \forall u, v \in Y \tag{2.2}
\end{equation*}
$$

Set $v_{j}=\mu_{j} * \bar{\mu}_{j}$. Then $\widehat{v}_{j}(y)=\left|\widehat{\mu}_{j}(y)\right|^{2} \geq 0$ for all $y \in Y$. Obviously, the characteristic functions \widehat{v}_{j} also satisfy (2.2). Let U be a neighborhood of zero in the group Y such that $\widehat{v}_{j}(y)>0$ for all $y \in U$. Set $\varphi_{j}(y)=-\log \widehat{v}_{j}(y)$ for all $y \in U$. We restrict ourselves to the case where $n=2$; the case of arbitrary n is dealt with similarly. Rewriting (2.2) for $n=2$, we obtain

$$
\begin{equation*}
\widehat{\mu}_{1}\left(u+\widetilde{\delta}_{1} v\right) \widehat{\mu}_{2}\left(u+\widetilde{\delta}_{2} v\right)=\widehat{\mu}_{1}\left(u-\widetilde{\delta}_{1} v\right) \widehat{\mu}_{2}\left(u-\widetilde{\delta}_{2} v\right) \quad \forall u, v \in Y \tag{2.3}
\end{equation*}
$$

Let V be a symmetric neighborhood of zero in the group Y such that for any choice of automorphisms $\lambda_{j} \in\left\{I, \widetilde{\delta}_{1}, \widetilde{\delta}_{2}\right\}$, with $j=1, \ldots, 8$, the following inclusion holds:

$$
\sum_{j=1}^{8} \lambda_{j}(V) \subseteq U
$$

Since X is a discrete torsion group, its character group Y is compact and totally disconnected. Hence there exists an open subgroup W of Y such that $W \subseteq V$.

We conclude from (2.3) that the functions φ_{j} satisfy the equation

$$
\begin{equation*}
\varphi_{1}\left(u+\widetilde{\delta}_{1} v\right)+\varphi_{2}\left(u+\widetilde{\delta}_{2} v\right)-\varphi_{1}\left(u-\widetilde{\delta}_{1} v\right)-\varphi_{2}\left(u-\widetilde{\delta}_{2} v\right)=0 \quad \forall u, v \in W \tag{2.4}
\end{equation*}
$$

We use the finite difference method to solve (2.4). Take an arbitrary element k_{1} of W. Substitute $u+\widetilde{\delta}_{2} k_{1}$ for u and $v+k_{1}$ for v in (2.4); then subtract (2.4) from the resulting equation. This gives

$$
\begin{equation*}
\Delta_{l_{11}} \varphi_{1}\left(u+\widetilde{\delta}_{1} v\right)+\Delta_{l_{12}} \varphi_{2}\left(u+\widetilde{\delta}_{2} v\right)-\Delta_{l_{13}} \varphi_{1}\left(u-\widetilde{\delta}_{1} v\right)=0 \quad \forall u, v \in W \tag{2.5}
\end{equation*}
$$

where $l_{11}=\left(\tilde{\delta}_{1}+\tilde{\delta}_{2}\right) k_{1}, l_{12}=2 \tilde{\delta}_{2} k_{1}$ and $l_{13}=\left(\tilde{\delta}_{2}-\tilde{\delta}_{1}\right) k_{1}$. Take an arbitrary element k_{2} of W, and substitute $u+k_{2}$ for u and $v+k_{2}$ for v in (2.5). Subtracting (2.5) from the resulting equation, we get

$$
\begin{equation*}
\Delta_{l_{21}} \Delta_{l_{11}} \varphi_{1}\left(u+\widetilde{\delta}_{1} v\right)+\Delta_{l_{22}} \Delta_{l_{12}} \varphi_{2}\left(u+\widetilde{\delta}_{2} v\right)=0 \quad \forall u, v \in W \tag{2.6}
\end{equation*}
$$

where $l_{21}=2 \widetilde{\delta}_{1} k_{2}$ and $l_{22}=\left(\widetilde{\delta}_{1}+\widetilde{\delta}_{2}\right) k_{2}$. Take an arbitrary element k_{3} of W. Substitute $u-\widetilde{\delta}_{2} k_{3}$ for u and $v+k_{3}$ for v in (2.6). Subtracting (2.6) from the resulting equation yields

$$
\begin{equation*}
\Delta_{l_{31}} \Delta_{l_{21}} \Delta_{l_{11}} \varphi_{1}\left(u+\widetilde{\delta}_{1} v\right)=0 \quad \forall u, v \in W \tag{2.7}
\end{equation*}
$$

where $l_{31}=\left(\widetilde{\delta}_{1}-\widetilde{\delta}_{2}\right) k_{3}$. Putting $v=0$ in (2.7), we find that

$$
\begin{equation*}
\Delta_{l_{31}} \Delta_{l_{21}} \Delta_{l_{11}} \varphi_{1}(u)=0 \quad \forall u \in W \tag{2.8}
\end{equation*}
$$

Note that the k_{j} are arbitrary elements of W and that $\delta_{1} \pm \delta_{2} \in \operatorname{Aut}(X)$. Taking into account (2.8) and the representations for l_{11}, l_{21} and l_{31}, it is not difficult to prove that there exists an open subgroup P of W such that on the subgroup $H=P \cap Y^{(2)}$, the function φ_{1} satisfies the equation

$$
\begin{equation*}
\Delta_{h}^{3} \varphi_{1}(y)=0 \quad \forall h, y \in H, \tag{2.9}
\end{equation*}
$$

that is, the function φ_{1} is a continuous polynomial on the subgroup H. Using similar reasoning, we can show that the function φ_{2} satisfies (2.9) as well.

Since Y is a compact group, the subgroup $Y^{(2)}$ is compact too. Since the subgroup P is open, it is closed and hence compact. Therefore the subgroup H is compact. Taking into account Lemma 2.3 and the condition $\widehat{\mu}_{j}(0)=1$, this implies that $\varphi_{j}=0$ in H. Hence $\widehat{v}_{j}=1$ in H, and so $\sigma\left(v_{j}\right) \subseteq A(X, H)$. Set $G=A(X, H)$. Note that $A\left(X, Y^{(2)}\right)=X_{(2)}$. Since $H=P \cap Y^{(2)}$, the subgroup G is the subgroup generated by the subgroups $X_{(2)}$ and $A(X, P)$. Note that $(Y / P)^{*} \approx$ $A(X, P)$. Since the quotient Y / P is finite, the annihilator $A(X, P)$ is also finite. Thus the subgroup G is generated by the subgroup $X_{(2)}$ and some finite group. Hence the subgroup G is bounded. On the other hand, it is well known that if a distribution is concentrated on a Borel-measurable subgroup, then each of its divisors must be concentrated on a coset of this subgroup (see, for instance, [2, Proposition 2.5]). Thus, since $\sigma\left(v_{j}\right) \subseteq G$, the distribution μ_{j} is concentrated on a coset $x_{j}+G$, where $x_{j} \in X$. Since X is a torsion group, x_{j} is an element of finite order. Hence the subgroup generated by G and x_{j} is bounded, that is, there exists k such that all supports $\sigma\left(\mu_{j}\right)$ are subsets of $X_{(k)}$. Proposition 2.6 is therefore proved.

Remark 2.7. In light of Proposition 2.5, the study of Problems 1.3 and 1.4 for countable discrete abelian groups reduces to that for countable discrete abelian torsion groups. Note that a countable discrete torsion abelian group can have quite complicated structure (see, for instance, [7]). At the same time, Proposition 2.6 reduces the study of Problems 1.3 and 1.4 from the class of countable discrete torsion abelian groups to the class of bounded countable discrete abelian groups. The structure of a bounded countable discrete abelian group is very simple. In particular, by the Baer-Prüfer theorem, each such group is a weak direct product of cyclic groups (see [7, Section 17.2]).

Suppose that the conditions of Proposition 2.6 are valid. As is evident from the proof of Proposition 2.6, the distributions μ_{j} are concentrated on a subgroup generated by $X_{(2)}$ and a finite subgroup. We will check that this statement cannot be strengthened.

Proposition 2.8. Let X be a countable discrete abelian group generated by $X_{(2)}$ and a finite subgroup. Suppose that $\delta, I \pm \delta \in \operatorname{Aut}(X)$. Then there exist independent identically distributed X-valued random variables ξ_{1} and ξ_{2} with distribution μ such that the conditional distribution of L_{2} given L_{1} is symmetric, where $L_{2}=\xi_{1}+\delta \xi_{2}$ and $L_{1}=\xi_{1}+\xi_{2}$; furthermore, the support $\sigma(\mu)$ of μ is equal to X.
Proof. It is obvious that X is a bounded group. Therefore, by the Baer-Prüfer theorem (see [7, Section 17.2]), the group X can be decomposed into a weak direct product of cyclic groups. It follows that X can be represented in the form $B \times C$, where $B=B_{(2)}$ and C is a finite group.

Let ξ_{1} and ξ_{2} be independent identically distributed X-valued random variables whose distribution μ is equal to $\rho * m_{C}$, where ρ is a distribution on the subgroup $X_{(2)}$ such that $\sigma(\rho)=X_{(2)}$. It is clear that $\sigma(\mu)=X$. We verify that the conditional distribution of L_{2} given L_{1} is symmetric. By Lemma 2.4, it suffices to verify that the characteristic function of the distribution μ satisfies (2.1), which in this case takes the form

$$
\begin{equation*}
\widehat{\mu}(u+v) \widehat{\mu}(u+\varepsilon v)=\widehat{\mu}(u-v) \widehat{\mu}(u-\varepsilon v) \quad \forall u, v \in Y, \tag{2.10}
\end{equation*}
$$

where $\varepsilon=\tilde{\delta}$. Since $\widehat{\mu}=\widehat{\rho} \widehat{m}_{C}$, it suffices to show that both $\widehat{\rho}$ and \widehat{m}_{C} satisfy (2.10).
We verify that the characteristic function $\widehat{\rho}$ satisfies (2.10). Note that $A\left(Y, X_{(2)}\right)=$ $Y^{(2)}$. Since $\sigma(\rho)=X_{(2)}$, we have $\widehat{\rho}(y+h)=\widehat{\rho}(y)$ for all $y \in Y$ and $h \in Y^{(2)}$. Hence, $\widehat{\rho}(u+v)=\widehat{\rho}(u-v)$ and $\widehat{\rho}(u+\varepsilon v)=\widehat{\rho}(u-\varepsilon v)$ for all $u, v \in Y$. Thus, the function $\widehat{\rho}$ satisfies (2.10).

We verify now that the characteristic function \widehat{m}_{C} also satisfies (2.10). From [5], it suffices to verify that $\gamma(C)=C$, where $\gamma=(I+\delta)^{-1}(I-\delta)$. This is equivalent to showing that $\widetilde{\gamma}(A(Y, C))=A(Y, C)$. It is obvious that $A(Y, C) \approx B^{*}$. Since $B=$ $B_{(2)}$, the equality $B^{*}=B_{(2)}^{*}$ holds. Hence, the automorphism $\tilde{\gamma}$ acts on the subgroup $A(Y, C)$ as the identity. Therefore $\widetilde{\gamma}(A(Y, C))=A(Y, C)$, and so $\gamma(C)=C$.

Proof of Theorem 2.1. It is obvious that we may assume without loss of generality that $L_{1}=\xi_{1}+\xi_{2}$ and $L_{2}=\delta_{1} \xi_{1}+\delta_{2} \xi_{2}$, where $\delta_{1}, \delta_{2}, \delta_{1} \pm \delta_{2} \in \operatorname{Aut}(X)$. It is also obvious that we may suppose that $\delta_{1}=I$. Set $\delta_{2}=\delta$. By Lemma 2.4, the symmetry of the conditional distribution of L_{2} given L_{1} implies that the characteristic functions $\widehat{\mu}_{j}$ satisfy (2.1), which takes the form

$$
\begin{equation*}
\widehat{\mu}_{1}(u+v) \widehat{\mu}_{2}(u+\varepsilon v)=\widehat{\mu}_{1}(u-v) \widehat{\mu}_{2}(u-\varepsilon v) \quad \forall u, v \in Y, \tag{2.11}
\end{equation*}
$$

where $\varepsilon=\tilde{\delta}$.
Taking into account Proposition 2.6, we can assume that X is a bounded group, that is, there exists $k \geq 2$ such that $X=X_{(k)}$.

Since X is a bounded group, all but finitely many p-components of X are trivial. Decompose the group X into a finite direct product of its p-components:

$$
X=\underset{p \in \mathcal{P}}{\mathbf{P}} X_{p}
$$

where \mathcal{P} is a finite set of prime numbers.

Set $G=X_{2}$ and $K=\mathbf{P}_{p>2} X_{p}$, so that $X=G \times K$. If $G=\{0\}$, then the assertion of the theorem follows from Lemma 2.2. Assume that $G \neq\{0\}$. Then $Y=H \times L$, where $H \approx G^{*}$ and $L \approx K^{*}$. Write the element y of the group Y as (h, l), where $h \in H$ and $l \in L$. Since the subgroups G and K are characteristic, so are the subgroups H and L. Hence, any automorphism $\varepsilon \in \operatorname{Aut}(Y)$ can be written in the form $\varepsilon(h, l)=\left(\varepsilon_{H} h, \varepsilon_{L} l\right)$, where $(h, l) \in Y$.

Put $u=(h, l), v=\left(h^{\prime}, l^{\prime}\right), \widehat{\mu}_{1}=f$ and $\widehat{\mu}_{2}=g$, and rewrite (2.11) in the form

$$
\begin{equation*}
f\left(h+h^{\prime}, l+l^{\prime}\right) g\left(h+\varepsilon_{H} h^{\prime}, l+\varepsilon_{L} l^{\prime}\right)=f\left(h-h^{\prime}, l-l^{\prime}\right) g\left(h-\varepsilon_{H} h^{\prime}, l-\varepsilon_{L} l^{\prime}\right) \tag{2.12}
\end{equation*}
$$

for all $(h, l),\left(h^{\prime}, l^{\prime}\right) \in Y$. Substituting $h=h^{\prime}=0$ into (2.12), we get

$$
\begin{equation*}
f\left(0, l+l^{\prime}\right) g\left(0, l+\varepsilon_{L} l^{\prime}\right)=f\left(0, l-l^{\prime}\right) g\left(0, l-\varepsilon_{L} l^{\prime}\right) \quad \forall l, l^{\prime} \in L \tag{2.13}
\end{equation*}
$$

By Lemma 2.2, any solution of (2.13) has the form

$$
\begin{equation*}
f(0, l)=\left\langle k_{1}, l\right\rangle \widehat{m}_{F}(l), \quad g(0, l)=\left\langle k_{2}, l\right\rangle \widehat{m}_{F}(l) \quad \forall l \in L \tag{2.14}
\end{equation*}
$$

where F is a finite subgroup of the group K and $k_{1}, k_{2} \in K$.
Substituting (2.14) into (2.13) gives $2\left(k_{1}+\delta k_{2}\right) \in F$. Since $K_{(2)}=\{0\}$, we have $k_{1}+\delta k_{2} \in F$. Set $k=k_{1}+\delta k_{2}$. It is clear that the representation (2.14) does not change if we substitute $k_{1}^{\prime}=k_{1}-k$ for k_{1}. But then $k_{1}^{\prime}+\delta k_{2}=0$. It is easy to see that in this case the characteristic functions $\tilde{f}(0, l)=\left\langle-k_{1}^{\prime}, l\right\rangle$ and $\tilde{g}(0, l)=\left\langle-k_{2}, l\right\rangle$ satisfy (2.13). Replace the distributions μ_{j} by their translates $\mu_{1}^{\prime}=\mu_{1} * E_{-k_{1}^{\prime}}$ and $\mu_{2}^{\prime}=\mu_{2} * E_{-k_{2}}$, and denote by f^{\prime} and g^{\prime} the characteristic functions of the distributions μ_{j}^{\prime}. It is clear that

$$
f^{\prime}(0, l)=g^{\prime}(0, l)= \begin{cases}1 & \text { if } l \in B \tag{2.15}\\ 0 & \text { if } l \notin B\end{cases}
$$

where $B=A(L, F)$. Hence, $\sigma\left(\mu_{j}^{\prime}\right) \subseteq G \times F$. Since the subgroup G is characteristic and $\delta(F)=F$ by Lemma 2.2, we have $\delta(G \times F)=G \times F$. Thus, we can assume that the group X is of the form $X=G \times K$, where G is a 2-prime group and K is a finite group with no elements of order two. Moreover, we have

$$
f^{\prime}(0, l)=g^{\prime}(0, l)= \begin{cases}1 & \text { if } l=0 \tag{2.16}\\ 0 & \text { if } l \neq 0\end{cases}
$$

Putting $h^{\prime}=h$ and $l^{\prime}=l$ into (2.12), we get

$$
\begin{equation*}
f(2(h, l)) g((I+\varepsilon)(h, l))=g((I-\varepsilon)(h, l)) \quad \forall(h, l) \in Y \tag{2.17}
\end{equation*}
$$

We will prove by induction on m, where 2^{m} is the order of the element h, that $f(h, l)=g(h, l)=0$ for $l \neq 0$. Set $Y_{m}=H_{\left(2^{m}\right)} \times L$ for $m \geq 1$, and let $Y_{0}=L$. Note that Y_{m}, with $m \geq 0$, is a characteristic subgroup.

It follows from (2.16) that $f^{\prime}(h, l)=g^{\prime}(h, l)=0$ for $(h, l) \in Y_{0}$ when $l \neq 0$. Assume that when $l \neq 0, \quad f^{\prime}(h, l)=g^{\prime}(h, l)=0$ for $(h, l) \in Y_{m}$. Consider the restriction of (2.17) to Y_{m+1}. Then $2(h, l) \in Y_{m}$. Hence, $f^{\prime}(2(h, l))=0$ if $l \neq 0$. It then follows from (2.17) that $g^{\prime}((I-\varepsilon)(h, l))=0$ if $(h, l) \in Y_{m+1}$ and $l \neq 0$. Since $I-\varepsilon \in \operatorname{Aut}(Y)$, we deduce that $g^{\prime}(h, l)=0$ if $(h, l) \in Y_{m+1}$ and $l \neq 0$. Arguing similarly, we see that $f^{\prime}(h, l)=0$ if $(h, l) \in Y_{m+1}$ and $l \neq 0$. Since G is a bounded subgroup, there exists k such that $G^{\left(2^{k}\right)}=\{0\}$. Hence, $H_{\left(2^{k}\right)}=H$ and $Y_{k}=Y$. Thus

$$
f^{\prime}(h, l)=\left\{\begin{array}{ll}
f_{0}(h) & \text { if } l=0, \\
0 & \text { if } l \neq 0,
\end{array} \quad g^{\prime}(h, l)= \begin{cases}g_{0}(h) & \text { if } l=0 \\
0 & \text { if } l \neq 0\end{cases}\right.
$$

where $f_{0}(h)=f^{\prime}(h, 0)$ and $g_{0}(h)=g^{\prime}(h, 0)$. Hence, $f^{\prime}(h, l)=f_{0}(h) f_{1}(l)$ and $g^{\prime}(h, l)=g_{0}(h) g_{1}(l)$, where $f_{1}(l)=f^{\prime}(0, l)$ and $g_{1}(l)=g^{\prime}(0, l)$. The functions f_{0} and g_{0} on Y are the characteristic functions of distributions ρ_{1} and ρ_{2} such that $\sigma\left(\rho_{j}\right) \subseteq G$. The functions f_{1} and g_{1} are the characteristic functions of the distribution m_{K}. Thus $\mu_{j}=\rho_{j} * m_{K}$ when $j=1,2$. Returning to the original distributions, we obtain the required result.
REmARK 2.9. The proof of Theorem 2.1 implies the following statement. Assume that the conditions of Theorem 2.1 hold and that L_{1} and L_{2} are of the form $L_{1}=$ $\xi_{1}+\xi_{2}$ and $L_{2}=\xi_{1}+\delta \xi_{2}$. Then $\mu_{j}=\rho_{j} * m_{F} * E_{x_{j}}$, where $\sigma\left(\rho_{j}\right) \subseteq X_{2}, F$ is a finite subgroup containing no elements of order two, and $x_{j} \in X$.

REMARK 2.10. Applying Propositions 2.5 and 2.6 and reasoning as in [12, Proof of Theorem 3], we deduce the following assertion.

Suppose that Assumptions 1.2 hold; moreover, assume that $X=\mathbb{R} \times D$, where D is a countable discrete abelian group, and that $n=2$. If the conditional distribution of L_{2} given L_{1} is symmetric, then $\mu_{j}=\gamma_{j} * \rho_{j} * \pi_{j}$, where the γ_{j} are Gaussian distributions on $\mathbb{R}, \sigma\left(\rho_{j}\right) \subseteq D_{2}$, and $\pi_{1}, \pi_{2} \in I(X)$.

References

[1] G. M. Feldman, 'Marcinkiewicz and Lukacs theorems on abelian groups', Theory Probab. Appl. 34 (1989), 290-297.
[2] G. M. Feldman, Arithmetic of Probability Distributions and Characterization Problems on Abelian Groups, Translations of Mathematical Monographs, 116 (American Mathematical Society, Providence, RI, 1993).
[3] G. M. Feldman, 'On the Heyde theorem for finite abelian groups', J. Theoret. Probab. 17 (2004), 929-941.
[4] G. M. Feldman, 'On a characterization theorem for locally compact abelian groups', Probab. Theory Related Fields 133 (2005), 345-357.
[5] G. M. Feldman, 'On the Heyde theorem for discrete abelian groups', Studia Math. 177(1) (2006), 67-79.
[6] G. M. Feldman, Functional Equations and Characterization Problems on Locally Compact Abelian Groups, EMS Tracts in Mathematics, 5 (European Mathematical Society, Zürich, 2008).
[7] L. Fuchs, Infinite Abelian Groups, Vol. 1 (Academic Press, New York, 1970).
[8] L. Fuchs, Infinite Abelian Groups, Vol. 2 (Academic Press, New York, 1973).
[9] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 1 (Springer, Berlin, 1963).
[10] C. C. Heyde, 'Characterization of the normal law by the symmetry of a certain conditional distribution', Sankhya Ser. A 32 (1970), 115-118.
[11] A. M. Kagan, Yu. V. Linnik and C. R. Rao, Characterization Problems in Mathematical Statistics, Wiley Series in Probability and Mathematical Statistics (John Wiley \& Sons, New York, 1973).
[12] M. V. Mironyuk and G. M. Fel'dman, 'On a characterization theorem on finite abelian groups', Siberian Math. J. 46(2) (2005), 315-324.

MARGARYTA MYRONYUK, Mathematical Division,
B. Verkin Institute for Low Temperature Physics and Engineering,

National Academy of Sciences of Ukraine, 47 Lenin Avenue, Kharkov 61103, Ukraine
e-mail: myronyuk@ilt.kharkov.ua

[^0]: This paper was written with partial support from the French-Ukrainian research programme 'PICS', 2009-2011.
 (C) 2010 Australian Mathematical Publishing Association Inc. 1446-7887/2010 \$16.00

