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RIESZ CAPACITY AND REGULAR BOUNDARY POINTS
FOR THE PARABOLIC OPERATOR OF ORDER «

MASAHARU NISHIO

§1. Introduction

Let R"*' = R” X R be the (n + 1)-dimensional Euclidean space with # = 1.
We denote by X = (z, D a point in R™" with £ € R” and ¢ € R. Consider the

parabolic operator on R™:

1@ = % ¥ (= A)°
where 0 < & < 1 and 4 denotes the Laplacian on R".
For a closed set E in R", we put
T“E) = {2z, —s);x € E, s =20}
and
Q“E) = R"\T“(B).

In [EK] and [IN], it is shown that for a non-empty open set w in Rn, the. origin O
is a regular boundary point of (@) for L' (with respect to the Dirichlet prob-
lem). The purpose of this paper is to give a characterization of this type. Let
K,,(x, y) be the kernel on R” X R” of the form

' 1 (n=1, a>%)
1
max(O, logW> (2a—- n)
Koz, y) = lz—yl*™” 1<2a<n
min(| z[**7%, |y **™) (n =1, a< %)
L 1-n—2a 1
le—yl(z—yl 64, 2= o) +]z—y D" (n22,a=5),
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where 6(y, x — y) is the angle between y and £ — y or 6(y, £ — y) = 0 accord-
ingas |y|llz—y|#0or|yllx—y| =0. We denote by C,,(E) the capacity of
a set E associated with K,,. Our main theorem is the following

THEOREM 1. Let E be a closed set in R". Then the origin O is a regular bound-
ary point of 2 (E) for L' if and only if C,y(E) > 0.

From Theorem 1, it follows immediately

THEOREM 2. Let R be an open set in R™™" and (z,, t,) € R"" a boundary point
of Q. If there exist s, > 0 and a closed set E in R” with Cpp(E) > 0 and with

Ty (E,s) N 2= 0,
where

T(f;fto, (E,s) ={(x, +sz,t,—s);2€E,0<5<5s,)},

then (x,, t,) is a regular boundary point of 2 for L?.

We remark that for 1/2 < a < 1, C,,(E) is the 2a-Riesz capacity of E. For
0 < a<1/2, there is no relation between C,,(E) and the Riesz capacity of E
(see Section 4 for further discussions). Our typical applications of Theorem 1 is
the following

COROLLARY 3. Let H be a hyperplane in R™ and E a non-empty open subset of H.
In the case 0 € H, the origin O is a regular boundary point of 2 (E) for L' if and
only if 1/2<a<1 1In the case 0 € H, O is a regular boundary point of
QE) for L' if and only ifa + 1/2.

In particular, we have

CoROLLARY 4. Letn = 1 and let E be a closed set in R. Then the origin O is a
regular boundary point of () for L if and only if

E+ 0 frl/2 <a<1,
C(E) >0 fra=1/2,
EN{O})# 0 fm0<a<1/2,

where C,(E) is the logarithmic capacity of E.
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§2. Capacities and regular boundary points

Denote by w'® the fundamental solution of L(a), that is,

W b = [(2n>‘”fkn exp(— t| £ +y=Tz-0)dE >0
0 1<0,

where x- & is the inner product of x and & and | &| = (&: E)m

W (x, 1). Then ¢, is decreasing on [0, ©°) and

(1) W(a)(x, t) — t—n/2¢1¢a(t—l/2a I T |)

. Put ¢a(lx|) =

for ¢ > 0. Furthermore, in the case 0 < a < 1, ¢,(») is of order " ** as r— oo,
Recall that for a closed set F in R”™, the a-parabolic capacity cap® (F) of F
is defined by

cap'” (F) = SUp[f du;p € MI(F)},
where M, (F) is the set of all Radon measures ¢ = 0 on R™ supported by F
satisfying W(a)*/,z <1 on R™ (see [N] and [W]). If F is compact, there exists a

unique g € M,(F) with fdu=cap(a)(F), which is called the equilibrium

measure of F with respect to W, For 1> 0, we denote by T;a) cR"'— R™!
the 2a-parabolic dilation, that is, 7,° (z, £) = (Az, A°*). By (1), we have

PROPOSITION 5. Let F be a compact set in R™*' and A > 0. Denote by pt and U

the equilibrium measures of F and T;a) (F) with respect to W', respectively. Then we

have

(a)

w =17
and

Cap(a) (T;a) (F)) — /zﬂcap(d) (m ,

() . . (a)
wheve T, U is the image measure of it by T,

We define the capacity associated with K,, in the usual manner.

DeriniTioN 1. For E € R”, we put
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C,(E) = sup{f dv;v € EIJEI(E)],

where M, (E) is the set of all Radon measures v = 0 on R” such that supp(v) C

E and fKZa(x, ydv(y) <1 for every z € R”.

DEFINITION 2 (see [IN]). Let £ be an open set in R"*' and X, a boundary
point of £. Then X, is said to be regular for L? (with respect to the Dirichlet
problem) if

lim €% = &y, (vaguely),
XeR,X—X,
where €%, is the balayaged measure of the point measure ey at X to C£2 (the com-
plement of £) with respect to W (x, &) = W'® (x, — #). Denote by M(CQ) the
vague closure of the set of all positive Radon measures g on R™' which satisfies
W% y>W® % ex on (2. Then ey is the unique positive measure in
M, (CQ) which satisfies W % ¢}, < W % on R for every u € My(CR).

By the Wiener criterion and Proposition 5, we know the following character-
ization of the regular boundary points (see [EG] and [N]).

PROPOSITION 6. For a closed set E in R", the following three conditions are
equivalent :
(1) O is a regular boundary point of 2“ (E) for L' .
(2) cap ®(T“(E, s)) > 0 for every s > 0.

(a) (a)

(3) cap (T (E, s,, 5)) > 0 for some 0 < s, < s,
where

T(E, s, s) ={(s""z, —9);z€E, s <s<s,).

§3. Proofs of Theorem 1 and Corollary 3

In order to discuss the a-parabolic capacity and the capacity associated with

K

2 W estimate the following integral:
-1
f2 W@z, — 1) — ((— )"y, s))ds.

Since the 2a-Riesz kernel is the fundamental solution of (— 4)%, we have
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LeMMA 7. For| x| < 1/2, there exists a constant M > 1 such that
M7'R,@ < f_; Wz, — 1)— 0, 5))ds < MR,,(x),
where R,, is the 2a-Riesz kernel, that is,

P for 2a<n

R, (x) = 1 =
2a max|0, logm for 2a=mn
1 for 2a > n.

In the proof of Theorem 1, the following lemma plays an essential role.
LEMMA 8. For each 0 < 7, < 7,, there exists a constant M > 0 such that
-1 @ 1/2a
M Kz, y) < f_z Wz, = D—— 9", s))ds < MK,,(z, y)
foreveryx, y € R" with | x| < 7, r, <|y| < 7,

Proof. For functions @ and b on {(z, o) ;| x| < 7,y 7, < |yl < 7.}, we write
a=bif

C'h<a<Ch

for some constant C = 1. Assume & = 1/2. Then we have
R 172
@) [ W, - D= (= 9", 9)ds
-2
1
— .[01 s—n/2a¢a(s—1/2a | r— (S + 1)1/2ay|) dS
1
=j; S—n/2a¢a(| sV ) — sV (s 4+ 1)V — Dy ds

1
~ ‘/0‘ s—n/2a¢a(s-—l/2a | z—y |) ds
= Ky (x, 9).

Assume 0 < a < 1/2. Then we have

f_l Wz, —1)— = 9"y, 5))ds
-2
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1
_ f G (s7 z — (s + 1Yy ]) ds
0

1

~ [ s (s @V = Dy — (x— ) ) ds

0

l

1
~ f S-n/2a¢a(s—1/2a I Sy.. _ -i‘l) dS (say — I)Y
0

12a

where § =y/|y| and = (x — )/(2"** — 1) | y|. In the above calculation, we

use the change of variables from s to s’ :
s+ D" =" - 15 + 1.

We may assume that

215 mn(} (5%).

By separating into the following three cases of 8 = 6(Z, %), we estimate the integ-
ral [;7/6 <0< |#|" "' <6< r/6and0 <6< |57
In the case @ = /6, we have, for 0 < s <1,

|sg—z|=|z] +5,

so that
! /2 /2

(3) sz s (T 2| + 5)ds
0

|Z| 1
~ f S—n/2a¢a(s—1/za | )ds + jlil S-n/2a¢a(sl—1/2a)ds

0

] 1
~ |—n—2 1-n-2
zf slz|™ “ds+_/:s " ds
0 |zl

{1 forn=1

| 277" for n > 2.

Q

In the case 0 £ 8 < /6, we have

and
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so that
12173 ! —-n/2a 1-12a
(4) ~ f + | s, (s | sg — z1)ds
0 2|zl
[ 1 forn =1
| #1777 forn = 2.
In the case | #|"**7' < 6 < /86, denoting by £ *§ the inner product of £ and

7, we have for | £|/3 < s < 2| &,
s | sg— x| 2 sV | zlsin0= 0] ]V > 1,

so that

21Z|
j: S—n/zaqja(s—vzal s — |)ds
1z]/3

Q

2] (£16)™" ™ ds

Is=Z-91 <1710

+ |Zlls—z-g|" ™ ds

|s—Z+9l <1Z16,1Z|/3< s <2|Z|

=|z|(z]e)™™

Therefore combining this relation with (4), in the case | #|"**' < 8 < /6, we
have

(5) I=|z| (x| ™.

|1/2a—1

In the case § < | & , we have

2iZ|
f S—n/2a¢a(s—1/2¢x | sg] -7 ‘)dS

1Z1/3
2zl ~ |—n/2a = |—1/2a ~ =
= [ 130217 s — 2bas

~ ~ | —n2a
=~ | ds
|s—Z-y| < |Z|1/2e

~ ~ ~ |—n—2a
+ |Z||s— & 4] ds
(Is~Z-y| = 1Z|12%,|z|/3<s<2|Z]
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~ l 7 '(l—n)/Za

This and (4) imply
(6) I ~ | 7 |(1—n)/2a
Thus Lemma 8 is shown by (2), (3), (5) and (6).

To prove Theorem 1, we use the following

PROPOSITION 9. Let it be a positive Radon measure on R” X [0, ©). For s > 0,
we put 1y = uX¥ e If for any s > 0,

0+ U IR”x(s,m) < Us,

then for every 0 < s, < s,, there exists a positive Radon measure v # 0 on R” such
that

u=v®dt on R" X (s, s,).

Here (1 |gny (s, is the vestriction of t to R” X (s, ).

Proof. Let ¢ =0 be a continuous function with supp(¢) C (s, +1, s, + 2)

and f ¢(H)dt = 1. Define the positive measure v on R” by

[ @@ = [ f@e®dutz,

for every continuous function on R” with compact support. Then v is a required
measure.
Applying the transformation:
(§, ©) = (exp(— Dz, — aexp(— 2at))
to the measure g in the preceding proposition, we have

LeMMA 10. Let @ >0 and ¢ =0 a measure on R" X [— a, 0). If for any
0< A<,
0+ u ]R”x(—axz"‘,m < Tx(a)ﬂ'

then for any — a < s, < s, < 0, there exists a positive Radon measure v # 0 on R"
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such that

[rae= [ [" 1= 97"y, 9ds v
for every continuous function f = 0 on R™" with compact support.

Now we give the proofs of Theorem 1 and Corollary 3.

Proof of Theorem 1. First subpose that C,,(E) > 0. Then there exists a posi-
tive Radon measure v # 0 on R” such that supp(v) C E is compact and that

fK,_a(x, wdvy) <1

for every £ € R". When 0 < @ < 1/2, we may assume that 0 € supp(v), be-
cause K,, (0, 0) = oo. Define the measure £ on R"*" by

-1 1/
ffdﬂ—_—f [ 7= 97y, 9ds dviy)

for every continuous function f on R™ By Lemma 8, W® % u is bounded on
R™* Hence cap(“)(T(a) (E,1,2)) > 0. By Proposition 6, O is a regular boundary
point of 2 (E) for L. Conversely suppose that O is regular for L'. By Prop-
osition 6, we have cap® (T (E, 3)) > 0. We may assume that E is compact and
that 0 € E if 0 < a < 1/2. For s <0, we denote by , the equilibrium measure
of T(a)(E, s) with respect to W We remark that for any s > 0,

U3 ‘R”x(-s,o) * 0.

For 2 > 0, since 7, (T'“(E, 5)) = T'“(E, 2*s), Proposition 5 shows f;, =

A 7%u,. On the other hand, for 0 < s, < s,, ts, < pts, on T“(E, s) (see N,

Lemma 2.14]), so that for 0 < A < 1,
U < 0% on T'(E, 32%).

By Lemma 10, there exists a positive Radon measure v # 0 on R” such that
supp(v) € E and that

fj::f((— §) "y, 9)ds dv(y) < ffd,u3

for every continuous function f = 0 on R™* Therefore Lemma 8 gives
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me(x, Pavy) < MW@ %z, — 1)
<M,

which implies C,,(E) > 0. This completes the proof.

Proof of Corollary 3. First we remark that E has a positive 2a-Riesz capacity
if and only if 1/2 < a < 1. Then in the case O € H, the assertion of Corollary 3
follows from Lemma 7. Next we assume O &€ H. By Theorem 1, we have only to
show C,u(E) > 0 in the case 0 < a < 1/2. We may assume that E is compact.
Let v be the restriction to E of the (# — 1)-dimensional Lebesgue measure on H.

Then we can show that sza(x, y)dv(y) is bounded on R”. In fact, if x € H or

if £ and O are in the same component of R”\ H, then 6(y, x — y) = C, for some
constant C, > 0, so that we have

sza(x, »dv(y) zj;

1o

) I r— y |2—n—-zadu(y)

S l xo _ y IZ_”_Zadl)(y)

By (zy,1)

=1

for £ € R” near E, where z, is the nearest point in H from x, and where B (z,, 7)
denotes the ball in H with radius 7 and center x,. If x and O are not in the same
component of R”\ H, denote by I, the constant multiplication of x belonging to H.
Then

f K, (x, y) dv(y)
By (g, lz—20l,1)

2-n-2
~ lz, g7 du(y)
By (Tg, |x~24l,1)
=1,

i Kooz, 9) dv(y)
By (xq,| 22|28, [z ~20 )

1-n—2a
= . r— X - dy
-lz;”,(ro,lz-z,,l"za,lz—x"l) | Ol I y 0 I (Z/)

Q

1,

where By(x,, 7,, 7)) = By(x,, 7,)\ By(x,, r,). Moreover
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f K, (z, y) dv(y)
B (2o, |2—24|172%)

f -z, |(l—n)/2a dl)(y)

By (Zo,|lz~20|1" 2")
Therefore we have C,, (E) > 0, which shows Corollary 3.

§4. Capacity C,, and the Riesz capacity

For 0 < & < 1/2, we discuss a relation between the capacity C,, and the
Riesz capacities. Since

|.Z' _ y I2—2a—n S KZa(x, y) S I T — y l(l—n)/za

for y # 0 and £ € R” such that | x — y| is sufficiently small, C,,(E) > 0 implies
Cyl(E) >0 and C,,(E) =0 implies Cy” 4_samyza (E) =0, where C,”(-)
denotes the B-Riesz capacity of (+) in R”. Corollary 3 gives an example of E
such that C,,(E) > 0 and C,”(E) = 0 since C,”(H) = 0 for every hyperplane
H in R". It would be a question to be answered whether for every ¢ > 0, there ex-
ists a compact set E in R”\ {0} such that Cop(E) > 0 and Cy e (E) = 0. Con-
versely what is the infimum of 8 satisfying the following condition?
There exists a compact set E in R”"\ {0} such that C,,(E) =0 and
Cs"(E) > 0.

Concerning the latter question, we have the following example.

ExaMpLE. Let H be a hyperplane in R"(n = 2) with 0 &€ H. For every com-
pact set K C H, we put

Ei={sycsR";ycs K,1<s<2}.

Then C,,(E,) > 0 if and only if C(" Y(K) > 0. Choosing a generalized Cantor
set K whose Hausdorff dimension is equal to # — 2a — 1, we have C,,(Ey) =0
and for any ¢ > 0, CZ(ZLE(EK) > 0. From this observation, the infimum of 8 of the

latter question is less than or equal to 2a.
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