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Abstract

Without resorting to complex numbers or any advanced topological arguments, we show that any real
polynomial of degree greater than two always has a real quadratic polynomial factor, which is equivalent
to the fundamental theorem of algebra. The proof uses interlacing of bivariate polynomials similar to
Gauss’s first proof of the fundamental theorem of algebra using complex numbers, but in a different context
of division residues of strictly real polynomials. This shows the sufficiency of basic real analysis as the
minimal platform to prove the fundamental theorem of algebra.
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1. Introduction

Let us consider a univariate polynomial of degree N with its independent variable as
well as fixed coefficients belonging to the field of real numbers R, the smallest field
containing all rational numbers and satisfying the least upper bound property [7]:

f (x) =
N
∑

n=0

cnxn ∈ R, x ∈ R, cn ∈ R for 0 ≤ n ≤ N. (1.1)

The fundamental theorem of algebra (FTA), stated solely in terms of real numbers,
asserts the factorisability of any such polynomial into a product of linear (degree one)
and quadratic (degree two) polynomials with real coefficients [3]. Since c0 = 0 forces
x to be a trivial factor, we restrict our consideration to f (x) with c0 , 0. Ignoring trivial
factorisations for N ≤ 2, the FTA can be rephrased in a succinct version for N ≥ 3.

THEOREM 1.1. For N ≥ 3, given cN , c0 , 0, there are A, B ∈ R and dn ∈ R for

0 ≤ n ≤ N − 2 such that

f (x) =
N
∑

n=0

cnxn
= (x2 − Ax − B)

N−2
∑

n=0

dnxn. (1.2)
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Even though the minimal algebraic elements for proving the FTA have been
elucidated [1, 4, 8], the minimal analysis platform to prove the FTA has not been
characterised. We will show that the basic properties of the real number field suffice
to prove Theorem 1.1 by considering the linear residue of the division of

∑N
n=0 cnxn by

(x2 − ax − b) for a, b ∈ R:

f (x) = (x2 − ax − b) qN−1(x) + hN(a, b) x + bhN−1(a, b) + c0, (1.3)

which we will derive shortly. Both hN(a, b) and bhN−1(a, b) + c0 are bivariate polyno-
mials in a and b. By studying their interlacing [2], we will show that there are A, B ∈ R
which satisfy hN(A, B) = 0 and BhN−1(A, B) + c0 = 0, thereby proving Theorem 1.1.
The crucial steps will be to prove the following statements.

(1) There is b < 0 such that, for any fixed b < b, hN(a, b) and bhN−1(a, b) + c0 have
the maximum possible number of (real) roots in the variable a which alternate
with each other. For brevity, this property is abbreviated as interlacing.

(2) For some b > b, interlacing fails either due to the failure in the alternating of the
roots, or because hN(a, b) or bhN−1(a, b) + c0 has a smaller number of (real) roots
than its degree in a.

Other strictly real proofs of the fundamental theorem of algebra (see [5, 6]) rely on
advanced topological arguments.

2. Establishing interlacing

Directly checking for interlacing is intractable, so we resort to checking the
interlacing of Sturm-like pairs

(

hm−1(a, b), hm(a, b)
)

(see [9]), where hm(a, b) is the
coefficient of xN−m+1 at the mth step of polynomial division of f (x) by x2 − ax − b,
as described below. Without initiating division,

f (x) = (x2 − ax − b)(0) + cNxN
+ cN−1xN−1

+ · · · + c0, (2.1)

which sets q0(a, b, x) = 0, h0(a, b) = 0 and h1(a, b) = cN . The first division step is to
replace x2 with ax + b in the term with the largest power, cNxN , leading to

f (x) = (x2 − ax − b)(cNxN−2)

+ (cNa + cN−1)xN−1
+ (cNb + cN−2)xN−2

+ cN−3xN−3
+ · · · + c0

= (x2 − ax − b)q1(a, b, x) + h2(a, b)xN−1
+ cN−3xN−3

+ · · · + c0. (2.2)

Next we divide the remaining term with highest power, (cNa + cN−1)xN−1, to obtain the
next term in the remainder:

f (x) = (x2 − ax − b)(cNxN−2
+ (cNa + cN−1)xN−3)

+ (cNa2
+ cN−1a + cNb + cN−2)xN−2

+ (cNab + cN−1b + cN−3)xN−3
+ cN−4xN−4

+ · · · + c0 (2.3)

= (x2 − ax − b)q2(a, b, x) + h3(a, b)xN−2
+ (cNab + cN−1b + cN−3)xN−3

+ · · · + c0.
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For larger m, we continue to show that

f (x) = (x2 − ax − b)qm(a, b, x) + hm+1(a, b)xN−m

+ (bhm(a, b) + cN−m−1)xN−m−1
+ cN−m−2xN−m−2

+ · · · + c0, (2.4)

with the following recursion formulae, which can be proved by induction:

q0(a, b, x) = 0, h0(a, b) = 0, h1(a, b) = cN ,

qm+1(a, b, x) = qm(a, b, x) + hm+1(a, b)xN−m−2,

hm+2(a, b) = ahm+1(a, b) + bhm(a, b) + cN−m−1.

Equations (2.1), (2.2) and (2.3) are the cases for m = 0, 1 and 2 respectively of the
general equation (2.4). Equation (1.3) corresponds to m = N − 1. An example of the
scheme for a polynomial of degree eight is shown in Figure 1.

For 1 ≤ m ≤ N and fixed b, hm(a, b) is a polynomial in a of degree m − 1 and its
leading term is cNam−1. The other terms of hm(a, b) all have the form cj,kajbk for some
pairs ( j, k) and some nonzero constants cj,k ∈ R. Let Tm represent the set of pairs ( j, k)
for which cj,kajbk other than cNam−1 appears in hm(a, b). Then

hm(a, b) = cNam−1
+

∑

( j,k)∈Tm

cj,kajbk. (2.5)

Equation (2.5) provides simple bounds for the roots of hm(a, b) in a in terms of b.

LEMMA 2.1. Choose C large enough such that C ≥ 1 and |cN | > C−1∑
(j,k)∈Tm

|cj,k |.
Suppose that b ≤ −1 and 1 ≤ m ≤ N. If hm(a, b) = 0 for any such fixed b, then |a| <
C
√
|b|.

-5 0 5
a

-6

-4

-2

0

2

b

bh7(a,b) + c0

h8(a,b)

FIGURE 1. Illustration of h8(a, b) (solid black lines) and bh7(a, b) + c0 (dashed grey lines) corresponding
to f (x) = x8

+ 2x7
+ 3x6

+ 4x4
+ 6x3

+ 7x2
+ 8x + 9, exhibiting interlacing with maximum possible

number of (real) roots in the variable a for any fixed b < −3. The curves for bh7(a, b) + c0 = 0 never
cross b = 0.
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PROOF. Suppose that |a| ≥ C
√
|b|. Then

hm(a, b) = am−1
(

cN +

∑

(j,k)∈Tm

cj,k
bk

am−1−j

)

. (2.6)

For any (j, k) ∈ Tm, we have |a|m−1−j ≥ Cm−1−j(
√
|b|)m−1−j ≥ C(

√
|b|)2k

= C|b|k since
j ≤ m − 2 and j + 2k ≤ m − 1. Consequently,
∣

∣

∣

∣

∣

∑

(j,k)∈Tm

cj,k
bk

am−1−j

∣

∣

∣

∣

∣

≤
∑

(j,k)∈Tm

|cj,k |
|b|k

|a|m−1−j
≤
∑

(j,k)∈Tm

|cj,k |
|b|k

C|b|k
≤
∑

(j,k)∈Tm

|cj,k |
C
< |cN |

and

|hm(a, b)| ≥ |a|m−1
(

|cN | −
∣

∣

∣

∣

∣

∑

(j,k)∈Tm

cj,k
ajbk

am−1−j

∣

∣

∣

∣

∣

)

> 0, (2.7)

which completes the proof of the lemma. �

LEMMA 2.2. Choose b̄ ≤ −1 such that, for 0 ≤ n ≤ N,

|cN |
|b̄|
+

C|cN |
√

|b̄|
+

|cn|
|b̄|
< |cN |. (2.8)

If b < b̄, 2 ≤ m ≤ N and hm(a, b) = 0, then |hm−1(a, b)| ≥ |cN |.

PROOF. Suppose that |hm−1(a, b)| < |cN |. We will prove that

|hm′(a, b)| < |cN | for 1 ≤ m′ ≤ m. (2.9)

The proof is by induction on m′. If m′ = m, then (2.9) holds as hm(a, b) = 0 and, if
m′ = m − 1, then (2.9) holds by assumption. Suppose for some m′ with 3 ≤ m′ ≤ m − 1
that |hm′(a, b)| < |cN | and |hm′−1(a, b)| < |cN |. By the recurrence relation for hm(a, b)
over m and Lemma 2.1,

|hm′−2(a, b)| ≤
∣

∣

∣

∣

∣

hm′(a, b) − ahm′−1(a, b) − cN−(m′−2)−1

b

∣

∣

∣

∣

∣

≤ |hm′(a, b)|
|b|

+

C
√
|b| |hm′−1(a, b)|
|b|

+

|cN−m′+1|
|b|

=

|hm′(a, b)|
|b|

+

C |hm′−1(a, b)|
√
|b|

+

|cN−m′+1|
|b|

≤ |cN |
|b̄|
+

C|cN |
√

|b̄|
+

|cN−m′+1|
|b̄|

< |cN |, (2.10)

which completes the inductive proof of (2.9). However, for m′ = 3, we have |cN | =
|h1(a, b)| < |cN |, which is a contradiction. Therefore, Lemma 2.2 must hold. �
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THEOREM 2.3. For all b < b̄ ≤ −1 and all integers m such that 2 ≤ m ≤ N, the pairs
(

hm−1(a, b), hm(a, b)
)

are interlacing in a. To recapitulate, for clarity:

(1) for fixed b < b̄, hm(a, b) has m − 1 distinct (real) roots in the variable a, which we

designate by α
(m)
1 (b) < α(m)

2 (b) < · · · < α(m)
m−1(b) in ascending order;

(2) the pairs
(

hm−1(a, b), hm(a, b)
)

for 2 ≤ m ≤ N have interlacing roots, that is,

α
(m)
1 (b) < α(m−1)

1 (b) < α(m)
2 (b) < · · · < α(m−1)

m−2 (b) < α(m)
m−1(b).

PROOF. Fix b < b̄ ≤ −1. We proceed by induction over m. Interlacing holds vac-
uously for the base case of m = 2 as h1(a, b) has no roots. For the induction
step, suppose that 3 ≤ m ≤ N and assume that the result holds for m − 1, that is,
(

hm−2(a, b), hm−1(a, b)
)

are interlacing. The number of roots of hm−2(a, b) is equal
to its degree in a and hm−2(a, b) changes sign at these roots. Therefore, the signs
of hm−2(α(m−1)

1 (b), b), hm−2(α(m−1)
2 (b), b), . . . , hm−2(α(m−1)

m−2 (b), b) alternate. Moreover, the

sign of hm−2(a, b) does not change for a ≥ α(m−1)
m−2 (b). This implies that the sign of

hm−2(α(m−1)
m−2 (b), b) is the same as the sign of hm−2(a, b) for large a, which is the same

as the sign of cN since the leading term of hm−2(a, b) is cNam−3. Similarly, the sign
of hm−2(α(m−1)

1 (b), b) is the same as the sign of cN if m − 2 is even and the opposite if

m − 2 is odd. Finally, by Lemma 2.1, α(m−1)
l

(b) < C
√
|b| for all l ∈ {1, 2, . . . , m − 2}.
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FIGURE 2. Illustration of interlacing of
(

hm−1(a, b), hm(a, b)
)

in the variable a for fixed b = −3.2 for the
polynomial f (x) = x8

+ 2x7
+ 3x6

+ 4x4
+ 6x3

+ 7x2
+ 8x + 9.
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By the recurrence for hm(a, b) and the definition of α(m−1)
l

(b), for 1 ≤ l ≤ m − 2,

hm(α(m−1)
l

(b), b) = α(m−1)
l

(b)hm−1(α(m−1)
l

(b), b) + bhm−2(α(m−1)
l

(b), b) + cN−m−3

= bhm−2(α(m−1)
l

(b), b) + cN−m−3.

The inequality (2.8) implies that |cN−m−3|/|b| < |cN |, which combined with Lemma 2.2
gives

|bhm−2(α(m−1)
l

(b), b)| ≥ |b||cN | > |cN−m−3|.

So, the sign of hm(α(m−1)
l

(b), b) is the same as the sign of bhm−2(α(m−1)
l

(b), b), which is

the opposite of the sign of hm−2(α(m−1)
l

(b), b). Also, when |a| is sufficiently large, the

signs of hm−2(α(m−1)
l

(b), b) and hm(α(m−1)
l

(b), b) agree. Therefore, an application of the
intermediate value theorem establishes interlacing of

(

hm−1(a, b), hm(a, b)
)

. �

Figure 2 illustrates the interlacing established in Theorem 2.3. Inequality (2.8) and
Lemma 2.2 also imply that for 1 ≤ l ≤ N − 1 and b < b̄ ≤ −1,

|bhN−1(α(N)
l

(b), b)| > |bcN | > |b̄cN | > |c0|. (2.11)

So, bhN−1(α(N)
l

(b), b) + c0 has the opposite sign to hN−1(α(N)
l

(b), b). Applying the
intermediate value theorem establishes interlacing for

(

bhN−1(a, b) + c0, hN(a, b)
)

.

3. Establishing bhN−1(A, B) + c0 = 0 and hN(A, B) = 0 from interlacing

PROOF OF THEOREM 1.1. For c0 , 0, let us consider values of b for which the pair
(

bhN−1(a, b) + c0, hN(a, b)
)

does not interlace. From the final remark in Section 2,
this noninterlacing set is bounded below by b̄. For small |b|, hN−1(a, b) = −c0/b can
only be attained either at two values of a or none, due to the boundedness of the
coefficients of hN−1(a, b) when written as a polynomial in a. In particular, when b = 0,
bhN−1(a, b) + c0 = c0 is constant and therefore has no roots. Thus, the noninterlacing
set contains some interval around b = 0. Since the noninterlacing set is nonempty
and bounded below, by the least-upper-bound property [7] it has an infimum B ∈ R
satisfying b̄ ≤ B < 0. Since the coefficients of both hN(a, b) and bhN−1(a, b) + c0 as
polynomials in a are bounded for b̄ ≤ b ≤ B < 0, the roots of both hN(a, b) and
bhN−1(a, b) + c0 in the variable a are bounded for these values of b. Thus, by the
Bolzano–Weierstrass theorem, roots of hN(a, b) and bhN−1 + c0 can be defined at b = B

as subsequential limits of their roots taken over any sequence bk of terms such that
{bk : k ∈ N, b̄ ≤ bk < B, bk < bk+1, limk→∞ bk = B}. For b < B, writing the roots of
bhN−1(a, b) + c0 as βl(b) for 1 ≤ l ≤ N − 2, we can define limits over any converging
subsequences of βl(bk) and α(N)

l
(bk) indexed by {σk : k ∈ N}:

βl = lim
k→∞
βl(bσk

), 1 ≤ l ≤ N − 2,

αl = lim
k→∞
α

(N)
l

(bσk
), 1 ≤ l ≤ N − 1.

Applying α(N)
1 (bσk

) < β1(bσk
) < α(N)

2 (bσk
) < · · · < βN−2(bσk

) < α(N)
N−1(bσk

) gives

α1 ≤ β1 ≤ α2 ≤ · · · ≤ βN−2 ≤ αN−1. (3.1)

https://doi.org/10.1017/S0004972720001434 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972720001434


[7] The fundamental theorem of algebra 255

If all the inequalities are strict, then B belongs to the interlacing set. Then there
exists t > 0 such that (αi − t, αi + t) and (βj − t, βj + t) are disjoint. This implies that
hN(αi − t, B)hN(αi + t, B) < 0 and (BhN−1(αj − t, B) + c0)(BhN−1(αj + t, B) + c0)< 0.
From the continuity of bivariate polynomials, there exists δ with 0 < δ < −B/2 such
that hN(a, b) and bhN−1(a, b) + c0 do not change sign inside circles of radius δ centred
around (αi ± t, B) and (βj ± t, B), respectively. Since hN(αi − t, b) hN(αi + t, b) < 0 for
B ≤ b < B+ δ,

hN(a, b) has at least one root in (αi − t,αi + t) for B ≤ b < B + δ

and, since (bhN−1(βj − t, b) + c0
)(

bhN−1(βj + t, b) + c0
)

< 0 for B ≤ b < B + δ,

bhN−1(a, b) + c0 has at least one root in (βj − t, βj + t) for B ≤ b < B + δ.

But then interlacing holds for B ≤ b < B + δ, which contradicts the definition of B as
the infimum of the noninterlacing set. Therefore, at least two neighbouring quantities
in (3.1) must be equal. The value of A is given by these equal quantities at b = B,
thereby proving Theorem 1.1. �

Additionally, we have proven that we can always find B < 0 satisfying Theorem 1.1.
To obtain the complete factorisation of f (x), Theorem 1.1 can be applied onward from
∑N−2

n=0 dnxn until it halts due to exhausting all powers of x.
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