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Abstract

Leibnizian metaphysics underpins the universally held view that spacetime must be
inextendible—that it must be “as large as it can be” in a sense. But here we demonstrate a
surprising fact within the context of general relativity: the property of inextendibility turns
out to be unstable when attention is restricted to certain collections of “physically
reasonable” spacetimes.

1. Introduction
Within the context of general relativity, the “stability” of various spacetime
properties has been one important focus of study. It has been argued that “in order to
be physically significant, a property of space-time ought to have some form of
stability, that is to say, it should be a property of ‘nearby’ space-times” (Hawking and
Ellis 1973, 197). Questions concerning the stability of spacetime properties are often
made precise using the so-called “Ck fine” topologies on any collection of spacetimes
with the same underlying manifold. (The property of “stable causality” is often
defined using the C0 fine topology.) Here we review what is known concerning the (in)
stability of spacetime properties within this framework. After considering some
foundational results concerning causal properties (Hawking 1969; Geroch 1970a) and a
fascinating drama concerning geodesic (in)completeness (Beem et al. 1996), we focus
on the property of spacetime inextendibility, about which very little is known.
Because inextendibility is defined relative to a background “possibility space” in the
form of a standard collection of spacetimes, one can naturally consider variant
definitions relative to other collections. (Some formulations of the “cosmic
censorship” conjecture rely on such variant definitions of inextendibility.) We find
that the stability of “inextendibility” can be highly sensitive to the choice of
definition—even when attention is limited to definitions which are relative to
“physically reasonable” collections of spacetimes. Indeed, it is not yet clear that there
is a physically significant sense in which “inextendibility” is a stable property.
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2. Preliminaries
Here we follow Wald (1984) and Malament (2012). An n-dimensional, general
relativistic spacetime (for n ≥ 2) is a pair of mathematical objects M; gab

� �
where M is a

smooth, connected, n-dimensional, Hausdorff manifold and gab is a smooth metric of
Lorentz signature �;�; . . . ;�� � defined on M. In what follows, let U be the collection
of all spacetimes. We say two spacetimes M; gab

� �
and M0; g0ab

� �
are isometric if there is

a diffeomorphism ϕ : M ! M0 such that ϕ� g0ab
� � � gab.

Fix a model M; gab
� �

. For each point p 2 M, the metric assigns a cone structure to
the tangent space Mp. Any tangent vector ξa in Mp will be timelike if gabξaξb > 0, null if
gabξaξb � 0, or spacelike if gabξaξb < 0. Null vectors create the cone structure; timelike
vectors fall inside the cone while spacelike vectors fall outside. A time orientablemodel
is one that has a continuous timelike vector field on M. In what follows, we assume
that models are time orientable and that an orientation has been chosen.

For some connected interval I � R, a smooth curve γ : I ! M is timelike if its
tangent vector ξa at each point in γ I	 
 is timelike. Similarly, a curve is null if its tangent
vector at each point is null. A curve is causal if its tangent vector at each point is either
null or timelike. A causal curve is future-directed if its tangent vector at each point falls
in or on the future lobe of the light cone. A causal curve γ : I ! M is closed if the
tangent vector is nowhere vanishing and there are distinct s; s0 2 I such that
γ s� � � γ s0� �. M; gab

� �
satisfies chronology if it does not contain a closed timelike curve;

it satisfies causality if it does not contain a closed causal curve.
We write p � q (respectively, p < q) if there exists a future-directed timelike

(respectively, causal) curve from p to q. For any point p 2 M, we define the timelike
future of p as the set I� p

� � � q : p � q
� �

. Similarly, the causal future of p is the set
J� p
� � � fq : p < qg. The timelike and causal pasts of p, denoted I� p

� �
and J� p

� �
, are

defined analogously. The spacetime M; gab
� �

satisfies distinguishability if there do not
exist distinct points p; q 2 M such that I� p

� � � I� q
� �

or I� p
� � � I� q

� �
. We say

M; gab
� �

admits a global time function if there is a smooth function t : M ! R such that,
for any distinct points p; q 2 M, if p 2 J� q

� �
, then t p

� �
> t q

� �
. M; gab
� �

satisfies global
hyperbolicity if it is causal and, for any points p; q 2 M, the set J� p

� � \ J� q
� �

is
compact.

A curve γ : I ! M is maximal if there is no curve γ 0 : I0 ! M such that I is a proper
subset of I0 and γ s� � � γ 0 s� � for all s 2 I. The curve γ : I ! M is a geodesic if
ξaraξ

b � 0, where ξa is its tangent vector and ra is the unique derivative operator
compatible with gab. A maximal geodesic γ : I ! M is incomplete if I≠R. A spacetime
is geodesically incomplete if it harbors an incomplete geodesic and geodesically complete
otherwise; one can define causal geodesic (in)completeness in an analogous way.

Let the energy–momentum tensor Tab for the spacetime M; gab
� �

be defined by
Einstein’s equation: Rab � 1

2 Rgab � 8πTab, where Rab is the Ricci tensor and R the scalar
curvature associated with gab. We say that M; gab

� �
is a vacuum solution if Tab � 0. The

null energy condition is satisfied if, for any null vector χa, we have Tabχaχb ≥ 0. The
weak energy condition is satisfied if, for each timelike vector ξa, we have Tabξaξb ≥ 0.
The strong energy condition is satisfied if, for any unit timelike vector ξa, we have
Tab � 1

2 Tgab
� �

ξaξb ≥ 0. Finally, the dominant energy condition is satisfied if, for any
future-directed unit timelike ξa, the vector Tabξ

b is causal and future-directed.

1332 JB Manchak

https://doi.org/10.1017/psa.2023.7 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2023.7


3. Inextendibility
A spacetime M0; g0ab

� �
is an extension of the spacetime M; gab

� �
if there is a proper

subset N � M0 such that the spacetimes �N; g0ab� and �Mgab� are isometric. A
spacetime is extendible if it has an extension and inextendible otherwise. One can
show that any extendible spacetime has an inextendible extension (Geroch 1970b).
This fact helps to underpin the nearly universally held position that “any
[physically] reasonable space-time should be inextendible” (Clarke 1993, 8). John
Earman summarizes and responds to the usual line of argument (cf. Penrose 1969;
Geroch 1970b):

Metaphysical considerations suggest that to be a serious candidate for
describing actuality, a spacetime should be [inextendible]. For example, for
the Creative Force to actualize a proper subpart of a larger spacetime would
seem to be a violation of Leibniz’s principles of sufficient reason and plenitude. If
one adopts the image of spacetime as being generated or built up as time passes
then the dynamical version of the principle of sufficient reason would ask why
the Creative Force would stop building if it is possible to continue. However, this
image does not sit well with the four-dimensional way of thinking, and in any
case it runs into trouble in its own terms: since extensions of spacetime are
generally non-unique there may be many ways to continue building and the
Creative Force may be stymied by a Buridan’s ass choice. Some readers may be
shocked by the introduction of metaphysical considerations in the hardest of the
“hard sciences.” But in fact leading workers in relativistic gravitation, though
they don’t invoke the name of Leibniz, are motivated by such principles. (Earman
1995, 32–33)

Setting aside the metaphysical issues outlined here, we see that the inextendibility
condition also faces an important conceptual difficulty: the standard formulation is
defined relative to the background “possibility space” U (the collection of all
spacetimes) despite the fact that within U lurk “physically unreasonable” members
(Manchak 2011, 2020). Shouldn’t a spacetime which is extendible according to the
standard definition count as “inextendible” if none of its extensions are “physically
reasonable”? Even if we cannot pin down, once and for all, a single collection of
“physically reasonable” spacetimes, one can still explore variant formulations of the
inextendibility condition defined relative to subcollections of U (Geroch 1970b;
Manchak 2016). For any collection P � U , consider the following: a P-spacetime is a
spacetime in P; a P-spacetime M0; g0ab

� �
is a P- extension of a P-spacetime M; gab

� �
if

M0; g0ab
� �

is an extension of M; gab
� �

; a P-spacetime is P-extendible if it has a
P-extension and is P-inextendible otherwise. It is trivial that for any collection P � U
of inextendible spacetimes (e.g., the collection of geodesically complete spacetimes) a
P-inextendible spacetime must be inextendible. The general situation is quite
different, however. For each P � U , consider the following statement:

(*) Any P-inextendible spacetime must be inextendible.
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Let V� �; DEC� �; SEC� �; WEC� �; NEC� � � U be, respectively, the collections of vacuum
solutions and spacetimes satisfying the dominant, strong, weak, and null energy
conditions; note that V� � � DEC� � � WEC� � � NEC� � and V� � � SEC� � � NEC� �. Let
GH� �; TF� �; Dist� �; Caus� �; Chron� � � U be, respectively, the collections of spacetimes
which are globally hyperbolic, admit a global time function, are distinguishing, causal,
and chronological. Of course, GH� � � TF� � � Dist� � � Caus� � � Chron� �. Let GI� � � U
be the collection of geodesically incomplete spacetimes. We have the following
proposition (Manchak 2017, 2021).

Proposition 1. (*) is false if: (i) DEC� � � P � NEC� �; (ii) SEC� � � P � NEC� �; (iii)
GH� � � P � Dist� �; (iv) P � Caus� �; or (v) P � GI� �.

The status of (*) is still unknown forP � V� � and P � Chron� � (cf. Krasnikov 2018).
Indeed, the P � Chron� � case has been one focus of the “time travel” literature for
some time but remains difficult to settle (cf. Krasnikov 2018). But in general, the
proposition suggests that we should carefully attend to the differences between the
standard definition of inextendibility and other variants. In formulating a version of
the “cosmic censorship” conjecture, Wald (1984, 304–305) does just this when he
appreciates that while some “maximal Cauchy developments : : : are known to be
extendible” it may be that all such extensions fail to be P-extensions for some
carefully chosen collection P � U of “physically reasonable” spacetimes.

4. Stability
In their influential book The Large Scale Structure of Space-Time, Hawking and
Ellis wrote:

[I]n order to be physically significant, a property of space-time ought to have
some form of stability, that is to say, it should be a property of “nearby” space-
times. In order to give precise meaning to “nearby” one has to define a topology
on the set of all space-times : : : We shall leave the problem of uniting in one
connected topological space manifolds of different topologies (this can be done);
and shall just consider putting a topology on the set of all Cr Lorentz metrics
(r ≥ 1) on a given manifold. (Hawking and Ellis 1973, 197–198)

It is of some interest that despite the claim that a suitable topology can be put on
the entire collection U , no one has yet done this even after almost fifty years (Fletcher
2016). Instead, various topologies have been defined on each collection L M� � � U of
all spacetimes with underlying manifoldM. The most commonly used are the “Ck fine”
topologies (also called the “Ck open” topologies) for k ≥ 0, which we shall consider
here (cf. Geroch 1971; Hawking and Ellis 1973).

Let M; gab
� �

and M; g0ab
� �

be spacetimes, let hab be any positive definite metric on M,
and let ra be the unique derivative operator compatible with hab. At each point in M,
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the distance function d gab; g0ab; hab; k
� �

between the kth partial derivatives (for k ≥ 0) of
the Lorentzian metrics gab and g0ab on M relative to hab is given by

	hachbd gab � g0ab
� �

gcd � g0cd
� �
1=2 for k � 0;

	hachbdhr1s1    hrksk rr1    rrk gab � g0ab
� �� � rs1    rsk gcd � g0cd

� �� �
1=2 for k > 0 :

A Ck fine neighborhood of a spacetime M; gab
� �

is any collection N � L M� � which
includes all spacetimes M; g0ab

� �
such that SupM d gab; g0ab; hab; j

� �� �
< ε for j � 0; . . . ; k,

where hab is a positive definite metric on M and ε is a positive number. For all
Q � P � U , we say the property Q is Ck stable relative to the collection P if, for each
Q-spacetime M; gab

� �
, there is a Ck fine neighborhood of M; gab

� �
such that every

P-spacetime in the neighborhood is a Q-spacetime. Immediately we see that, for all
Q � P � U , if property Q is Ck stable relative to the collection P, then Q is Cl stable
relative to P for all l ≥ k.

We know that even the coarsest of all of the Ck fine topologies is still quite fine: If
M; gab
� �

is a spacetime and M is non-compact, then the collection
M; λgab
� �

: λ 2 0; ∞� �� �
does not represent a C0 fine continuous curve; in addition,

the induced topology on the collection is discrete (Geroch 1971). It seems the Ck fine
topologies have too many open sets to capture, once and for all, what it means for one
spacetime to be “nearby” another. On the other hand, this means that instability
results are all the more significant. Early results concerned two important causal
properties (Hawking 1969; Geroch 1970a).

Proposition 2. TF� � and GH� � are Ck stable relative to U for all k ≥ 0.

Consider a few remarks concerning Proposition 2. First, the TF� � case tells us that
any spacetime M; gab

� �
with a global time function is “stably causal” in the sense that

one can find a C0 neighborhood of M; gab
� �

such that each spacetime in the
neighborhood admits a global time function and is therefore causal. Second, there
were significant gaps in the proof concerning the GH� � case which were filled in only
recently (Navarro and Minguzzi 2011). Finally, a simple but physically significant
corollary to the proposition ensures that the Ck stability of TF� � and GH� � with respect
to U will “transfer down” to the Ck stability of TF� � \ P and GH� � \ P with respect to
any “physically reasonable” collection P � U . In general, we have the following.

Proposition 3. For allQ � P � U and for all k ≥ 0, if the propertyQ is Ck stable relative
to the collection P, then, for any subcollection P0 � P, the property Q \ P0 is Ck stable
relative to P0.

What about the stability of other important spacetime properties? Consider the
collection GC� � � U of geodesic complete spacetimes. The following claim was made
in the first edition of Beem and Ehrlich (1981).

Philosophy of Science 1335

https://doi.org/10.1017/psa.2023.7 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2023.7


Claim 1. GC� � is Ck stable relative to U for all k ≥ 2.

Soon after there was to be a dramatic turn of events. Ehrlich later recounted the
following:

That is how matters stood until 1985, when a copy of P. Williams’ Ph.D. thesis,
“Completeness and its stability on manifolds with connection,” was received
unexpectedly in the mail. This article revealed that there was a significant gap in
the previous arguments for [the claim above] and that in fact neither geodesic
completeness nor geodesic incompleteness was Ck-stable : : : From a certain
perspective, a good deal of research in global space-time geometry during the
next decade can be viewed as trying to understand the more complicated
geometry of the space of geodesics once it was realized that [the claim] failed to
be valid. (Ehrlich 2006, 14)

From Williams (1984) we have the following result, which is all the more
remarkable given how fine even the C0 topologies have been shown to be.

Proposition 4. GC� � and GI� � are not Ck stable relative to U for all k ≥ 0.

It is of some interest that this result fails within the Riemannian context where
both geodesic completeness and geodesic incompleteness are Ck stable for all k ≥ 0
(Beem and Ehrlich 1987). By the time the second edition of their book was published,
Beem and Ehrlich had worked to salvage the stability of geodesic (in)completeness by
restricting attention to special cases. Consider the following proposition, which is
representative of this effort (Beem et al. 1996).

Proposition 5. If M; g
� �

is a globally hyperbolic spacetime and causally geodesically
complete (respectively, incomplete), then there is a C1 fine neighborhood of M; g

� �
such that

each spacetime in the neighborhood is causally geodesically complete (respectively,
incomplete).

Here, the physical significance is limited given that attention is restricted to
globally hyperbolic spacetimes and the C0 case is not considered. Are more general
results available? Nothing so far—even today, we do not have a good understanding
of the (in)stability properties of geodesic (in)completeness and closely related
properties (cf. Manchak 2018; Doboszewski 2020).

5. Stability and Inextendibility
What is known concerning the (in)stability of the inextendibility properties? Very
little. What we do have is due to Beem and Ehrlich (1987). Using their work
concerning the stability of geodesic completeness, and drawing on on the fact that
geodesic completeness implies inextendibility, they show the following.
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Proposition 6. There is a C1 fine neighborhood of Minkowski spacetime such that each
spacetime in the neighborhood is inextendible.

It is somewhat remarkable that, even after restricting attention to Minkowski
spacetime, the C0 case is unsettled. Are general results available? One would love to
know the status of the following conjecture, for example.

Conjecture 1. The collection of all inextendible spacetimes is Ck stable relative to U for
all k ≥ 0.

Given the dramatic twists and turns so far concerning the (in)stability of geodesic
(in)completeness—and the many surprises throughout the history of global
Lorentzian geometry more generally—the status of the conjecture is anyone’s
guess. But even if it were true, there is a sense in which its physical significance would
seem to be quite limited since there is no assurance here that the stability of
inextendibility relative to U would “transfer down” to the stability of
P-inextendibility relative to some “physically reasonable” collection P � U .
Indeed, consider the following.

Proposition 7. There are collections Q � P � U such that P-inextendibility is Ck stable
relative to P for all k ≥ 0 butQ-inextendibility fails to be Ck stable relative toQ for all k ≥ 0.
Moreover, P can be chosen so that each member is a globally hyperbolic vacuum solution.

Proof. We work in two dimensions to simplify the presentation, but one can
generalize in the natural way. In first stage of the proof, we define the collections
Q;P � U . Consider the smooth bump function u : �2; 2	 
 ! R given by

u t� � � exp 1= t2 � 1� �� �
if � 1 < t < 1;

0 otherwise:

�

For each n 2 Z�, we let fn; Fn : �2; 2	 
 ! R be the functions fn t� � � 	1 � u t� �=n
1=2
and Fn t� � � R

t
0 fn x� � dx. The graphs of the functions f1 t� � and F1 t� � are given in

Figure 1. Note that, for all n, Fn t� � is strictly increasing and thus invertible. When no
confusion arises, we will abuse notation and consider the functions fn t� � and Fn t� �
where the domain is restricted to �2; 2� �.

Let M � f t; ϕ� � 2 R × S1 : �2 < t < 2g. For each n 2 Z�, let M; gab n� �� �
be the

spacetime defined by setting gab n� � � f 2n t� �ratrbt � raϕrbϕ. Let M; gab y� �� �
be

the spacetime defined by setting gab y� � � ratrbt � raϕrbϕ. Finally, let M; gab z� �� �
be

the spacetime defined by setting gab z� � � f 2z t� �ratrbt � raϕrbϕ where
fz : �2; 2� � ! R is given by fz t� � � πsec2 πt=4

� �
=2. Let P � U be the collection

M; gab y� �� �
; M; gab z� �� �� � [ M; gab n� �� �

: n 2 Z�� �
; let Q � P be the collec-

tion P � M; gab z� �� �� �
.

In the second stage of the proof, we establish the following facts: (i) for all n,
M; gab n� �� �

is Q-extendible (and hence P-extendible); (ii) M; gab y� �� �
is

Q-inextendible but P-extendible; (iii) M; gab z� �� �
is P-inextendible; and (iv) each
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member of P is a globally hyperbolic vacuum solution. All of these facts will follow
easily once we define, for each spacetime in P, an isometric variant.

First, consider M0 z� �; g0ab
� �

, where M0 z� � � R × S1 and g0ab � rat0rbt0 � raϕ
0rbϕ

0.
We find that M; gab z� �� �

is isometric to M0 z� �; g0ab
� �

; to see this, use the
diffeomorphism Ψz : M ! M0 z� � defined by Ψz t; ϕ� �� � � 2tan πt=4

� �
; ϕ

� �
and note

that ra 2tan πt=4
� �� � � fz t� �rat. Next, consider M0 y� �; g0ab

� �
, where

M0 y� � � f t0; ϕ0� � 2 M0 z� � : �2 < t0 < 2g and the domain of g0ab is restricted in the
natural way. We find that M; gab y� �� �

is isometric to M0 y� �; g0ab
� �

; to see this, just use
the identity map Ψy : M ! M0 y� �. Finally, consider the spacetime M0 n� �; g0ab

� �
for all

n 2 Z�, where M0 n� � � f t0; ϕ0� � 2 M0 z� � : �Fn 2� � < t0 < Fn 2� �g and once again the
domain of g0ab is restricted in the natural way. One can verify that F1 2� � � 1:88 (see
Figure 1) and, for all n, we have F1 2� � < Fn 2� � < 2. Now, for all n, we find that
M; gab n� �� �

is isometric to M0 n� �; g0ab
� �

; to see this, use the diffeomorphism
Ψn : M ! M0 n� � defined by Ψn t; ϕ� �� � � Fn t� �; ϕ� � and note that raFn t� � � fn t� �rat.

It is immediate that, for all n, M0 n� �. is a proper subset of M y� �, which is, in turn, a
proper subset of M z� �. So M0 z� �; g0ab

� �
is an extension of M0 y� �; g0ab

� �
, which is an

extension of M0 n� �; g0ab
� �

for all n. Moreover, these spacetimes are globally hyperbolic
vacuum solutions since they are just portions of two-dimensional Minkowski
spacetime which has been “rolled up” in the spacelike direction (see Figure 2). Using
the isometries established above, we find that M; gab z� �� �

is an extension
of M; gab y� �� �

, which is an extension of M; gab n� �� �
for all n. Moreover, each of

these P-spacetimes must be a globally hyperbolic vacuum solution. So it follows that
(i)–(iv) are true.

In the third stage of the proof, we show that the property of P-inextendibility is C0

stable (and hence Ck stable for all k ≥ 0) relative to P. Since M; gab z� �� �
is the only

P-inextendible spacetime in P, we are done if we can find a C0 fine neighborhood
N � U of M; gab z� �� �

such that none of the P-extendible spacetimes can be found
in N . Let hab be the positive definite metric on M given by
hab � �@=@t�a�@=@t�b � �@=@ϕ�a�@=@ϕ�b. Let N � L M� � be the C0 fine neighborhood

Figure 1. The functions f1 t� � and F1 t� �.
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of M; gab z� �� �
defined as the collection of all spacetimes M; gab

� �
such that

SupM d gab z� �; gab; hab; 0
� �� �

< 1. We now show that each P-extendible spacetime
fails to make it into N .

Consider the P-extendible spacetime M; gab n� �� �
for any n. We find that

gab z� � � gab n� � is just f 2z t� � � f 2n t� �
	 


ratrbt. So hab gab z� � � gab n� �� � � f 2z t� � � f 2n t� �.
But one can verify that, for all t 2 �2; 2� �, we have f 2z t� � ≥ f 2z 0� � � π2=4 > 2 and

f 2n t� � ≤ 1. It follows that SupM d gab z� �; gab n� �; hab; 0� �� �
> 1 and therefore M; gab n� �� �

fails to be in N for all n. The argument for the remaining P-extendible spacetime

M; gab y� �� �
is analogous: We find that gab z� � � gab y� � is just f 2z t� � � 1

	 

ratrbt. So

hab gab z� � � gab y� �� � � f 2z t� � � 1. Since f 2z t� � > 2 for all t 2 �2; 2� �, it follows that

SupM d gab z� �; gab y� �; hab; 0� �� �
> 1 and therefore M; gab y� �� �

fails to be in N . So, we
have established that each P-extendible spacetime fails to make it into N and
therefore P-inextendibility is C0 stable (and hence Ck stable for all k ≥ 0) relative
to P.

In the final stage of the proof, we show that the property of Q-inextendibility is
not Ck stable relative to Q for all k ≥ 0. We restrict attention to the k � 1 case to
simplify the presentation but one can generalize in the natural way. Since M; gab y� �� �
is Q-inextendible, we are done if we can show that, for any C1 fine neighborhood of
M; gab y� �� �

, there is some n such that theQ-extendible spacetime M; gab n� �� �
is in the

neighborhood.
Let hab be any positive definite metric onM and ε any positive number. The smooth

scalar fields α0;α1 : M ! R are defined by

α0 t; ϕ� � � u t� �habratrbt;

α1 t; ϕ� � � 	hachbdhrs rr u t� �ratrbt� �� � rs u t� �rctrdt� �� �
1=2:
The quantity gab y� � � gab n� � is just �1 � f 2n �t��ratrbt � u t� �=n� �ratrbt for all n. So

d gab y� �; gab n� �; hab; 0� � � α0=n and d gab y� �; gab n� �; hab; 1� � � α1=n. Let N be the
compact region t; ϕ� � 2 M : �1 ≤ t ≤ 1f g. By construction, α0 and α1 vanish on
M � N. So SupM�N d gab y� �; gab n� �; hab; k� �� � � 0 for k � 0; 1. Now consider N. Because
this region is compact, we know that there is an m 2 R such that α0 p

� �
< m and

α1 p
� �

< m for all p 2 N. So, for each n, we know SupN d gab y� �; gab n� �; hab; k� �� �
< m=n

for k � 0; 1. But m=n < ε for large enough n. It follows that for k � 0; 1 we have

Figure 2. The collections P and Q.
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SupM d gab y� �; gab n� �; hab; k� �� �
< ε for large enough n. So, for any C1 fine neighborhood

of M; gab y� �� �
, there is some n such that the Q-extendible spacetime M; gab n� �� �

is
in the neighborhood. So the property ofQ-inextendibility fails to be C1 stable relative
to Q. QED

To highlight the physical significance of the proposition, suppose, for example,
that it is true that “all physically reasonable spacetimes are globally hyperbolic”
(Wald 1984, 304). And suppose that one were able to show that the property of GH� �-
inextendibility is Ck stable relative to the collection GH� � for some k ≥ 0. Because
there remain “physically unreasonable” spacetimes lurking within GH� �, one would
also want assurance that the Ck stability of GH� �-inextendibility “transfers down” to
the Ck stability of P-inextendibility for any collection P � GH� �. The proposition tells
us that we do not have this assurance. Moreover, the predicament persists even if we
further restrict attention to spacetimes which are well-behaved locally. Indeed, it is
difficult to see how one might rule out as “physically unreasonable” a collection of
globally hyperbolic vacuum solutions without invoking an inextendibility property of
some kind.
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Maximilian University, and PSA 2022.
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