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Dedicated to Prof. Robert A. Rankin on the occasion of his 10th birthday

1. Introduction. The classical generalizations (already investigated in the second half
of last century) of the modular group SL(2, Z) are the groups FK = SL(2, o) (o the principal
order of a totally real number field K, [K :Q] = n), operating, originally, on a product fe of
n upper half-planes or, for n = 2, on the product ^)1x^>_1 of an upper and a lower
half-plane by

w m w M M M bl

J
(1.1)

(where v0), for vsK, denotes the jth conjugate of v), and Fn = Sp(n, Z), operating on
£>„ = {Z | Z = X+ iYeC(tM°, 'Z = Z, Y>0} by

Z^M(Z) = (AZ + B){CZ + D)-1 for M=[^ JH. (1.2)

Nowadays FK is called Hilbert's modular group of K and Fn Siegel's modular group of
degree (or genus) n. For n = 1 we have FQ = F ^ SL(2, T). The functions corresponding to
modular forms and modular functions for SL(2, Z) and its subgroups are holomorphic (or
meromorphic) functions with an invariance property of the form

/(L(T)) = / ( L , T ) / ( T ) for L e F K or f(M(Z)) = J(M, Z)f(Z) for M s F m

(1.3)

J(L, T) for fixed L (or J(M, Z) for fixed M) denoting a holomorphic function without
zeros on £) (or on &n). A function /, defined o n F K x ^ or Tn x§„, to be able to appear in
(1.3) with / # 0 , has to satisfy certain functional equations (see below, (2.3)-(2.5) for FK,
(5.7)-(5.9) for Tn) and is called an automorphic factor (AF) then. In close analogy to the
case n = 1, mainly AFs of the following kind have been used:

for FK, (1.4)

= v(M)det(CZ + D)r for Fm (1.5)

with a complex number r, the weight of /, and complex numbers v(L), v(M). AFs of this
kind are called classical automorphic factors (CAP) in the sequel. If r^Z, the values of the
function v on FK (or Tn) depend on the branch of (.. .)r. For a fixed choice of the branch
(for each L G F K or MeFn) the functional equations for J, by (1.4), (1.5), correspond to
functional equations for v. A function v satisfying those equations is called a multiplier
system (MS) of weight r for FK (or Fn).
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58 KARL-BERNHARD GUNDLACH

For SL(2, Z) and its subgroups. MSs of any complex weight exist. If n > 1, conditions,
however, are different. In 1941 Maass [10] showed that for K = QU5) the Hilbert
modular group FK has MSs of integral weights only (r e Z) and its theta sub-group has MSs
of integral and half integral weights (2reZ). In 1962, Christian [1] proved that the weight
r of a MS for a subgroup of finite index in FK or Fn has to be a rational number if n > 1, in
particular r e Z for Tn itself. Two more results for the weight r of a MS are available. In
[6], reZ was shown for FQ(v/2) and for a certain extension of degree 2 of FQ(^3). In 1982,
Endres [2] proved 2reZ for the theta subgroup of Fm n> 1.

The method of proving reQ and deriving an upper bound for the denominator of the
weight r of a MS in all cases mentioned above was as follows. On the subgroup A with
c = 0 in (1.1) (or C = 0 in (1.2)), / does not depend on T (or Z), as a consequence J is an
abelian character on A. Owing to the existence of certain units if n > 1 ([10, §1], [1, Chapter
III, §3]), the commutator subgroup of A is of finite index in A; hence Jk = 1 on A, k eN
depending on the unit used. Secondly, there are relations involving matrices Tlt T2 , . . . of
finite order in FK (or F J and elements Lr,L2,.. .eA. These relations, together with the
functional equations for v, imply reQ and supply a number geN, depending on k, such
that greZ. This method does work satisfactorily (i.e. ends with a reasonably small g) only
in special cases, because a unit is needed leading to a small value for fc, and fails for most
subgroups, requiring the existence of suitable matrices of finite order (compare [2, pp.
285, 287], where a conjugate of the theta subgroup F2,e of F2 has to be used, because F2 e

itself does not contain a matrix of the special form necessary).
The method employed in this paper is applicable to any subgroup F of finite index in FK

(or Fn), n > 1, and works as follows. Injections can be constructed of the upper half-plane
£>! into !Q (or &n) and associated embeddings of groups A, conjugate in SL(2,(R) to
congruence subgroups of SL(2, Z), into F such that restriction of a MS v of weight r for F
yields a MS vA of weight nr for A. While there are MSs of any complex weight for A, the
values are not arbitrary, vA must satisfy a congruence derived by Petersson [12, (70)] (see
(3.5) Section 3) connecting nr, the volume of the fundamental domain of A, and the values
of i>A for certain generators of A. From this congruence, for fixed A, reQ can be derived
(actually, to show reQ, only the cases F = FK and F = Fn need to be considered, compare
Theorems 3.1, 5.2). To find an upper bound for the power of a prime q dividing the
denominator of r one has to select several embeddings leading to groups Au A2 , . . . such
that from the respective set of congruences the values vAi, vAi,... can be eliminated to
some extent ending in the result that the denominator of q'r (for an explicitly given 0 is
prime to q. Selecting the embeddings and the elimination process require a certain amount
of elementary algebraic number theory. The method, being a reduction to n = 1, relies
heavily on the knowledge of subgroups of SL(2, Z) and the rules for calculations with MSs
for these groups. For this information the reference is Rankin's book on modular
functions and forms [13].

The paper is organized as follows. Section 2 contains (for the Hilbert modular groups)
the necessary definitions, the basic facts about MSs, and the construction of the embed-
dings of the groups A, mentioned above, into FK. The main general result for Hilbert's
modular groups is derived in Section 3 (Theorem 3.3). One has to distinguish two cases
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for FK operating on a product of n half-planes, some of them upper half-planes, some
lower half-planes, namely 8 = 1 (an even number of lower half-planes in the product) and
S = - l (if the number of lower half-planes is odd). For 5 = 1 and even n the result is
2nreZ. In the other cases the denominator of nr can contain only prime factors q with
(q -1 ) | (n -1) for odd n and with (q -1) \ n for even n; an upper bound for the exponent
of q in the denominator of nr is given in Theorem 3.3. For n = 2 better results are proved
in Section 4, e.g. reZ for 8 = 1 and fields K with discriminant dK = 0, 5 mod (8) (Theorem
4.1) and, independent of S, 2reZ for all symmetric Hilbert modular groups of real
quadratic number fields, rei if dK = 5 mod (8) (Theorem 4.2). These results have to
depend on the value of the discriminant, since, for dK = 1 mod (8), MSs of weight 5 for the
modular group and for the symmetric modular group do exist. In Section 5 the application
of the method to Tn and its subgroups is presented.

Another result concerns the modulus of v. Most methods for constructing modular
forms work, for reasons of convergence, only if all values of v are of modulus 1, which is
generally introduced as an extra assumption ([1], [9], [13, (3.1.4, 11)]). While this is
necessary for n = 1 (subgroups of SL(2, Z) of genus po> 0 have MSs violating |v| = 1 even
for rsZ), as an easy byproduct of the proof of the rationality of r, it is proved here
(Theorems 3.2, 5.3) that for n > 1 the values of v are roots of unity. This was asserted in
1977 by Grosche [4, Satz p. 192], but his proof is not valid, relying on his Lemma 3 [4, p.
191] stating that v is an abelian character, which in general is false (see the counter-
example at the end of Section 5).

In view of the experience with subgroups of SL(2, Z), it is doubtful whether MSs of
weights r with 2r^Z will have arithmetical applications. The knowledge that, in certain
cases, such MSs do not exist, can, however, be very useful (see [2], where this fact for the
theta subgroup F n e of Fm n > l , is used to show that for « > 8 the zero divisor of the
classical theta function is irreducible).

2. Hubert's modular groups and multiplier systems. Let
(i) K be a totally real number field, [JC:Q] = n,

(ii) 0 the ring of algebraic integers of K,
(iii) dK the discriminant of K, b the different,
(iv) (v), for veK, the ideal generated by v,
(v) Q1 the upper half-plane, ^)_j the lower half-plane, in C,

(vi) E the unit matrix in Ka-2\ E = L

Hilbert's modular group for K is the group

r = TK = fL I L = f U b], a, b, c, d e 0, det L = 1 J c SL(2, K).

The n different injections of K into U map K onto the conjugates Kw,..., KMcR. To
each KQ) one assigns a complex variable T0 ) , the /th conjugate of T = (T( 1 ) , . . . , T(n)). The
canonical isomorphisms of K(T) onto K 0 ) ( T 0 ) ) (with T - » T 0 ) ) , for j = l , . . . , n, map a
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rational function R(T)&K(T) onto its conjugates R 0 ) ( T 0 ) ) . Calculation with elements from
K(T) always stand for simultaneous calculations with the conjugates in K0 )(T( I ) ) , l < / < n .
For R(r)eK(r), trace and norm are denned by

= f l R 0 ) (T 0 ) ) .
J=I J=I

To each L e SL(2, K), one assigns a transformation

[a bJ\ (2.1)
i.e. a simultaneous transformation

To> _> L G ) ( T 0 ) ) = ( a °V j ) + b a ) ) (c°V" ) ( f )

By (2.1), a subgroup A<=SL(2, K) commensurable with F (i.e. Ffl A has finite index in F
and in A) acts as a group of analytic automorphisms on a product

£ e =<p e i x£ ( ! 2 x . . . x£ ( ! i i ( e = ( c l J . . . , O ) (2-2)

of half-planes" £>e., c, = ± 1 , 1 < / =£ n.
An automorphic factor {AF) of A on ^)e is a mapping

such that

(2.3) J(L, T), for fixed L e A, is holomorphic without zeros on

(2.4) J(LM, T) = J(L, M(T))J(M, T) for L, M e A, T e <pe,

(2.5) / ( -L , T) = J(L, T) if L, - L e A, T e >̂e.

An AF is called a classical automorphic factor (CAF) if

= f"
Lc

Y for L = eA, r e £ e (2.6)
Lc dJ

with a complex number r, the weight of J, and complex numbers v(L), LeA, the value
viL), for each LeA, of course, depending on the choice of the branch of log(c0)T0) + d0))
on £>e., 1 < ; < n. v is called the associated multiplier system (for the chosen branch of the
logarithms).

The automorphic factor, denned in [13, 3, 1] for n —. 1, is the CAF, as denned here,
with the additional restrictions that the weight r (k in [13, 3.1]) is real and |i>(L)| = 1 [13,
(3.1.4, 11)]. For n>l, however, r eQ and \v(L)\= 1 can be proved from (2.3)-(2.6) (see
Theorems 3.1, 2). The term CAF is used, because some other automorphic factors have
found applications lately. (For a discussion of all possible automorphic factors for n > 2,
see [3]).

From (2.3), (2.4), it follows that J(-E,T) = ±1; (2.5) is equivalent to

J(-E,T)=1, if -EeA. (2.7)
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A suitable choice of the branch of the above mentioned logarithm on ^pe is

+(3) for a, /3 eU, az + (3^ 0,
with

-TT<arg1(az + (3)<'n- for z e ^ , -7r<arg_1(az + /3)<'7r for z € ^ ! (2.8)

(see [5]). As usual, for matrices

L = \ , ML = \

mx m2J La pJ. ln1 n2J

from SL(2, U) and z £ $e, one puts

2irwe(M, L) = arg<,(m1L(z) + m2) + arg<!(az + p)-arg(,(n1z + n2) (2.9)

(in [12], [13], w(M, L)= Wi(M, L)). w(M,L) takes only the values - 1 , 0, 1 and
w1(M,L) + w_1(M,L) = 0. (2.10)

Using, for reC, T £ § , and LeSL(2, K), the notation

from (2.9), for 1^, L2eSL(2, K), we have (as in [13, (3.1.15)] in the case n = 1)

o"er)(L1, L2) depends on L^,L2, r, e, but not on T, and is 1 if reZ.
A multiplier system (MS) of weight r for A on &„ can now be denned as a mapping

such that

(2.13) v(L1L2) = cr«(L1,L2)l,(L1)v(L2) for L1 ;L2eA,

(2.14) v(-E) = exp(-7rirSfe) if - E e A

(y>e = e1 + e2+... + en). Then

J(L, r) = v(L)^"(cT + d)r, for LeA, r e ^ ,

is a CAF of weight r for A on £>e if and only if v : A —» C\{0} is a MS of weight r for A on

LEMMA 2.1. Let A be a subgroup of SL(2, K) and

J ( L , T ) = ^ ( L ) ^ ( L , T ) (LeA,rG<0e)

a CAF of weight r /or A on &„ S e SL(2, K). Then

(T)) (LeA,re&) (2.15)
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62 KARL-BERNHARD GUNDLACH

is a CAF of weight r for S-1AS on £>e,

JsiS-'LS, T) = vs(S-1LS)^(S-iLS, T) (2.16)
with

= crl'XL, S)<xirXS, S-'LSrML). (2.17)

That (2.15) defines a CAF is well known. (2.3)-(2.5) for Js are easily checked (as in
the proof of [13, (3.1.17)]). Expressing air\L, S) and CT?(S, S^LS) in (2.17) in terms of
values of fxr according to (2.12) immediately gives us (2.16). For special values of vs we
have the following lemma.

LEMMA 2.2. Under the conditions of Lemma 2.1,

v(L)ifLorS-1LS = \" *"|, d » 0
LO aJ

(d»0 meaning dO)>O, l<y«£n).

This follows from [13, (3.2.17, 21)] by which, for such matrices, cr<r)(L, S) =

LEMMA 2.3. Let A be a subgroup of SL(2, IC), Ao a subgroup of A, [A:A0] =

A = U AQL,, AOL,M = AoLetM,;) /or Me A (0(M, /) e { 1 , . . . , h})

and Jo a CAF of weight r for Ao on &t. Then

J(M, T) = ft Urtfi, T)/xr(L,, M(T))-1

1 = 1

for Me A, T e ^)e, is a CAF o/ weight hr for A on £>e.

This is well known [1, (122)]. Using

|Ltr(M1M2, T) = (*)/xr(M1; M2(T))H,(M2, T) (MJ, M26 SL(2, K)),

where (*) denotes a factor which does not depend on T (see (2.12)), we can easily check
(2.6) for J. (2.3M2.5) follow exactly as in the proof of [13, (3.1.17)].

REMARK 2.1. The definition of Js in Lemma 2.1 and of J in Lemma 2.3 is independent
of the choice of the branch of jir(L, T) = Jf(cT + d)r.

This follows from the fact that another choice of the branch of Jf(cr + d)r results in
the multiplication of fir(L, T) by a factor which is independent of T.

For£eo, ^ 0 , put
P = W(e\, 8 = signJV(& e = Jf(OI£ (2.18)

If +7p denotes the positive square root from p then

= {T | T = - ^ Z , Z €&}<=&, e= (sign | ( 1 ) , . . . , sign £(n)) (2.19)
VP
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( T = —7-2 meaning, of course, TO) = —— z, l < / < n ) is an analytic subvariety of fie. If
\ Wp +VP /

Lo=\ " 0 . b ° . W p l , ao,bo,co,doel, d e t L 0 = l (2.20)
Lc0o +VP ao -1

then bf
£*

bf]eT, -JL
do J +VP

for z e ^ (2.21)J L L O ( Z ) =
+VP

and, therefore, L(?!(£)) = 9I(|). The next theorem is proved exactly as in [5, §5] (for
n = 2).

THEOREM 2.1. Let £eo , £ ^ 0 , e = (sign £ ( 1 ) , . . . ,sign £(n)), /et p, 8, ^* be defined by
(2.18),

0=l}.ao,bo, cQ, doel, d e tL

r^Kj) is a group conjugate to the congruence subgroup FQ(P) O/ F Q = SL(2, Z) in SL(2, R).
J is a CAF of weight r for T on &e then

J(L0, Z):=J(L, - i - z} (L given by (2.21))

is a CAF of weight nr for Fa ( £ ) on <Qt. The associated MS is given by

for c 0 ^ 0 or do>0,
v(L0) = \

lv(L)exp(—nirSf(l-e)) for co = 0 and dQ<0.
That Foi(4) is conjugate in SL(2,IR) to

TQ(P)= [ M | M = [a bpl, a, b, c, d eZ,detM= l]

is trivial. (2.3)-(2.5) for / are easily verified. (2.6) for J follows from

o)' = v(L) ft (co8 +Jp~z + do)
r,

where, because of the choice of the branch of log(c0£*T + d0) for T = —7-2 according to
+VP

(2.8) on the left hand side, the principal value of Iog(c08 +Vp2 + d0) has to be chosen for
c o ^ 0 or do>0, which is in accordance with (2.8) for zeQu whereas for co = 0, d o < 0 ,

= fl
1=1
e, = l

(with y ( l - e ) = l - e 1 + l - e 2 + - - - + l - c n ) , which gives (2.22).

1=1 1=1
e, = l e , = - l
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3. Weight and modulus of multiplier systems for Hubert's modular groups.

THEOREM 3.1. For a subgroup A of SL(2, K), commensurable with Hubert's modular
group T of a totally real number field K of degree n>\, acting on &e, there exists a
(minimal) number g(A, e) e N with the following property: if J is a CAF of weight r for A on
Q, then

reQ, g(A,

and if Ao is a subgroup of finite index in A and Jo a CAF of weight r0 for Ao on £>c then

g(A,e)[A:Ao]roeZ.

The second part is a consequence of Lemma 2.3, stating that, from a CAF of weight
r0 for Ao on £>c, one can construct a CAF of weight [A: A0]r0 for A on &e. The restriction of
/ to F n A is a CAF of weight r for F n A on Qt. For n> 1, FnA has to be a congruence
subgroup of F, so one can restrict J to a principal congruence subgroup F(a)cFnA for
some integral ideal o^(0). Lemma 2.3 yields a CAF of weight hr, h = [F:F(a)], for I\
The existence of g(F, e) has been proved by Christian [1, Satz 1] for e = ( 1 , . . . . 1). In fact,
the proof does not depend on the special value of e. The existence of g(F, e) can also be
proof along the lines of [5], the proof for n = 2 given there [5, Satz 10] does not depend
on the value of n> 1, as is shown below (3.8). Hence g(F, e)hreZ, q.e.d.

THEOREM 3.2. Under the conditions of Theorem 3.1, the MS v, associated with a CAF
of A, is of modulus 1 (i.e. |i>(L)| = 1 for all LeA) with roots of unity as values.

By v(L) = (v(L))2s(K'\ LeA, a MS of even integral weight f = 2g(A,e)r of A is
defined, which, because of (2.13), (2.14) and

c r f ) ( L 1 , L 2 ) = l , exp(—rrifSfe)=l f o r fel,2\f,

is an abelian character on A. As mentioned above, there is a principal congruence
subgroup F(a) c A. The commutator subgroup of F(a) is of finite index in F (see [8]); hence
v(L), LeF(a), is a root of unity, but, for LocA, a suitable power, say L5eF(a), thus
v(L0)

k = V(LQ) is a root of unity.
It does not, however, follow that v is trivial on a suitable principal congruence

subgroup (i.e. v(L) = 1 for all LeF(a)), as claimed in [4, Korollar 2]. A counter-example
can easily be constructed. Take n = 2, dK a prime congruent to 1 mod (8). There exists a
MS v of weight \, namely the multiplier system of a certain theta series for F on &a,-i) [7,
p. 30]. Let e0 be the fundamental unit of K with eo])> 1 (and £o2)<0), take meNflo and
put

r i + me0 -mel "1 r i - m e 0 -mel 1
1 L m l -me 0 J ' L m l + me0J

Then Lu L2eT(a), from [13, (3.2.6)], w(L[i),L(
2

i)) = 1, w(L?\L?) = 0, and, conse-
quently, from (2.12),

!, L2) = exP(7ri(w1(L
(
1
1), L^) + w^(L?, L2

2)))) = - 1 .
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(2.12) yields
v(L1L2) = -v(L1)v(L2).

At least one of the values v(LxL2), v(L,), v(L2) has to be different from 1.
In order to calculate g(F, e) or, at least, a small multiple of g(F, e) for n > l , one

proceeds as follows. For CJGW, qi= 1, put

2q = fry"11 x, y G Z, y prime to q}.

Then Z0 = Z and

means that a — be Zq, i.e. a and b differ only by a rational number which is integral for q.
Let v be a MS of weight r for T on £e. There is a K = (K(1), . . . , K(II)) such that [9, p.

543]
/ f l a l \ , .„ , xvl = e for all a GO. (3.1)
\L0 U/

For L, SeT, by (2.13),

v(SLS~lS) = ̂ (SLS" 1 , S)v(SLS"')v(S),

v(SL) = a(;\S, L)v(S)v(L).

If L = " , by [13, (3.2.17, 21)], both cr-factors are 1; hence

v(SLS~l) = v(L) for L= " . (3.2)

Taking
[e 0 1

^ = « _, , e a unit in o, e^ ±1
LO e J

(such a unit exists for n> 1, k totally real), (3.2) together with (3.1) gives us

thus
% ( E

2 - l ) a e Z for all a e o (3.3)
and consequently

KGK, (e2- l)Keb"1 . (3.4)

From Theorem 2.1, for ?so, Jf(t-) = p8, peN, 5 = ±1, sign£(0 = e,, l < / < n , we
obtain a MS v, associated with v, of weight nr for the group ra(€) on ^)1; which is
conjugate to TQ(P) in SL(2,R). In order to use condition [12, (70)]

I Hh+ I 7 2 = n r ( p o - l + ^ ) m o d Z (3.5)

for the existence of v, we have to calculate the terms in (3.5). I p 0 - 1 + — I is — times the
\ 2 / 4TT
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volume of the fundamental domain of Tme), which is n for p = l (Fa(£) = rQ), and
•$2. (p + 1)> if p is a prime. lu ... ,1^ are the orders of the elliptic fixed points (Jj = 2,12= 3,
eo = 2 for p = l, lme{2,3}, l < m < e 0 , for peN), 0 < c m < / m - l , cmel, l < m < e o .
exp(27rfT|h) are the values of v for the standard generators of the parabolic subgroups of
r2l(€) for the cusps. For the cusp °° of F?l(4) we have, by (2.22), (3.1),

If p = 1, we have only one cusp and (3.5) is

S>K^ + ̂ Ci + ̂ c2 = 'hnr mod 1. (3.6)

If p is a prime, we have another cusp at 0; using (2.22), (3.1), (3.2), we find

\L-WP IJ/ \L-sg* iJ/ \L-i oJLo l JLi o

-KK TD-—••
(3.5) is

with
m = l m = l

Let g 6 N be a multiple of 6 and of (e2-1) in o for a unit e of o, e j= ± 1 (or, better, the
smallest multiple of 6 which is in the ideal generated by e\—\,..., e2_x- 1 for a set
ex, . . . , £n_i of fundamental units of o). Take any £e o such that sign £0) = e,, 1 < / < n, and

| = p is a prime (such £ always exists). Then, from (3.3) and (3.7), we get

(3.8)

i.e. reQ, the denominator of r divides i^g(p + l)n. If there is a unit e in o with sign eO) =
ej; l < / < n (e.g. for e = ( l , . . . , 1) or ( - 1 , . . . , -1)) we can take £ = e and use (3.6) instead
of (3.7), obtaining

Tignr e I (for £ a unit). (3.9)

If we take n = 2, e0 the fundamental unit with e^^l, we have the following examples
from (3.9):

dK

dK

dK

dK

= 5,

= 8,

= 12,

= 13,

£0 = 2(1 + 75),
e o = l + 72,

£o = 2 + 73,

eo = 2(3 + 7T3),

el~l = e,
_ 2 _ -1 _ 0
CQ •*- — ^ £ ,

e g - l = 273e,

g = 6,

g = 6,

g = 6,

g = 6,

rel

rel

rel

rel

for all e,

for all e,

fore = ±(:

for all e.
U ) ,

(3.10)
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For other discriminants, however, g may be quite large, as the following examples show:

dK = 4 .6 , eo=5 + 2V6, e g - l = 4-s/6e0, g = 24,

dK = 4.14, eo=15 + 4Vl4, e o - l = 8Vl4eo, g = 2 4 . 3 .7 ,

dK = 4.66, eo = 65 + 8V66, e g - l = 16V66e0, g = 2 s . 3 . 1 1 .

To obtain an estimate of the denominator of r, valid for fixed n and e for all totally real
number fields of degree n, one has to proceed more subtly than just use (3.6) or (3.7) for a
single value of £

For a prime qeN, choose fceN, fc>3, and moeN, q X m0, such that

mo^KetT1, ^nrqkelq. (3.11)

For f e o, £ prime to q, by Dirichlet's prime number theorem we can choose *a number
£ G o such that (£) is a prime ideal of degree 1 in o, sign £0) = e,, and

in o. (3.12)

If we take £ = a eN, q -+" a, we have

£ = amod(qfc), ^ ^ a " " 1 mod(qfc), p = 8̂ V(̂ ) = 5an mod(qk) (3.13)

and p = San + pqk, pel. From (3.7), (3.11), (3.13), we obtain

(a + 8a '-1)^K+|t2+^3 = ^nr(l + 8an)modZq. (3.14)

If 2 | n, for a = ±b, beN, multiplying (3.14) by 6, we get

±6(fe + db"'1)^ =\nr{\ + 8bn) mod Zq.

and, by adding the congruences for b and —b,

0 = nr(l + 8b")modZq, (3.15)

If 8 = 1, we can take b = 1 and obtain 2nreZq for every prime q; hence

2nreZ for 2\n, 5 = 1. (3.16)

If S = - 1 , a number h eZ, q /f b, can be chosen such that

{mod(q) for (q -1) )( n,

mod(ql+2) for n = (q-l)q'm, q X m, qj=2, (3.17)

mod(ql+3) for n = (q-l)q'm, q t m, q = 2.
For q^2 , (3.15) with this choice of b gives

nreZq for ( q - l ) ^ ^ , nrql+1eZq for n = (q-l)q'm, q X m. (3.18)

For q = 2, p = - b " = - l mod(4) ((3.13) with a = ±b, q = 2, fc>3). For such a prime p,
however, TQ\P) and, therefore rH(4), has no elliptic fixed point of order 2, t2 = 0 in (3.14),
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and by multiplying (3.14) by 3 instead of 6 we get

±3(b- b"""1)^ =\nr{\-b") mod Z2,

jnr(l-b")el2 instead of (3.15), which, with b from (3.17), gives

nr21+1eZ2 for n = (q-l)q'm, q X m, q = 2. (3.19)

If 2 X n, for a = 5, b, b GN, multiplying (3.14) by 6, we get

12WK = nr, 6(b + Sb"" 1 )^ = §nr(l + 8b") mod Zq,

and from these congruences (2'(b + 86'l~1)eZ!)

0 = inr(6n~1-l)(b-8)modZq. (3.20)

b e Z, q X b, can be chosen such that

fmod(q) for ( q - l ) f (n-.l),

^"-^l imodCq^2) for n - 1 = (q- l)qlm, q X m, q^ 2, (3.21)
[mod(ql+3) for n - l = (q - l)q'm, q JC m, q = 2.

As n - 1 is even, b can be chosen such b^S (=±l)mod(q) if q^2, and b^S mod (4) if
q = 2. For q^2, (3.20) with this choice of b gives

nreZq for (q-1)4"(n-1), nrqM eZq for n - 1 = (q-l)q'm, qtn, q+ 2. (3.22)

For q = 2, we get

nr2l+2eZ2 for n - 1 = (q-l)q'm, q X m, q = 2. (3.23)

Collecting our results (3.16, 18, 19, 22, 23) we obtain the following theorem.

THEOREM 3.3. Let v be a MS of weight r for Hubert's modular group T of a totally real
number field K of degree n > 1 on &„ e = ( e 1 ; . . . , en), 8 = ex... en.

(a) If 2 | n, 5 = 1, then 2nrel.
(b) If 2 | n, 8 = - 1 , the denominator of nr has only prime factors q with (q - 1) | n. We

have

nr f l q'(q)+1 e 1 with n = (q~ l)ql(q)mq, q X mq, forq prime.
(q-l)ln

(c) If 2 X n, the denominator of nr has only prime factors q with (q - 1) | (n - 1 ) . We have

2nr I I qK q ) + 1eZ with n-1 = (q- l )q l ( q )mq, q ̂  mq, for q prime.
(q-l)IOi-l)

For special values of n, from Theorem 3.3 we have:

(3.24) ifn = 2 then 4reZ for 8 = 1, 23 . 3reZ for 8 = - 1 ;

(3.25) ifn = 3 then 23. 32reZ;

(3.26) ifn = 4 then 23rsZ for 8 = 1, 25 . 3 . 5reZ for 8 = - 1 .
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For fixed n, by a more detailed investigation, depending on the value of n, improvements
of the general results of Theorem 3.3 are possible (see Section 4 for n = 2).

Our method can easily be directly applied to subgroups of F, yielding better results
than by simply multiplying g(F, e) by the index of the subgroup in F as in Theorem 3.1.
An example is given by the next theorem.

THEOREM 3.4 (Maass [10]). Put K = QG/5). The Hilbert modular group FK has MSs of
integral weight only, the MSs of the theta subgroup

rKfl = fL | L = P ^\eTK,a = d = 0orb^c = 0mod(2)

are of integral and half-integral weight.

The assertion for F is the example dK = 5 in (3.10). Put £ = ±1 for e= ±(1,1), £ = ±e0

for e = ± ( l , - l ) (eo = | ( l + V5), e ^ l , £o2)<0). Then Y^(i) = TQ (Theorem 2.1), the
restriction of F K e to 2l(£) yields the theta-subgroup F Q e of FQ = SL(2, Z). The volume of
the fundamental domain of F Q e is v, the right-hand side of (3.5) is \r. FQ>e has two cusps
and one elliptic fixed point of order 2. Multiplying (3.5) by 4, we get

. (3.27)

exp(2Trill!) and exp(2iriT)2) are values of v, the MS associated with the MS v of FKe, for

parabolic matrices L 0 6F Q e which are conjugate to a matrix of the form in FQ;

hence do> 0 if c0 = 0 in the notation of Theorem 2.1, and (by Theorem 2.1, Lemma 2.2)

for suitable a e o, Se FK, with L e TKe. We have

eg=lmod(2), (£^)2-l = 4£3. (3.29)

As the principal congruence subgroup FK(2) = {L |LeF K , L = E mod(2)}c FK e is a
normal subgroup of FK,

U £ 0 J LU 1 J

(a from (3.28)). By the same reasoning as in (3.3) with e = el,

el for all

1 J S S

(3.30)

Taking /3 = eo3a (3.30), we obtain 49>Ksa el and, from (3.28), (3.27),

0 = 2rmodZ.
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4. Multiplier systems for Hilbert's modular groups of real quadratic fields. For
n = 2, let D be the square-free kernel of the discriminant dK. Then K = Q(VD) and £,*
(2.18) is given by

for £ = U!+u2VDeK (ut, u2eQ). (4.1)

The result of Theorem 3.3 for n = 2 (3.24) can be improved.
First the factor 3 for S = - l in (3.24) can be removed. If D = lmod(3), choose

C = ±s/D in (3.12). For

we have

£-£* = ±2VDmod(3k), p = -jV(f) = D mod(3k), p = lmod(3)

instead of (3.13), and, multiplying (3.7) by 6, we get

3 and hence 0 = 2r(l + D) modZ3,
i.e. reZ3, as 3^2(1 + 0 ) .

If D = 2 mod (3), choose

, 6eZ, b2D#8mod(9), 3 ^ b .
Then

| _ | * = ±2b7Dmod(3k), p = -Jf(^) = b2D mod(3k), p = 2mod(3).

For p = 2mod(3), FQ(P) has no elliptic fixed points of order 3, for otherwise there would
be a matrix

STQ(P) with x1x2=lmod(p),
L * x2J

which would result in a solution for

x2±x + l = 0mod(p) or y2±2y + 4 = 0mod(p) for y = 2x,p^2.

But, for p = 2, there is no solution, and for p ^ 2 , (y±l)2+3 = 0mod(p) would imply

I — ) = 1, which is impossible for p = 2mod(3). Thus r3 = 0 in (3.7) and, multiplying (3.7)
\ p /
by 2, we obtain

±29>(K2b^/D) = ̂ r(l + b2D)modl3 and hence r|(l + b2D) = 0 mod Z3,

i.e. r eZ 3 , since 32 JC 2(1 +b2D).
If D = 0mod(3), choose

^ = ±b(l + VD)mod(3k), bel, b2(D-l)#8mod(9), 1Kb.
Then

£-£* = ±2bjDmod(3k), p = -Jf(£) = b2(D-l)mod{3k), p = 2mod(3).

From here we proceed exactly as in the case D = 2 mod(3) and get r e Z3. Thus we have

reZ3 for n = 2,8 = - l . (4.2)
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Next, a smaller power of 2 can be taken in (3.24). If S = 1, in (3.7) we have (by (4.1))

%(? + 8f) = ?KK + f ) = M e (4.3)
If D = 3 mod(4), choose

£ = VDmod(2fc), then S ^ 0 m o d ( 2 k ) , p = jV® = -Dmod(2lc).

From (3.7), multiplying by 6, we have

0 = r ( l -D)modZ 2 , l - D = 2mod(4)
and hence 2reZ2.

If D = 2 mod(4), choose

£ = l + VDmod(2k), then #>£ = 2 mod(2k), p = Jf(g)= l-D mod(2k)

and p = 3 mod(4) (fc > 3). There are no elliptic fixed points of order 2, t2
= 0 in (3.7) and,

by multiplying (3.7) by 3, we get

Z2. (4.4)

By (3.24), 4reZ. Thus, multiplying (4.4) by 2 yields

= r (2-D) = 0 mod Z2. (4.5)

For 8 = 1, n = 2, we have e=( l , 1) or ( -1 , -1) and can, therefore, put £ = 1 or - 1 ,
resulting in p = 1. Multiplying (3.6) by 6, we obtain

or r = - 6 ^ K mod Z2. (4.6)

Applying (4.5), we find IT e Z2. Using this result in (4.4), we get 6#W = 0 mod Z2 which in
turn from (4.6) gives reZ2.

If D = 5mod(8), choose

), bel, 2Xb, b 2 - D = - 4
Then

, p = -lmod(4).

There are no elliptic fixed points of order 2, t2
 = 0 in (3.7), thus, multiplying (3.7) by 3 and

using 4reZ (3.24), we get

) = 0 mod Z2, SCK = 0 mod Z2.

Putting £ = 1 or —1, as in the case D = 2mod(4), from (3.6) we obtain

r = ±difK = 0 mod Z2, r e Z2.

If D = lmod(8), numbers from o with odd trace are not prime to 2 and numbers
prime to 2 with trace not divisible by 4 lead to p = 3 mod(8); so the procedure used for
D = 5mod(8) does not work here. Thus we have

reZ for D = 2mod(4), D = 5mod(8), 2reZ.for D = 3 mod(4). (4.7)
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If 5 = - 1 , in (3.7) we have (by (4.1))

SrK(g + 8€*) = &K(€-£*) = 2u29>KjD for £ = ux + u2

If D - 3 mod(4), choose b e Z, 2 \ b, such that D - b2 = 3 mod(8) and

£ = ±(b + VD)mod(2k), then p = -Jf(£) = D-b2mod(2k), p = 3mod(4).

There are no elliptic fixed points of order 2, t2 = 0 in (3.7) and thus, multiplying (3.7) by 3,
we obtain

±6#WD = \r(\ +D-b2) mod Z2, 0 = r(l + D-b 2 ) mod Z2,

and from this, because of D-b2 = 3 mod(8), 4reZ2.
If D = 2 mod(4), choose

^ = ±(H-VD)mod(2k), then p = -JV(£) = D - 1 mod(2k).

Multiplying (3.7) by 6, we get

±12#WD = rDmodZ2, 0 = 2rDmodZ2, 4reZ2.

If D = 1 mod(4), choose

£ = ±jDmod(2k), then p = -Jf(^) = D mod(2k).

Multiplying (3.7) by 6, we find

±12#WD = r(D + l)modZ2, 0 = 2r(D +1) modZ2, 4reZ2.

If D = 5mod(8), put

| = ^(l + VD)mod(2k), then p = -Jf(O = i(D- 1) mod(2k).

Multiplying (3.7) by 12 and using 4reZ2, as just shown for D = lmod(4), we obtain

122WD = 2r(l +1(£> - 1)) = 0 mod Z2.

For ^ = VA we now get

r{D + l)=l2^Ky/D = 0 mod Z2, 2reZ2.
Thus we have

2reZ for D = 5mod(8) and 5 = - l , 4reZ for 5 = - l . (4.8)

Collecting our results (4.7) and (4.8) and noting that D = 2 mod(4) is equivalent to
dK = 0mod(8) and D = 3mod(4) is equivalent to dK = 4mod(8) we obtain the next
theorem.

THEOREM 4.1. Let v be a MS of weight r for Hilbert's modular group T of a real
quadratic field K on &., e=(e1 } e2), h = exe-1. Then 4reZ.

For special values of the discriminant dK we have:
(a) if 8 = 1, dK = 0, 5mod(8) then rel;
(b) if 8 = 1, dK = 4mod(8) then 2rel;
(c) if8 = -l, dK = 5mod(8) then 2reZ.
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For the symmetric modular group re of a real quadratic number field K an even
better result can be proved. fe is an extension of degree 2 of T (for a detailed discussion
see [5]),

f. = rurL*, Ll = E, L*L = UL*UL* (4.9)
with

\a* b*~\ « r \ a

and
L*(T) = 8T* = {8T™,8T«)) for T = (T(1), T(2)) G &.

For £€o, sign£0)=e;, |jV(£)| = p, a prime number, and by restriction of fe to 2l(£), we
obtain an extension of ra(4), namely (see [5, §3])

)! I.

A CAF for fe is defined as usual by (2.3), (2.4) for L, M e l \ , (2.5), (2.6) for LeT and

J(L%, T) = v(L^) independent of T.
Then

J{L*L, T) = /(L*, L(T))J (L , T) = v(Lt)J(L, T).

From (4.9), we have

v(L ) 2 = 1 , v(L )/(L, T) = J(LSL*LS, L*.(T))V(L±)

which results in the restriction

v(L) for LeT, c^O,

v(L)exp(—7ri^(c-c*)signd) for LeT, C = 0

(with (e*, e*) = (e2, e^) for the associated MS, taking into account the choice of the
branch of log(c0)T0) + d0)) for rQ)e<Qei. On the other hand, a MS of weight r for T on &
which satisfies (4.10) can be extended to a MS of weight r for f. by putting J(L*, T) =

) = 1 or - 1 (see [5, §1]). / as defined in Theorem 2.1 is a CAF of weight 2r for
6). Here L, for Loera ( 4 ) , is given in (2.21), whereas

r; '
(re)H(4) has only one cusp (at °o) and elliptic fixed points of order 2, 3 only if pj= 2, 3 (there
is an elliptic fixed point of order 4 if p = 2, and of order 6 if p = 3). The volume of the
fundamental domain is, of course, half the volume for T^y Thus, instead of (3.7), by
multiplying (3.5) by 6, we get

for pi=2,3. (4.11)
For 8 = 1, choose

£ = ±lmod(2k), then p = JV(£)= 1 mod(2k),
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and, from (4.11), we have

±6&K = r mod Z2, 0 = 2rmodZ2, 2reZ2 for 8 = 1. (4.12)

For 8 = - 1 , first choose

£ = lmod(2k), then p = -#(£) = - 1 mod(2k)

and from (4.11) we have

6SPK = ±r(-l + l) = 0 mod Z2. (4.13)

If D = 2 mod(4), 8 = - 1 , choose

£ = ±(l + VD)mod(2k), then p = -,/V(O = KO - l)mod(2k).

and (4.11) yields
±6^«(l + VD) = ^rDmodZ2, 0=r£>modZ2, 2reZ2. (4.14)

If D = 3 mod(4), 8 = - 1 , choose £ with |JV(f)| ̂  3,

f = 2 + VD, VD mod(2k), giving p = D - 4, D mod(2k),

which, from (4.11), yields

6.2^K + 6^KVD = ^r(l + D - 4 ) , 6^KVD=|r(l + D) mod(2k).

These congruences, together with (4.13), imply

0 = ir(-4) = -2rmodZ2, 2reZ2. (4.15)

If D = 1 mod(4), 8 = - 1 , choose

£ = ±VDmod(2k), then p = - / ( ^ ) = Dmod(2k),

and, by (4.11), we get

±6^KVD = |r(D + l)modZ2, 0 = r(D +1) mod 12, 2reZ2. (4.16)

If D = 5mod(8), 8 = - l , for | = 2 + VDmod(2k) we find p^D-4mod(2 k ) and

(4.17)

for | = we find p = l(D-l) mod(2k) and

(4.18)

(4.17), (4.18), together with (4.13) yield

0 = ! ( - l - D + 4 + 2-4(D-l))rmodZ2.

Since - 1 - D + 4 + 2 = 0mod(4), l(D-1) = 2mod(4), we have

reZ2 for D = 5mod(8), 8 = - l . (4.19)

Collecting our results (4.12, 14, 15, 16, 19) and taking into consideration Theorem
4.1(a) we obtain the following theorem.
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THEOREM 4.2. Let v be a MS of weight r for the symmetric Hilbert modular group Ye of
a real quadratic field K on &,, e = (ex, e2). 8 = e ^ . Then 2reZ. For special values of the
discriminant dK we have:

(a) if 8 = 1, dK = 0, 5 mod(8) then r e Z;
(b) if 8 =-I, dK = 5mod(8) thenrel.

REMARK 4.1. If 8 = - 1 , dK = 1 mod(8), there exist MSs of weight \ for f „ e.g. the MS
belonging to a certain theta series [7, p. 30].

5. Multiplier systems for Siegel's modular group. Siegel's modular group of degree
(or genus) n is the group

T = r n = Sp(n, Z) = Sp(n, R) n GL(2n, Z), (5.1)

Sp(n, U) consisting of the matrices

The theta subgroup of F is defined by

Te = rn,e = {M | MeTn, A'C, B'D have even diagonal elements}. (5.3)

A subgroup A of Sp(n, U) operates on the Siegel upper half space

$„ ={Z | Z = X+ iYeC(n-n), 'Z = Z, Y>0} (5.4)
by

Z^>M(Z) = iAZ + B)iCZ + D)-\ (5.5)

An automorphic factor iAF) of A is a mapping

^-C (5.6)
such that

(5.7) /(M, Z), for fixed M e A, is holomorphic without zeros on £>„,

(5.8) JiMN, Z) = J(M, N(Z))J(N, Z) for M, Ne A, Z e £m

(5.9) J(-M, Z) = JiM, Z) if M, - M e A, Ze&„.

An automorphic factor J is called a classical automorphic factor (CAF) if

/(M, Z) = v(M)det(CZ + D ) r f o r M e A , Z e ^ ) m (5.10)

with a complex number r, the weight of J, and complex numbers v(M), depending, of
course, on the branch of logdet(CZ + D). v is called the associated multiplier system.
Usually that branch of log det(CZ + D) is chosen, which, at Z = IE, coincides with the
principal value, i.e.

-7r<Imlogdet(Ci + D)<7j-. (5.11)

LEMMA 5.1. If J is a CAF of weight r on a subgroup A of Sp(n,R),

(Ar(M, Z) = det(CZ + DYfor Me Sp(n, U), Z e #„,
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, Z) := n.r(S, Z)nr(S, , S(Z)), M e A,

76

then, for S e Sp(n, [

is a CAF of weight r for S"1AS. The definition of Js does not depend on the choice of the
branch of logdet(CZ + D).

The lemma is well known ([1], [2]) and as easily checked as in the case of the Hilbert
modular group (Lemma 2.1).

In [2, 1.1 Definition], the condition (5.9) is omitted. For rn, F n e and even n, (5.9) is a
consequence of (5.7), (5.8), (5.10). By (5.10), / is independent of Z for C = 0, and,
therefore, by (5.8) a character on the subgroup of elements with C = 0. Because of

ri OTTO - inn oir o i] r - i oi .c

lo - J l i oJLo -iJUi o H o - J (forn = 2)'
-E2n is a commutator in this subgroup; hence J(-E2n,Z)= 1.

THEOREM 5.1. Let J be a CA.F of weight r (with or without condition (5.9)) for Yn (or
rn>e), and n>\. Then rel (or 2re2).

This theorem is due to Christian [1, p. 285] for Fn and Endres [2, Theorem 1] for
Tn0. For n > 2 put m = n - 2 and

A 0 B 0 C 0 D 0
for

A

c
Then

1])
is a CAF of weight r for T2 (or r2>e). We can assume, therefore, that n = 2 (and (5.9) is
satisfied, as mentioned above). With E = E2,

is an AF for rx (or Tig). Because of

det(cEz + dE) = (cz + df, J{-E, z) = / ( -E 4 , zE) = 1,

/ is a CAF of weight 2r (with condition (5.9)) for T1 (or r i e ) . Put

With the notation of Lemma 5.1, we have

for LeT1 (or rl f0). (5.14)
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Put
T(w) = [o E I for w='WeZ<2'2)' M(v) = [o 'v-1] for V e G L ( 2 ' z ) -

(5.15)
Then

M(V)T(bE)M(V)-1T(bEy1=T(b(V'V-E)).

As already mentioned, a CAF is a character on the subgroup of elements with C = 0.
Hence

Js(T(b(V'V-E)),Z) = l if M(V), T(bE)eS'^S (orS'^Ji).
We have

VV-E-f1 "1 for V=P *1. VV-E-[° "jl for V-f1 °1,
La OJ LO U L-a a2J L-a U

and consequently

[a
a
2 o] + 4-°a a"])'Z) = * (5'1

if

Fj has one cusp (at °°), one elliptic fixed point of order 2, one elliptic fixed point of order 3
and the volume of the fundamental domain is 577. From (3.5), we have

,A (̂[J "]), M([_X
a J] )6S-^S (or S - ^ S ) . (5.17)

(CJ,C2GZ).

From (5.16), (5.17) with S = E, a = b = 1, we have

and hence T)1 = 0,
r = 6th + 3Ci + 2c2 = 0 mod Z.

I \ e has two cusps, one elliptic fixed point of order 2 and the volume of the fundamental
domain is TT. From (3.5), we have

Z (c1eZ).

{N IJV e F2, N = £ 4 mod 2} is a normal subgroup of F2 contained in F2,e and containing

A o 1 ) anc* M L 1 ) (5-15). These matrices are, therefore, contained in S~1T2gS

for Se lY The cusps of r M are S"1^, SeTj. From (5.16), (5.17), we have, for a = 2,

= l if
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and

hence
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4t)eZ,

Theorem 5.1 also is an easy consequence of Theorem 3.3. For a real quadratic
number field K there exists an embedding of 3?a,-i) into &2 and a corresponding
embedding of the Hilbert modular group TK into T2, taking TKe into r2,e. The CAF of
weight r for F2 (or F2e) yields a CAF of weight r for FK (or FKe) on £>a,-i). Taking
K = QU5), from Theorem 3.3, we have reZ for rK, 2reZ for TKe. The details are as
follows. In [5, Satz 2.2] with K = Q(-J5), put

= 75 \
Then

Vm=lo lJ' W U
For T e £(!,_!), in [5, Satz 2.2],

Z(T) = M<Z(T)>,

M = L 0 <W-lY

mrm

Z(T)
[pmr

For

Then

, put

(2) and L
p y 8

for L = r

MLM'1 €T2 (or r 2 9 ) for L€TK (or rK e)-

If / is a CAF of weight r for T2 (or r 2 e ) , JM is a CAF of weight r for M~XT2M (or
M~1r2,eM). Because of

0
p ( 2 ) T ( 2 )

= [P L o ( T

and

by

det
o o

P
( 2 ) L ( 2 ) (

o

T ( 2 ) ) J

(1)

for LeT K (or FKe) and

J 0 (L ,T) = J M ( L , Z ( T ) )

^ . D , a CAF of weight r is denned, q.e.d.

THEOREM 5.2. For a subgroup T of Sp(n, U), commensurable with Siegel's modular
group Tn of degree n>l, there exists a (minimal) number g(A)eN with the following
property: if J is a CAF of weight r for A then

reQ, g(A)reZ
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and if Ao is a subgroup of finite index in A and Jo a CAF of weight r0 for Ao then

g(A)[A:Ao]roeZ.

This theorem is due to Christian [2, Satz 1] for congruence subgroups of Tn. It is
proved exactly like Theorem 3.1 as a consequence of the analogue of Lemma 2.3 (which
is as easily checked as in the Hilbert modular group case), the analogue of (3.9) (which is
Theorem 5.1 for Tn) and the fact that

D)? for

is a CAF of weight f for any subgroup A of Sp(n, 1).

THEOREM 5.3. Under the conditions of Theorem 5.2, the MS associated with a CAF J
is of modulus 1 with roots of unity as values

J(M,Z) = v(M)det(CZ + D)r, |v(M)| = l, forZe&n, M

This theorem has been announced in [4, Satz]; the proof, however, depends on [4,
Lemma 3], stating that a multiplier system v of weight r for a congruence subgroup P̂ of
Tn defines a homomorphism v :^—>CX, i.e. is an abelian character, which is false. It is not
always possible, by a suitable choice of the branch of log(CZ + D)r in

J(M, Z) = v(M)det(CZ + D)r

for each Mety, to assure that v(Ml)v(M2) = v(MlM2). E.g. r2,e has a CAF of weight \.
Put

i - ! ] •
J is a character on the subgroup of elements with C = 0. From Mer2>e, we have

/(M, Z)2 = J(M2, Z) = J(E4, Z) = 1, J(M, Z) = v(M)(det V)m;
hence

v(M)2(det(V)1/2)2=l.

No matter, which branch of (det V)1/2 is chosen, ((det V)1/2)2 = det V = - 1 ; whence
v(M)2 = - l , but v(M2)= v(£4)=l . Theorem 5.3 is easily proved from Theorem 5.2
exactly as the corresponding result in Theorem 3.1.
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