TENSOR PRODUCTS OF POSITIVE DEFINITE QUADRATIC FORMS III

YOSHIYUKI KITAOKA

In the previous papers [2], [3] we treated the following two questions. Let L, M, N be positive definite quadratic lattices over \mathbb{Z}:

(i) If L, M are indecomposable, then is $L \otimes M$ indecomposable?

(ii) Does $L \otimes M \cong L \otimes N$ imply $M \cong N$?

In this paper we discuss the uniqueness of decompositions with respect to tensor products. Our aim is to prove the following two theorems.

Theorem 1. Let L_i, M_i be indecomposable positive definite binary quadratic lattices with $L_i = \tilde{L}_i$, $M_i = \tilde{M}_i$, $m(L_i) = m(M_i) = 1$. For any isometry $\sigma : \otimes_{i=1}^n L_i \cong \otimes_{i=1}^n M_i$, we have $\sigma = \otimes_{i=1}^n \sigma_i$ where σ_i is an isometry from L_i on M_i, changing the suffix if necessary.

Theorem 2. Let L_i, M_i be positive definite quadratic lattices with $[L_i; \tilde{L}_i] < \infty$, $[M_i; \tilde{M}_i] < \infty$. Assume that

(i) L_i (resp. M_i) is of E-type except at most one,

(ii) $sL_i = sM_i = \mathbb{Z}$, and $m(L_i), m(M_i)$ are prime numbers, and

(iii) \tilde{L}_i, \tilde{M}_i are indecomposable.

Then for any isometry $\sigma : \otimes_{i=1}^n L_i \cong \otimes_{i=1}^n M_i$ we have $n = m$ and $\sigma = \otimes \sigma_i$, where σ_i is an isometry from L_i on M_i, changing the suffix if necessary.

We must explain the notations and terminologies in two theorems. By a positive definite quadratic lattice we mean a lattice in a positive definite quadratic space over the rational number field \mathbb{Q}. For any quadratic space we use the same letter Q, which are the corresponding quadratic form and bilinear form $(2B(x, y) = Q(x + y) - Q(x) - Q(y))$. Let L be a positive definite quadratic lattice; then sL denotes $\{ \sum B(x_i, y_i) ; x_i, y_i \in L \}$ and we put $m(L) = \min Q(x)$ where x runs over non-zero elements of L. $\mathfrak{M}(L)$ stands for $\{ x \in L ; Q(x) = m(L) \}$, and \tilde{L} is the sub-

Received June 21, 1977.
module of L spanned by elements of $\mathbb{M}(L)$. L is called E-type if every element of $\mathbb{M}(L \otimes M)$ is of the form $x \otimes y$ ($x \in L$, $y \in M$) for any positive definite quadratic lattice M. If either $sL \subseteq \mathbb{Z}$, $m(L) \leq 6$ or rank $L \leq 42$, then L is of E-type [1].

§1. In this section we define a weighted graph and prove some properties.

DEFINITION. Let A be a finite set, and $[\ , \]$ be a mapping from $A \times A$ into $\{0 < t < 1\}$ such that

(i) $[a, a'] = 1$ if and only if $a = a'$, and

(ii) $[a, a'] = [a', a]$ for a, a' in A.

Then we call $(A, [\ , \])$ or simply A a weighted graph. A weighted graph A is called connected if for any x, y in A there are elements z_t of A such that $x = z_0$, $y = z_r$, and $[z_i, z_{i+1}] \neq 0$ ($i = 1, \cdots, r - 1$). For weighted graphs A, B we define the direct product $A \times B$ by $[(a, b), (a', b')] = [a, a'][b, b']$ ($a, a' \in A$, $b, b' \in B$); then $A \times B$ is clearly a weighted graph. It is also clear that the direct product of connected weighted graphs is connected. A bijection f from A on B is called an isometry if f satisfies $[f(a), f(a')] = [a, a']$ for $a, a' \in A$.

LEMMA 1. Let A, B, C be connected weighted graphs, and let σ be an isometry from $A \times B$ on $A \times C$. If there are $b_0 \in B, c_0 \in C$ such that $\sigma(a, b_0) = (f(a), c_0)$ for every x in A, then f is an isometry from A on A and there is an isometry g from B on C with $\sigma(a, y) = (f(a), g(y))$ ($x \in A$, $y \in B$).

Proof. Since σ is a bijection and A is a finite set, f is a bijection of A. Moreover for a, a' in A we have $[a, a'] = [(a, b_0), (a', b_0)] = [(f(a), c_0), (f(a'), c_0)] = [f(a), f(a')]$. This means that f is an isometry of A. Multiplying $f^{-1} \times \text{id}_C$ to σ, we have only to prove the lemma in case of $f = 1$. Put $S = \{\tilde{B} \subset B; \sigma(a, b) = (a, c) \text{ for every } a \in A \text{ and } b \in \tilde{B},$ where c is only dependent of $b\}$. S is not empty since $S \ni \{b_0\}$. Take an element B' in S such that $\#B' \geq \#\tilde{B}$ for \tilde{B} in S. If $B' = B$, then we have $\sigma(a, b) = (a, g(b))$ for $a \in A$, $b \in B$. It is easy to see that g is an isometry from B on C, and this completes the proof. Now we assume $B' \neq B$. We have to show that this implies a contradiction. Define a subset C' by $\sigma(A, B') = (A, C')$. Put $m = \max [b, b']$ where $b \in B'$, $b' \in B'$, and we may assume $m \geq \max [c, c']$ where $c \in C'$, $c' \in C'$, taking σ^{-1} instead of σ if necessary. Since B is connected, m is positive.
Put $m = [b, b']$ ($b \in B'$, $b' \in B'$) and take any element $x \in A$. Put $\sigma(x, b') = (x', c)$; then c is not in C' since $c \in C'$ implies $(x, b') \in \sigma^{-1}(A, C') = (A, B')$. Putting $\sigma(x, b) = (x, c)$, we have $m = [b, b'] = [(x, b), (b, b')] = [(x, c), (x', e_c)] = [x, x'][c, c]$. If $x \neq x'$, then $0 < [x, x'] < 1$ implies a contradiction $m < [c, c] < m$. Hence $x' = x$ follows. Thus we get $\sigma(x, b') = (x, c(x))$ ($c(x) \in C$) for every x in A. For x, y in A with $[x, y] \neq 0$, $[x, y] = [(x, b'), (y, b')] = [(x, c(x)), (y, c(y))] = [x, y][c(x), c(y)]$ implies $[c(x), c(y)] = 1$, and so $c(x) = c(y)$. Since A is connected, this yields that $c(x)$ in C is independent of x in A, and then it implies a contradiction $B' \cup \{b'\} \in S$ and $\#(B' \cup \{b'\}) > \#B'$.

Lemma 2. Let L be a positive definite quadratic lattice. For x, y in L we put $[x, y] = \|B(x, y)\|/m(L)$. Then $(\mathfrak{M}(L)/\pm1, [\ , \])$ is a weighted graph and it is connected if and only if L is indecomposable.

Proof. Take x, y in $\mathfrak{M}(L)$; then $x = \pm y$ if and only if $|B(x, y)| = m(L)$. Moreover $B(x, y)^2 \leq Q(x)Q(y) = m(L)^2$ implies that $\mathfrak{M}(L)/\pm1$ is a weighted graph. The latter part is obvious.

We say that $(\mathfrak{M}(L)/\pm1, [\ , \])$ is a weighted graph associated to L.

§2. Let L_i, M_j be positive definite quadratic lattices and let σ be an isometry from $\bigotimes_{i=1}^n L_i$ on $\bigotimes_{j=1}^n M_j$. Suppose that

(i) $\mathfrak{M}(\bigotimes L_i) = \bigotimes \mathfrak{M}(L_i), \mathfrak{M}(\bigotimes M_j) = \bigotimes \mathfrak{M}(M_j),$

(ii) $[L_i : \tilde{L}_i], [M_j : \tilde{M}_j] < \infty$ for every i, j,

(iii) $\mathfrak{M}(L_i)/\pm1, \mathfrak{M}(M_j)/\pm1$ are connected weighted graphs for every i, j.

Let A, B, A_i, B_i be weighted graphs associated to $\bigotimes L_i, \bigotimes M_i, L_i, M_i$ respectively. Then σ induces an isometry from $A = \prod_{i=1}^n A_i$ on $B = \prod_{i=1}^n B_i$ which is denoted by the same letter σ.

Theorem. If it follows that $n = m$, $\sigma = \prod_{i=1}^n \sigma_i$ where σ_i is an isometry from A_i on B_i, changing the suffix if necessary, then we have $\sigma = \bigotimes_{i=1}^n \mu_i$ where μ_i is an isometry from L_i on M_i, changing the suffix if necessary.

Proof. We may assume $\sigma = \prod \sigma_i$ where σ_i is an isometry from A_i on B_i. By the same letter σ_i, we denote a mapping from $\mathfrak{M}(L_i)$ on $\mathfrak{M}(M_i)$ which induces an isometry σ_i from $A_i = \mathfrak{M}(L_i)/\pm1$ on $B_i = \mathfrak{M}(M_i)/\pm1$. Fix any element e_i in $\mathfrak{M}(L_i)$ ($i \geq 2$). Then $\sigma(e \otimes e_2 \otimes \cdots \otimes e_n) = \pm \sigma_i(e)$
\(\otimes \sigma(e_1) \otimes \cdots \otimes \sigma_n(e_n) \) holds for every \(e \) in \(\mathcal{M}(L) \). Putting \(\sigma(1) = \mu_1 \), then \(\sigma(e \otimes e_2 \otimes \cdots \otimes e_n) = \mu_1(1) \otimes \sigma(e_2) \otimes \cdots \otimes \sigma_n(e_n) \) for any \(e \) in \(\mathcal{M}(L) \).

This means that \(\mu_1 \) is an isometry from \(\tilde{L}_1 \) onto \(\tilde{M}_1 \). Since \(\mathcal{M}_1 \otimes \sigma(e_2) \otimes \cdots \otimes \sigma_n(e_n) \) is a direct summand of \(\otimes \mathcal{M}_1 \) and \([L_1; \tilde{L}_1] < \infty \), \(\mu_1 \) is an isometry from \(L_1 \) into \(M_1 \). Similarly we get an isometry \(\mu_4 \) from \(L_4 \) into \(M_4 \) so that \(\sigma(e \otimes \cdots \otimes e_n) = \pm \mu_4(e) \otimes \cdots \otimes \mu_n(e_n) \) for \(e \) in \(\mathcal{M}(L) \), where \(\pm \) may depend on the choice of \(e \).

This means that \(\mu_1 \) is an isometry from \(\tilde{L}_1 \) onto \(\tilde{M}_1 \).

§3. First we discuss the case of Theorem 1. Let \(L \) be an indecomposable binary positive definite quadratic lattice with \(L = L, m(L) = 1 \). Then \(L \) has a basis \(\{e_1, e_2\} \) so that \(Q(e_1, e_2) = 1 \), \(0 < B(e_1, e_2) \leq \frac{1}{2} \), and moreover we have \(\mathcal{M}(L) = \{\pm e_1, \pm e_2, \pm (e_1 - e_2)\} \) \((\pm (e_1 - e_2) \) happens only when \(B(e_1, e_2) = \frac{1}{2} \). Let \(A_L \) be a weighted graph associated to \(L \); then \(A_L \) is connected. \(\# A_L \) is two for \(B(e_1, e_2) < \frac{1}{2} \). If \(B(e_1, e_2) = \frac{1}{2} \), then \(\# A_L = 3 \) and \(\{a_i, a_j\} = \frac{1}{2} \) for \(i \neq j \) where we put \(A_L = \{a_i, a_j, a_k\} \).

Let \(L_i, M_i, \sigma \) be as in Theorem 1; then \(L_i, M_i \) are of \(E\)-type, and define \(A, A_i, B, B_i \) and \(\sigma \) as in §2; then we have

Lemma 3. \(\sigma = \prod \sigma_i \) where \(\sigma_i \) is an isometry from \(A_i \) on \(B_i \), changing the suffix if necessary.

Proof. We prove this by the induction with respect to \(\# A \). Put \(m = \max \{a, a'\} = \max \{b, b'\} \) where \(a, a' \in A, a \neq a' \) and \(b, b' \in B, b \neq b' \). Since \(A, B_i \) are indecomposable, we get \(0 < m \leq \frac{1}{2} \). Take \(a \neq a' \) in \(A \) with \([a, a'] = m \). Putting \(a = \prod a_i, \quad a' = \prod a'_i, \quad m = \prod [a_i, a'_i] \) follows.

Noting \([a_i, a'_i] < 1 \) for \(a_i \neq a'_i \), the maximality of \(m \) implies that there is an index \(j \) such that \([a_i, a'_i] = 1 \), i.e., \(a_i = a'_i \) for \(i \neq j \), and \(a_j \neq a'_j \). We may assume \(j = 1 \), and similarly \(\sigma(a) = \prod b_i, \quad \sigma(a') = \prod b'_i, \quad b_i = b'_i \) for \(i > 1 \) and \(b_1 \neq b'_1 \). Then \(m = \prod [a_i, a'_i] = \prod [b_i, b'_i] \) follows. If \(m < \frac{1}{2} \), then \(A_i = \{a_i, a'_i\}, \quad B_i = \{b_i, b'_i\} \) and \(\sigma(A_i) \times \prod A_i = B_i \times \prod B_i \). Hence Lemma 1 and the assumption of the induction completes the proof.

Suppose \(m = \frac{1}{2} \); then there is an element \(a''_1 \) in \(A_1 \) so that \(A_1 = \{a_1, a'_1, a''_1\} \) and \([a_i, a''_1] = [a'_i, a''_1] = \frac{1}{2} \). Put \(\sigma(a''_1) \times \prod A_i = \prod b''_i \); then \([a_i, a''_1] = \prod A_i = \prod b''_i \) and \([a'_i, a''_1] = \prod B_i = \prod b''_i \). Hence Lemma 1 and the assumption of the induction completes the proof.
[a', a''] = \frac{1}{2} implies \[b_i, b'_i \] \prod_{i=2}^{n} [b''_i, b_i] = [b'_i, b'_i] \prod_{i=2}^{n} [b'_i, b_i] = \frac{1}{2}. Suppose \[b_i = b''_i \]; then \[\prod_{i=2}^{n} [b''_i, b_i] = \frac{1}{2} \], and so \[[b'_i, b'_i] = 1 \], that is, \[b'_i = b'_i = b_i \]. This is a contradiction. Hence we have \[b_i \neq b''_i \], and then \[[b_i, b'_i] = \frac{1}{2} \]. Therefore \[b''_i = b_i \] for \(i \geq 2 \) and \(\sigma(A_i \times \prod_{i=2}^{n} a_i) = B_i \times \prod_{i=2}^{n} b_i \). This completes the proof as above.

Now Theorem 1 follows from Theorem in §2.

Next we discuss the case of Theorem 2.

Lemma 4. Let \(a_i, b_i \in \mathbb{Z} \) and \(0 < b_i < a_i \), and let \(a_i \) be prime. Put \(\prod_{i=1}^{n} (b_i/a_i) = b/a, \ (a, b) = 1 \). Then \(a > a_i \) for some \(i \) if \(n \geq 2 \).

Proof. We may suppose \(a_i \leq \ldots \leq a_n \), and assume \(a_i \leq a_i \) for any \(i \). Since \(a_i \) divides \(\prod a_i \), we have \(a_i = a_i \). \(b_i \prod_{i=2}^{n} (b_i/a_i) = b \) and \(a_i \mid b_i \) imply \(\prod_{i=2}^{n} a_i \mid \prod_{i=2}^{n} b_i \). This contradicts \(0 < b_i < a_i \).

Lemma 5. Let \(A_i, B_i \) be connected weighted graphs with \(\#A_i > 1 \), \(\#B_i > 1 \), and let \(p_i, q_i \) be primes. Suppose

\[
\{[x, y]; x, y \in A_i\} \subset \{a/p_i; a = 0, 1, \ldots, p_i\}
\]

and

\[
\{[x, y]; x, y \in B_i\} \subset \{b/q_i; b = 0, 1, \ldots, q_i\}.
\]

If \(\sigma \) is an isometry from \(\prod_{i=1}^{n} A_i \) on \(\prod_{i=1}^{n} B_i \), then \(n = m \) and \(\sigma = \prod \sigma_i \) where \(\sigma_i \) is an isometry from \(A_i \) on \(B_i \), changing the suffix if necessary.

Proof. We prove by the induction with respect to \(\# \prod_{i=1}^{n} A_i \). Since \(A_i \) is connected and \(\#A_i > 1 \), for any element \(a \) in \(A_i \) there is an element \(a' \) in \(A_i \) such that \(0 < [a, a'] < 1 \). If \([a, a'] \neq 0, 1 \) for \(a, a' \) in \(A_i \), then the denominator of \([a, a'] \) is a prime \(p_i \). Without loss of generality we may assume \(p_i = \ldots = p_k < p_{k+1} \leq \ldots \leq p_m, q_i = \ldots = q_k < q_{k+1} \leq \ldots \leq q_m \). Put \(A = \prod_{i=1}^{n} A_i, B = \prod_{i=1}^{n} B_i \), and fix any element \(a = \prod a_i \) of \(A \). Suppose that the minimal value of the denominator of \([a, a'] \) with \([a, a'] \neq 0, 1 \) \((a' \in A) \) is taken by \(a' = \prod a'_i \in A \). Then the above remark and Lemma 4 imply \(a'_i = a_i \) for \(i \neq j \), and \(a'_j \neq a_j \) for some \(j \) and so the minimal value is obviously \(p_i \), and \(j \leq k \). On the other hand, by virtue of Lemma 4 and the connectedness of \(A_i \), it is easy to see that \(A_i \times \cdots A_k \times a_{k+1} \times \cdots \times a_n \) is a subset of \(A \) consisting of elements \(z \) such that there are elements \(z_i, z_{i+1} \) of \(A \) satisfying that the denominator of \([z_i, z_{i+1}] \) is \(p_i \) for \(i = 1, \ldots, r - 1 \).

From the similar argument for \(\sigma(a) = \prod b_i \) in \(B \) follows that the
corresponding minimal denominator is \(q_1 \), and the corresponding subset of \(B \) for \(q_1 \), \(\sigma(a) \) instead of \(p_1, a \) is \(B_1 \times \cdots \times B_h \times b_{k+1} \times \cdots \times b_m \). Since \(\sigma \) is an isometry, we have \(p_1 = q_1 \), and so \(\sigma(A_1 \times \cdots \times A_k \times a_{k+1} \times \cdots \times a_n) = B_1 \times \cdots \times B_h \times b_{k+1} \times \cdots \times b_m \) by their definitions. This implies that \(A_1 \times \cdots \times A_k \) and \(B_1 \times \cdots \times B_h \) are isometric. Therefore Lemma 1 and the assumption of the induction completes the proof if \(n > k \). Thus we may suppose \(n = k \). Then \(\sigma(A) = \prod_{i=1}^{k} B_i \times b_{k+1} \times \cdots \times b_m \) implies \(h = m \). Moreover we have \(n = m \) since the maximal value of the denominators of \([a, a'] \) \((a, a' \in A)\) (resp. \([b, b'] \) \((b, b' \in B))\) is \(p_i^* \) (resp. \(p_i^n \)), and they are equal. For simplicity we put \(p_i = p \) in the following.

(1) Assume that \(A_1 \) contains distinct three elements \(x_1, x_2, x_3 \) such \([x_1, x_2, x_3]_{[x_2, x_3, x_1]} \neq 0 \). Fix any element \(a_i \) in \(A_i \) \((i \geq 2)\), and put \(\sigma(a_k \prod_{i=1}^{k} a_i) = \prod_{j=1}^{m} b_{k,j} \) \((b_{k,j} \in B_j)\); then \([x_k, x_h] = \prod_{j=1}^{m} [b_{k,j}, b_{h,j}] \). Since \(0 < [b_{i,j}, b_{k,j}] \leq 1 \) and the denominator of \([b_{i,j}, b_{k,j}] \) is \(p \) if \(b_{i,j} \neq b_{k,j} \), comparing the denominators of both sides, we have \(b_{i,j} = b_{k,j} \) for any \(j \) except one index if \(i \neq k \). Without loss of generality we may assume \(b_{1,1} \neq b_{2,1}, b_{1,t} = b_{2,t} \) \((i \geq 2)\). Similarly we may assume \(b_{z,k} = b_{z,k} \) for \(k \neq t \). If \(t \geq 2 \), then \(b_{1,t} = b_{2,t} = b_{s,j} \) for \(j \neq 1, t \). This implies \([x_1, x_3] = [b_{1,1}, b_{1,t}][b_{1,t}, b_{2,t}] = [b_{1,1}, b_{2,t}][b_{1,t}, b_{2,t}] \). The denominator of the left (resp. right) side is \(p \) (resp. \(p_i^* \)) since \(b_{1,1} \neq b_{2,1}, b_{2,t} \neq b_{s,t} \). This is a contradiction. Hence we get \(t = 1 \), and so \(b_{1,1} \neq b_{2,1}, b_{2,t} \neq b_{2,t} \). This is a contradiction. Hence we get \(t = 1 \), and so \(b_{1,1} \neq b_{2,1}, b_{2,t} \neq b_{2,t} \). This is a contradiction. Hence we get \(t = 1 \), and so \(b_{1,1} \neq b_{2,1}, b_{2,t} \neq b_{2,t} \). This is a contradiction. Hence we get \(t = 1 \), and so \(b_{1,1} \neq b_{2,1}, b_{2,t} \neq b_{2,t} \). This is a contradiction. Hence we get \(t = 1 \), and so \(b_{1,1} \neq b_{2,1}, b_{2,t} \neq b_{2,t} \). This is a contradiction. Hence we get \(t = 1 \), and so \(b_{1,1} \neq b_{2,1}, b_{2,t} \neq b_{2,t} \). This is a contradiction. Hence we get \(t = 1 \), and so \(b_{1,1} \neq b_{2,1}, b_{2,t} \neq b_{2,t} \). This is a contradiction. Hence we get \(t = 1 \), and so \(b_{1,1} \neq b_{2,1}, b_{2,t} \neq b_{2,t} \). This is a contradiction. Hence we get \(t = 1 \), and so \(b_{1,1} \neq b_{2,1}, b_{2,t} \neq b_{2,t} \). This is a contradiction. Hence we get \(t = 1 \), and so \(b_{1,1} \neq b_{2,1}, b_{2,t} \neq b_{2,t} \). This is a contradiction. Hence we get \(t = 1 \), and so \(b_{1,1} \neq b_{2,1}, b_{2,t} \neq b_{2,t} \). This is a contradiction. Hence we get \(t = 1 \), and so \(b_{1,1} \neq b_{2,1}, b_{2,t} \neq b_{2,t} \). This is a contradiction. Hence we get \(t = 1 \), and so \(b_{1,1} \neq b_{2,1}, b_{2,t} \neq b_{2,t} \). This is a contradiction. Hence we get \(t = 1 \), and so \(b_{1,1} \neq b_{2,1}, b_{2,t} \neq b_{2,t} \). This is a contradiction. Hence we get \(t = 1 \), and so \(b_{1,1} \neq b_{2,1}, b_{2,t} \neq b_{2,t} \). This is a contradiction. Hence we get \(t = 1 \), and so \(b_{1,1} \neq b_{2,1}, b_{2,t} \neq b_{2,t} \). This is a contradiction. Hence we get \(t = 1 \), and so \(b_{1,1} \neq b_{2,1}, b_{2,t} \neq b_{2,t} \). This is a contradiction. Hence we get \(t = 1 \), and so \(b_{1,1} \neq b_{2,1}, b_{2,t} \neq b_{2,t} \). This is a contradiction.

We note that the denominator of the left side is \(p \). If \(b_{i} \neq b_{j} \) for \(i \neq j, j \), then \([y_{k}, b_{j}] = 1 \), and so \(y_{i} = y_{j} = y_{2} \). This implies a contradiction \(x_{1} = x_{2} = x_{3} \). Hence \(b_{i} \neq b_{j} \) for \(i \neq j, j \). \(b_{i}' = y_{i} \) implies \(b_{j} = z_{1} \) (\(\neq z_{2}, z_{3} \)), and so we get \(y_{i} = y_{j} = y_{2} \). This is a contradiction. Hence we have \(b_{i}' = y_{i} \), and similarly \(b_{i}' = y_{i} \). This contradicts \(x_{1} = x_{2} = x_{3} \). Hence \(j \) equals 1, and we may put \(\sigma(x_{k} \times \prod_{i=1}^{k} a_{i} \times a_{n} = [x_{k}, x_{h}]_{[x_{k}, z_{k}]} \prod_{i=1}^{m} [b_{i}, b_{j}] \). Putting \(k = h \), and comparing the denominators we have \(b_{i} = b_{j}' \) for any \(i \geq 2 \) except at most one \(i \). Putting \(k = h \), the denominator of the left hand equals \(p_{i}^* \). Hence the exceptional suffix exists. Then putting \(k = h \) again, we have \(y_{k} = z_{k} \).
for $k = 1, 2, 3$. Thus we have $\sigma(x_k \times \prod_{i=2}^{k-1} a_i \times a'_i) = y_k \times \prod_{i=2}^{k-2} b'_i$. Doing the similar operations for a_i, a'_i, we have $\sigma(x_k \times \prod_{i=2}^{k-1} A_i) \subset y_k \times \prod_{i=2}^{k-2} B_i$, since A_i is connected. Similarly $\sigma^{-1}(y_k \prod_{i=2}^{k-2} b_i) = x_k \prod_{i=2}^{k-1} a_i$ and $[y_k, y_2] \times [y_1, y_1] \neq 0$ imply $\sigma^{-1}(y_k \prod_{i=2}^{k-2} B_i) \subset x_k \times \prod_{i=2}^{k-1} A_i$, and so $\sigma(x_k \times \prod_{i=2}^{k-1} A_i) = y_k \times \prod_{i=2}^{k-2} B_i$. This implies $\prod_{i=2}^{k-1} A_i \cong \prod_{i=2}^{k-2} B_i$, and then Lemma 1 and the assumption of the induction completes the proof.

(ii) Suppose that A_i contains distinct four elements x_i such that $[x_1, x_2], [x_2, x_3], [x_1, x_3] \neq 0, [x_1, x_3] = [x_2, x_1] = [x_2, x_3] = 0$. Fix any element a_i in A_i ($i \geq 2$). Put $\sigma(x_k \times \prod_{i=1}^{k-1} a_i) = \prod_{i=1}^{k-1} b_i, i$; then $[x_k, x_i] = [\prod_{i=1}^{k-1} b_i, b_i]$ $\neq 0$. Since the denominator of the left hand is p for $k \neq 1$, there is a number t_k such that $b_{k,t} = b_{i,t}$ for $i \neq t_k$, and $b_{k,t} \neq b_{i,t}$.

a) Suppose that t_2, t_3, t_4 are distinct.

$x_2, x_3 = 0$ implies $[b_{3,t}, b_{4,t}] = 0$ for some i. Since $b_{k,j} = b_{i,j}$ for $j \neq t_2, t_3, t_4$, i equals t_2, t_3 or t_4. If $i = t_2$, then $b_{k,t_2} = b_{i,t} = b_{i,t}$ implies a contradiction $[b_{i,t}, b_{i,t}] = 1$. Similarly $i = t_3$ or $i = t_4$ implies a contradiction.

b) Suppose that $t_2 = t_3 \neq t_4$.

$x_2, x_3 = 0$ implies $[b_{3,t}, b_{4,t}] = 0$ for some i. $b_{k,j} = b_{i,j}$ for $j \neq t_k$ yields $i = t_2$ or t_4. $i = t_2$ implies $b_{t_2} = b_{i,t} = b_{i,t}$, and so $[b_{i,t}, b_{i,t}] = 0$. This contradicts $[x_2, x_3] = 0$. Similarly $i = t_4$ is a contradiction.

Similary $t_2 \neq t_3 = t_4$ or $t_2 = t_4 \neq t_3$ implies a contradiction. Hence we have $t_2 = t_3 = t_4 = 1$ (say). Thus we may assume $\sigma(x_k \times \prod_{i=1}^{k-1} a_i) = y_k \times \prod_{i=1}^{k-2} b_i, i$ ($y_k \in B_1, b_i \in B_i$). Take an element a_i' in A_i with $[a_n, a'_n] \neq 0, 1, \text{ and put } \sigma(x_k \times \prod_{i=2}^{k-1} a_i \times a'_i) = z_k \prod_{i=1}^{k-2} b'_i, i$. Assume $j \neq 1$; then $[x_k \times \prod_{i=2}^{k-1} a_i, x_i] \times \prod_{i=2}^{k-1} a_i, a'_i] = [x_k, x_i] \times [a_n, a'_n] = [y_k, b_i][b_{j, z_i} \prod_{i=1}^{k-2} b_i, b_i] \neq 0$ implies $[b_j, z_i] \neq 0$ ($t = 1, 2, 3, 4$), $[b_i, b'_j] \neq 0$ for $i \neq 1, j$. Similarly $[x_k, x_i] \neq 0$ implies $[y_k, b'_i] \neq 0$ ($k = 1, 2, 3, 4$). This means $[x_k, x_i][a_n, a'_n] \neq 0$ for any k, t and contradicts $[x_2, x_3] = 0$. Thus we have $j = 1$, and $[x_k, x_i]$. $[a_n, a'_n] = [y_k, z_i] \times \prod_{i=2}^{k-2} b_i, b_i$. Since the denominator of the left hand for $k = 1, t = 2$ is p^2, there is at least one suffix i such that $b_i \neq b'_i$. Moreover the denominator of the left side for $k = t$ is p. Hence there is no such suffix except i, and this yields $[y_k, x_k] = 1$, i.e., $y_k = z_k$. As the proof of the case (i) we have $\sigma(x_k \times \prod_{i=2}^{k-2} A_i) = y_k \times \prod_{i=2}^{k-2} B_i$ and complete the proof for the case (ii) by the induction and Lemma 1.

For a weighted graph W we make a usual graph, joining two ele-

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 01 Feb 2020 at 07:57:16, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0027763000021863
ments x, y with $[x, y] \neq 0$. Then, by virtue of (i), (ii), we may assume that A_i, B_i do not contain subgraphs \(\begin{array}{c}
 extracting and drawing an similar triangle here \end{array} \). Hence A_i, B_i are \(\begin{array}{c}
 extracting and drawing an similar triangle here \end{array} \) or \(\begin{array}{c}
 extracting and drawing an similar triangle here \end{array} \) as graphs.

(iii) Suppose that A_i contains three distinct elements x_1, x_2, x_3 such that $[x_1, x_2] \neq 0$, $[x_2, x_3] \neq 0$, $[x_1, x_3] = 0$, i.e., \(\begin{array}{c}
 extracting and drawing an similar triangle here \end{array} \). Take any element a_i in A_i, and put $\sigma(x_k \prod_{t=2}^n a_t) = \prod_{t=1}^n b_{k,t}$ $(b_{k,t} \in B_t)$. Comparing the denominators of $[a, a'] = f(a) \prod_{t=2}^n b_t$, we have numbers q, s so that $b_{1,t} = b_{2,t}$ for $i \neq q$, $b_{1,t} = b_{s,t}$ for $i \neq s$. $q \neq s$ implies $b_{1,t} = b_{s,t}$, and then we have \(\begin{array}{c}
 extracting and drawing an similar triangle here \end{array} \). This contradicts \(\begin{array}{c}
 extracting and drawing an similar triangle here \end{array} \). Thus we may assume $q = s = 1$ (say), and $\sigma(x_k \prod_{t=2}^n a_t) = y_k \prod_{t=2}^n b_t$ $(y_k \in B_1, b_t \in B_t)$. Doing the similar thing for $\begin{array}{c}
 extracting and drawing an similar triangle here \end{array}$, we have $\sigma(x_k \prod_{t=2}^n a_t) = z_k \prod_{t=2}^n b_t \quad (z_k \in B_j, b_t \in B_t)$ for $k = 2, 3, 4$. Comparing the case $k = 2, 3$, we get $z_3 = b_3 = z_3$ if $j \neq 1$. This is a contradiction, and so $j = 1$. This means $b_i = b_i$ for $i \geq 2$ and $\sigma(x_k \prod_{t=2}^n a_t) = z_k \prod_{t=2}^n b_t$. Since A_i is \(\begin{array}{c}
 extracting and drawing an similar triangle here \end{array} \), we have $\sigma(a \prod_{t=2}^n a_t) = f(a) \prod_{t=2}^n b_t$ for any a in A_i, that is, $\sigma(A_i \prod_{t=2}^n a_t) \subset B_i \prod_{t=2}^n b_t$. Similarly we have $\sigma^{-1}(B_i \prod_{t=2}^n b_t) \subset A_i \prod_{t=2}^n a_t$ and so $\sigma(A_i \prod_{t=2}^n a_t) = B_i \prod_{t=2}^n b_t$. Lemma 1 and the induction complete the proof.

(iv) By virtue of (i), (ii), (iii) we have only to prove the case that $\# A_i \neq \# B_i = 2$. Put $m = \max [a, a'] (a, a' \in A, a \neq a')$ and assume $m = [a, a']$ for $a = \prod_{t=1}^n a_t, a' = \prod_{t=1}^n a'_t$. Since $[a_t, a'_t] < 1$ if $a_t = a'_t$, by the definition, there is a suffix t so that $a_t = a'_t$ for $i \neq t$ and $a_t \neq a'_t$. Putting $\sigma(a) = \prod b_t, \sigma(a') = \prod b'_t$, there is a suffix s so that $b_s = b'_s$ for $i \neq s$, and $b_s \neq b'_s$. Without loss of generality we may assume $t = s = 1$; then $A_i = \{a_t, a'_t\}$, $B_i = \{b_t, b'_t\}$ and $[a_t, a'_t] = [b_t, b'_t] = m$. Hence $A_i \cong B_i$ and $\sigma(A_i \prod_{t=2}^n a_t) = B_i \prod_{t=2}^n b_t$. Lemma 1 and the assumption of the induction complete the proof of Lemma 4.

To complete the proof of Theorem 2 we need only to prove that the cardinalities of weighted graphs associated to L_t, M_t are not 1. It follows immediately from the assumption (ii).

Let L be an indecomposable positive definite quadratic lattice, and...
put $A = \mathbb{M}(L)/\pm 1$ and we consider A as a weighted graph by $[x, y] = |B(x, y)|/m(L)$ for $x, y \in \mathbb{M}(L)/\pm 1$ as above. We call such a weighted graph a quadratic weighted graph associated to L. Then the following questions arise.

(i) Let A_i, B_i be connected quadratic weighted graphs and f be an isometry from $\prod_{t=1}^n A_t$ on $\prod_{t=1}^n B_t$. What is a sufficient condition to the following assertion?

$n = m$ and $f = \prod f_t$ (changing the suffix if necessary), where f_t is an isometry from A_t on B_t.

(ii) Let L be an indecomposable positive definite quadratic lattice with $L = \tilde{L}$, and let A be an associated quadratic weighted graph. If $A \cong B \times C$ where B, C are quadratic weighted graphs, then is there a decomposition $L \cong M \otimes N$ so that B (resp. C) is a quadratic weighted graph associated to M (resp. N)?

Remark 1. For $M \cong \begin{pmatrix} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{pmatrix}$, $N \cong \begin{pmatrix} 4 & 1 & 1 \\ 1 & 4 & -1 \\ 1 & -1 & 4 \end{pmatrix}$, associated quadratic graphs are isometric but M, N are not isometric.

Remark 2. Let L be a positive definite quadratic lattice with $L = \tilde{L}$, $m(L) = 1$, and assume that $\mathbb{M}(L)/\pm 1 = A \times B$ where A, B are weighted graphs with $\# A, \# B > 1$. Put $\mathbb{M}(L)/\pm 1 = \{e_t\}$ and $e_t = (a_t, b_t)$ ($a_t \in A$, $b_t \in B$). Suppose that there is a mapping s_1 (resp. s_2) from $A \times A$ (resp. $B \times B$) into $\{\pm 1\}$ so that $s_1(a, a) = s_2(b, b) = 1$ for every a in A and every b in B, and $B(e_i, e_j) = s_1(a_i, a_j)s_2(b_i, b_j)[a_i, a_j][b_i, b_j]$ for any i, j. Then we can show that there are positive definite quadratic lattices M, N such that $L \cong M \otimes N$, $M = \tilde{M}$, $N = \tilde{N}$, $m(M) = m(N) = 1$ and A, B are quadratic graphs associated to M, N respectively. The assumption on s_1, s_2 is not satisfied for a decomposable lattice $M \perp N$ in Remark 1.

References