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A differentiation in locally

convex spaces

Sadayuki Yamamuro

The theory of F-finite linear operators developed by Robert T.

Moore is used to construct a differential calculus in locally

convex spaces. This note contains the fundamental theory up to

the implicit function theorem.

This is the first part of a series of notes in which we shall

construct a differential calculus in locally convex Hausdorff spaces. The

aim is to show that it is possible to generalize the Banach space calculus

to locally convex spaces without losing its simplicity and power.

As we have explained in [5, Introduction], there have been several

difficulties in constructing such a calculus. Some definitions did not

imply continuity. For the definitions which imply continuity, the chain

rules of higher order did not hold. As we have shown in [6], [7], and [8],

the differentiability of the inverse map always required a complicated

treatment, and, above all, it has been impossible to generalize the inverse

mapping theorem or the implicit function theorem in Banach spaces with

their simple forms retained.

All these difficulties are due to the fact that the derivatives have

merely been assumed to be continuous and linear. Unlike the case of Banach

spaces, the set L(E) of all continuous linear maps on a locally convex

space E with any one of the usual topologies is not suitable for

constructing the calculus. The difficulty about the chain rules is due to

the fact that the composition in L{E) is not continuous unless E is

normable. (See [5, Appendix 2].) The difficulty about the inverse maps
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is due to the fact that the inverse operation in the set of all invertible

maps in L(E) is not continuous. In order to construct a simple and

effective calculus on 2? , we need a theory of linear maps on E which is

free from these difficulties.

As far as we know, there are three candidates. The first is the

theory developed by Marinescu in [2] and other papers, where the main idea

is to assume the existence of a relation between the sets of continuous

semi-norms on the spaces E and F depending on the given map u : E •* F .

Using this idea, he has obtained a form of the implicit function theorem.

The second is the theory of completely bounded maps developed in ['], which

was used to prove an inverse mapping theorem in [5]. The third is the

theory of F-finite maps by Moore developed in [3] and other papers.

Although the method used in the definition of the F-finiteness is a

special case of Marinescu's idea, it provides us with a reasonably simple

and remarkably versatile tool. From the viewpoint that the calculus is

essentially a tool, it is desirable that it stands on a simple theory of

linear maps.

Our differentiation is based mainly on Moore's theory. We shall have

to make only one change, because Moore has considered only self-maps,

whereas we need the F-finite maps from one space into another in order to

define, for example, the higher differentiability.

In the following, we shall always assume that E, F, and G denote

locally convex Hausdorff spaces over the real number field R . The real

numbers will be denoted by Greek letters. X and Y will always stand for

open subsets in E and F respectively.

1 . Cali brati ons

A calibration for E is a set of continuous semi-norms on E which

induces the topology of E . The set P(E) of all continuous semi-norms

on E is obviously a calibration for E . If F is a calibration for

E , then, by the definition, for any p 6 P(E) , there exist p. € F

(l £ i S rt) such that

p{x) £ max(p (x), ..., p {x)) for all x € E .

The basic idea of the theory developed in this note is to choose a suitable
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calibration depending on the map under consideration.

Let F be a calibration for the product space E x F . For p £ F ,
we put

PE(x) = p(x, 0) and pp(y) = p(0, y) ,

which will be called the E-aomponent and the F-oomponent of p
respectively. We also put

vE = {PE - . p e r } and r p = {pp : p 6 r} ,

which will be called the E-aomponent and the F-oomponent of T
respectively. It is obvious that F is a calibration for E and V„ is

a calibration for F . Moreover, each p € F_ is related to some
1 £*

p € Fp by the fact that there exists p € F such that p = p,_ and

Conversely, suppose that we have calibrations F and F for E

and F respectively. Furthermore, suppose that there is a relation p in
F x F such that i t s domain is F and i t s range is V . If

(p , p ) ? F x F is p-related, we define a continuous semi-norm

\p±, p2] on E x F by

&>!• P2KX' y) = Px^^ + P2(&) f o r (*, 2/) € £ x f .

Then the set

F = {tpl5 p2] : (p1, p2) € F1 x F2 and p-related}

is a calibration for E x F such that F = F and F = F .

It helps to simplify the calculation if the relation between p and
(Pp, p ) is clearly indicated. We shall say that V is a calibration for

{E, F) if F is a calibration for S x F and

p(a:, y) = pff(x) + pf(y) if p e F and (a:, y) 6 S x F .

This convention is made only for the sake of convenience. Instead of
taking the sum, we may take max(p,,(a:), pp{y)) without causing any change
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in the statement of theorems.

We shall denote by F = (F , F ) the fact that F is a calibration

for (E, F) and its components are F and Y .

Let I" and F be calibrations for (E, F) and (F, G)

respectively. For p € F and q € F , define a continuous semi-norm

p o q on E x G by

(poq)(x, z) = pE(x) + qQ{z) for (x, 2) € E x C .

We put

{ ^. <?) € rx x r2 and p f = qf} ,

and, if T o F is a calibration for (ff, (7) , we shall say that F and

F are aomposable and F o F - will be called the composition of F and

F . It is obvious that, if T and F are composable and

p o q € ri o F2 , then

) = Pff and

Finally, we set up two rules.

(1) . When E = F 3 then any calibration V for (E, F) shall always

satisfy the following condition: p = p for every p € F . In this ease

we denote its components by the same symbol Y .

(2). When F is a normed space, we shall always assume that Y

consists of the single element that is the norm of F . In this case,

again, we denote Y by the same symbol Y . The same rule applies to the

case when E is a normed space.

The second rule implies, in particular, that all calibrations for

(E, F) and (F, G) are composable if F is a normed space.

2. r - l im i t s

Let F be a calibration for (E, F) , f : X -+ F , and a i X . If,

for any e > 0 , there exists 6 > 0 such that
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P F { f ( x ) - b ) < e i f x i X , p E i x - a ) < 6 , a n d p ( f ,

then, we say that b is the T-limit of f as x •+ a and denote this
fact "by

T - lim f(x) - b .
x->a

Obviously, the F-limit is unique if it exists.

(2.1). Let f.:X-+F {i = 1, 2) . If

T - lim f.(x) = b. (i = 1, 2) ,
Is 1*

then

V - lim (o^+g/g) (a:) =

(2.2). Let F and V be composable calibrations for {E, F) and

{F, G) respectively and V = T± o F2 . Let f : X -* F and g • v •»• G ,

where fix) <= Y . Then, if

?1 - l im fix) = b and T^ - l im giy) = a ,

x-*a. y-*i>

then

V - l im igof)ix) = a .

3. The r-continuity

Let r be a calibration for {E, F) .

A map f : X •> F is said to be r'-continuous at a £ X if

T - lim f(x) = fia) .

Obviously, the F-continuous maps are continuous.

(3.1). A linear map u : E -*• F is I'-continuous at a point if and
only if there exists a > 0 such that

PF[uix)) 5 apEix) if x € E and p d X .

Proof. If u is F-continuous at a £ E , there exists 6 > 0 such

https://doi.org/10.1017/S0004972700023819 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023819


188 Sadayuki Yamamuro

that

PF{u{a+x)-u(a)) < 1 if pg(x) < 6 and p € F ,

or

pp[u(x)) < 1 if pg(x) < 6 and p € F .

Then, for a = (j6) , we have the required inequality.

The converse is obvious.

This fact shows that the F-continuity coincides, for linear maps,

with the F-finiteness introduced by [3], where the set of F-finite linear

maps of E into E was denoted by Fp(ff) . We shall use the same

notation: Fp(£", F) will denote the set of a l l F-continuous linear maps

of E into F .

Ity" (2.1), Fp(£", F) is a normed space with the norm:

||w||r = sup{pF{u(x)) : pE(x) £ 1 and p € F} .

Therefore,

PF[u(x)) S \\u\\TpE(x) i f u € ¥T(E, F) and p € F .

The following fact was observed by [3] in the case when E = F .

(3.2). If F is sequentially complete, ^(fi1, F) is a Banaah space.

The following fact was also observed by [3] in the case when E = F .

We shall add a proof to show how to choose a calibration which is suitable

to the given map.

(3.3). If u : E •* F is a completely bounded linear map, then, there

exists a calibration F for (E, F) such that u € F_(£, F) .

Proof. A linear map u : E •> F is completely bounded if and only if

there exists an absolutely convex neighbourhood U of zero in E such

that u(U) is a bounded subset of F . Let p be the continuous semi-

norm corresponding to' U . Then, for any q € P{F) , there exists A > 0

such that

\

https://doi.org/10.1017/S0004972700023819 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023819


A d i f f e r e n t i a t ion I 89

q[u(x)) 5 XvAx) for all a? € E

Let r be the set of a l l continuous semi-norms on E x F which are in the

following form: p(x) + q(y) , where p > ^_P0 •

(3.4). Let E = E * E and u : E *• E -+ F be a bilinear map.

Let V be a calibration for (E, F) such that V = [V , T ) . Then

u is r-continuous at (0, 0) if and only if there exists a > 0 such

that

PF[u[xx, x2)} 5 apE [XJ)PE [x2) for all (a^, x^ Z E^ x E2 .

Proof. Assume that u is F-continuous at (0, 0) . Then, there

exists 6 > 0 such that

pp("(*!» x
2))

 < 1 i f P ^ K ' X2*> < 6 and P € F '

We prove that the inequality holds for a = (|6)

If pF [x ) = 0 , then, for every x € ff_ , there exists 6 > 0 such

that

pE (£a; , 6x ) < 6 for all £ > 0 .

Hence, p (w(£a; , &x )) < 1 for all £ > 0 , which implies that

In the same way, we see that p (a; ) = 0 implies p [u[x., x )) = 0 .

Finally, assume that X = pE [xA # 0 and X = p^, [x ) ^ 0 .

Then,

from which i t follows that

Conversely, assume that the inequality holds and e > 0 . Then, if

p{x , x ) < <S , where 6 < min 1, — e , then
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f

Hence, w is F-continuous at (0, 0) .

A calibration F for (E, F) determines the calibration (r , II'IL)
LJ I.

for [E, F (F,, F)~) . For the sake of convenience, we shall denote this

calibration by the same symbol T . Hence, u € F_(F,, F_(F,, F)) means

that there exists a > 0 such that

IMaOHp £ apgix) for all x € E and p € T .

(3.5). u € Fr(£, F (E, F)) if and only if there exists a > 0 such

that

PF{u{x){y)) £ apE(x)pE(y) if x, y € E and p f T ,

Proof . I f M € TT{E, Fj,(ff, F)) , t h e n , s i n c e u{x) € Fptff, F) ,

P F ( M ( X ) ( J / ) ) £ \\u(x)\\vpE(y) i f p e r ,

from which i t f o l l ows t h a t

pF[u(x)(y)) £ \M\T p

where T is the calibration (r , | | ' | l r) for [E, Fp(£', F)) .

The converse i s obvious.

This fact has an abvious extension to the case where the number of E

i s k > 2 . Let us denote the set Fp^g, . . . , gt Fp(g, f ) , ) by

F p ^ , F) . When u 6 Fp(£^, F) , u[x ) is an element of Fpffi*"1, f)

and u[x -.) {x ) i s an element of Fp [ET , F) . We shall denote

u[x^] {x ) ... [x-j] by u[x , . . . , x^] . Then, we can easily show that

u € Fp(£^, F) if and only if there exists a > 0 such that

PF{u[xv . . . , xk)} £ apE{xx) . . . PE[xk) if p € T .
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For u i FT{Ek, F) , we put

Ml r = sup{pF{u[x1, ..., xk)) : p^Xf) £ 1 and p ( r) .

(3.6). Let V and V be aomposable calibrations for (E, F) and

(F, G) respectively and F = F o V . Then, if u € F (£, F) and

v 5 Fr (F, G) , then v o u € FF(E, G) and \\vou\\r < ||M|L ||W|L .

From this and (3.2) , we have a fact , observed by [3 ] , t ha t , i f E i s

sequentially complete, Fptff, 2?) i s a Banach algebra with the uni t .

Hence, if u € Fr(Z7, 2?) and ||M|L < 1 , then 1 - u has the F-continuous

inverse which i s expressed as the series of C. Neumann. Later, we shall

need one of i t s consequences in the following form. We denote by G~(E, F)

the set of a l l F-isomorphisms of E onto F ; that i s , the set of a l l

F-continuous linear isomorphisms whose inverses are F -continuous, where

r 1 = (rp, vE) .

(3.7). Let F be sequentially complete. If u € G {E, F) ,

v € F (E, F) , and \\v\\r < %||M"1H"1, , then
l 1 r - l

(1) u + v € Gr(£, F) ,

(2) IKM+W)-1^"1!! 1 S 2\\U-1\\2 \\V\L ,
r - i r - l i

(3) l
r - l r - l 1

An immediate consequence of (3.7) i s the following fact .

(3.8) . Suppose that F is sequentially complete and

u : X ->• G (E, F) . Then, V - lim u{x) = u{a) implies
x-*a

F - lim u(x)~ = u{a)~ .
X-HZ

Another consequence of (3.6) i s the F-continuity of the composition

map.
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(3 .9) . Let I" and T be composable calibrations for (E, F) and

(F, G) respectively and F = F o F? . Then, for the maps

u : X •* Fr (E, F) and v : X •+ F„ (F, G) ,

if

F - lim u{x) = un and Yo - lim v{x) = vn ,
x+a

then

F - lim v(x) o u{x) = V o u .
x+a

The projection is always F-continuous for some F .

(3.10). Let IT : E x F •* E be the projection. Then, for any

calibration F for (E, F) , T\ € Fr (E*F, E) for Tn = [T, F_) .

1 0 U £J

From (3.9) and (3.1) we have the following fact .

(3.11). Suppose that E = £\, x £"„ and V is a calibration for
\E , E ) . Let u '• X -*• F [E , F\ for F = (F

1 d i l l 1 E]

be the projection. Then

F - l im u(x) o IT = u o IT
0

if and only if

F - lim u(x) = u .

4. The r-differentiabi1ity

Let F be a calibration for (E, F) .

A map / : X •*• F i s said to be Y-differentiable at a C X i f there

exists u € F (E, F) such that the following condition is satisfied: for

any e > 0 there exists & > 0 such that

pF{f{a+x)-f{a)-u{x)) < epE(x) if a + x € X , p g ( x ) < 6 , and p ( T .

It is easy to see that such u is unique if it exists; we denote it

ty f'(a) and call i t the Y-derivative of f at a .
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We shall use the following notations:

rjf, a, x) = f(a+x) - /(a) - u(x) ,

and

r(f, a, x) = f(a+x) - f(a) - f'(a)(x) .

It is obvious that, if / and g are T-differentiable at a , then

/ + g and a/ are T-differentiable at a . Hence, the set V~(X, F) of

all maps of X into F which are F-differentiable at every point of X

is a linear space.

In [5], the following definition was given: a map / : X -»• F is said

to be Frecket differentiable at a t X if there exists a continuous linear

map u : E -*• F such that

e~ v (f, a, ex) •* 0 as e -»• 0

uniformly on each bounded set; that i s ,

lim sup p e~ r ( / , a, ex) = 0
f-KI .-r(B I- J

for any bounded subset B and for any p € P(F) . The properties of this

differentiation have been investigated in [5] in detail. The following

fact makes it possible to use those results in [5].

(4.1). If f : X •* F is V-differentiable at a t X 3 it is Freahet

differentiable at a with the same derivative.

Proof. We need to show that, if e -* 0 and {x } is a bounded

sequence, then

lim p \e^-r[f, a, ex) = 0 for each p e r .

Let e > 0 , and take 6 > 0 in the definition of the

F-differentiability. Then, for each p € V , since e x -»• 0 , there

exists n. such that a + e x € X and p_(e x ) < 6 . Hence,
0 n n rff*- n n'

XHf, a, enxn)] <

which ends the proof.
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Although the Frechet differentiability did not imply continuity, the

r-differentiability does.

(4.2). If f : X •+ F is Y-differentiable at a € X , then, for any

e > 0 j there exists & > 0 suah that

PF[f(a+x)-f(a)) 5 [\\f'(a)\\T*e)pE(x)

if a + x £ X and p_(i) < 6 . Hence, f is X-continuous at a .

The proof i s obvious.

(4.3). If u € Fr(ff, F) , then u € V?(E, F) and u'(x) = u for

every x (. E .

(4.4) . Let E = E' x E and Y be a calibration for (E, F) such

that F is a calibration for [E , E ) . Then every bilinear map

u : E' x E' -*• F which is V-continuous at (0, 0) is Y-differentiable at

every point, and

u'(a, b)(x, y) = u{a, y) + u(x, b) .

Proof. IFirst, we observe that the l inear map V : E -*• F defined by

v{x, y) = u(a, y) + u(x, b)

i s F - c o n t i n u o u s a t ( 0 , 0 ) , b e c a u s e , by (3 .5 )> w e can t a k e a > 0 such

t h a t

P F { u ( x , y ) ) 5 a p E ^ x ) p E J , y ) i f p e r ,PF

so that

PF[v(x, y)) 5 pF[u(a, y)) + PF{u{x, b))

5 apE(a, b)pE(x, y) .

How, l e t e > 0 , and take 6 > 0 such that 6 < e/a . Then, i f p € Y

and PE(x, y) < 6 ,

p f ( r y ( w , ( a , b), {x, y))) = pF[u(x, y)) £ apE (x)pE (y)

£ apE(x, y) < a&pEix, y) < ep £ , (x , y) ,
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which ends the proof.

(4.5). Assume that F = F^ x F and T is a calibration for
L d t

(F , F ) . Then a map f : X -»• F , defined by

fix) = [f^x), fz(x)) ,

is T-differentiable at aZX if and only if f. is T .-differentiable
Is Is

at a for each i , where T. = F , F . If this is the case,
% I i)

f'(a)(x) = [fl(a)(x), f^aHx)) .

Proof. Let IT. : F -> F. be the projections. Then, f. = IT . o f .

Is Is Is 1s

If / is T-differentiable at a , then, "by (3.10),

u. = IT. o / ' (a) € F r [E, F.) , and u. i s the T .-derivative of / . at a
is % I • Is Is Is 1s

^

for each i , because
(•) pF{r(f, a> *)) = l pF.{ruMi>a' *}} •

i=l •£ *• i '

Conversely, if / . is F.-differentiable at a for each i , define
Is Is

u : E •* F by

u{x) = [f^{a)(x), f^(a)(x)) .

Then, u f Fp(ff, F) and i t is the F-derivative of f at a because of a

similar equality as (*).

Hext we prove the f i r s t order chain ru le .

(4.6) . Let T^ and F be aomposable calibrations for (E, F) and

(F, G) respectively and F = F o F . If f : X -»• F is

T-differentiable at a € X and g : Y •> G is T-differentiable at

b = fia) , where f{X) c I 3 then g o / is T-differentiable at a and

(gof)'(a) = g'(b) o f (a) .

Proof . We p u t u = g'{b) o f'(a) ; t h e n , by ( 3 . 6 ) , u e f^E, G) ,

and
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ru(9°f, a, x) = g'(b)[r(f, a, x)) + r(g, b, f(a+x)-f(a)) .

Now l e t e > 0 , and take 6 > 0 such that

PF[r(f, a, x)) < cpE(x) i f a + x € X , pE(x) < 6± , and p ( ^ ,

and

qG{r(9, *>, y)) < eqp{y) i f b + y € Y , qp{y) < 6± , and q € T2 .

By (1+.2), there exists 6 > 0 such that ( | | / ' (a) | l r +e)6 < &l and

pp[f(a+x)-f(a)) < Sx if a + x t X , pE(x) < 6 , and p ( ^ .

Hence, for every p o q € f , i f ?„(#) < 6 and a + x € J , we have

qG[ru(gof, a, x)) 5 9fffe'(2»)(r(/, a, a))) + qG[r[g3 b, f(a+x)-f(a)))

5 \\g'{b)\\TzPF{v{f, a, x)) + epF(/(a+x)-/(a))

which shows that g o / is F-differentiable at a and (go/)'(a) = u .

As we have shown in [6], [7], and [£], most of the existing
differentiabilities behave very badly when the differentiability of the
inverse map is involved. For the F-differentiability, we do not have such
difficulty.

(4.7). Let f : X -*• F be a bisection onto an open set f(X) ,
V-differentiable at a € X , and f (a) be a T-isomorphism. Then the

inverse map g of f is T -differentiable at b = f{a) if and only if

g is V -continuous at b . If this is the case,

g'(b) = f'(a)-1 .

Proof. Assume that g i s F -continuous at b , and le t e > 0 .

We can assume that e < \\f'(a)~ \\ . Then, there exists <5 > 0 such
r - l 1

that

PF[r{f, a, x)) < epE(x) if a + x € X , Pg,(x) < &± , and p € F ,

and there exists 6 > 0 such that

j
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P E [ g ( b + y ) - g ( b ) ) < 6 1 i f b + y € f ( X ) , p p ( y ) < 6 , a n d p f T .

Then if b + y € f{X) , q € T"1 , and x = g-(2>+z/) - g'(fc) , then

a + x ? X , and

qE[g(b+y )-g(b)-/' (a)"1(y))

^ II/ 'U)"1!! , ? „ ( ? ( / , a, x)) < ell/^a)"1!! ,.?p(x)

because, since / ' ( a ) i s F -continuous,

Hence g1 i s I ^ - d i f f e r e n t i a b l e a t b and ^ ' ( i ) = f (a)~l .

5 . The mean v a l u e t h e o r e m

Various forms of mean value theorems have been given in §1.3 of [5].

In particular, the following form follows from (1.3.3)2° there.

( 5 . 1 ) . Let f € VT(X, F) . Then for each p € V and each x € E

such that a + £,x € X if 0 S £ 2 1 j there exists 9 € ( 0 , l ] such that

PF[f(a+x)-f(a)) 5 ||/'(a+ex)||rpff(x) .

I t follows immediately from (5.1) that a map / : E •*• F i s constant

if and only if / € £>(£, F) and / ' ( x ) = 0 for a l l x € E , and

/ 6 Fr(£, F) if and only i f / € Pp(£, F) , / (0 ) = 0 and / ' ( x ) does

not depend on x .

In [5 , p . 9 ] , we have defined that f : X ->• F i s said to be Gateaux

differentiable at a € X i f there exists a continuous l inear map

u : E -*• F such that

lim e"1^ ( / , a, ex) = 0
e-MD "

for each x £ E . If th i s i s the case, we denote u by f'(a) .
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The Freohet differentiability, and hence the r-differentiability,

implies the Gateaux differentiability.

(5 .2) . Let X be convex and f : X •+ F be Gateaux differentiable

at every point of X . If f'(X) <= V^{E, F) and f' : X ->• Fj,(ff, F) is

Y-continuous at a (. X , then f is Y-differentiable at a .

Proof. Let £ > 0 , and take 6 > 0 which is determined by the

T-continuity of f' : X -»• F_(E, F) . Then, i f a + x (. X , p-(x) < 6 ,

and p € T , i t follows from (5.1) that

pF[f(a+x)-f(a)-f'(a)(x)) 5 \\f (a+Bx)-f'(a)\\TpE(x) < zpE(x) ,

which means that f(a) is the T-derivative of f at a .

(5.3). Let X be convex, f € VAX, F) , and the following

conditions be satisfied:

(1) {/ } converges to f : X -*• F uniformly;

(2) {/"} converges to g : X •+ F (E, F) uniformly.

Then f Z V^(X, F) and f'(x) = g(x) for all x £ X .

Proof. Let e > 0 . By (2) there exists n such that

ll/^(x)-/^(x)|l r < \s if m, n 2 nQ and x € X .

Mow le t a € X and take 6 > 0 such that

PF[r[fn , a, x)) < cpE(x) i f a + x 6 X , p£,(x) < 6 , and p € Y .

By ( 5 . 1 ) , i f p € T and m, n > nQ ,

PF{f(a+x)-fn(a)-fm(a+x)+fm(a)) 5 \\f^a+Bx)-

if a + x (. X and Pj?(x) K 5 . Hence, by the assumption (l),

PFtf(a+x)-f(a)-fn(a+x)+fn(a)) 5 Iqp^x)

if a + x € X , n 2 n , and p € Y . Therefore, i f a + x € X and

p e r ,
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PF{f(a+x)-f(a)-g(a)(x)) 5 pF[f(a+x)-fta)-fn{a+x)+fn(a))

+ PF[r[fno, a, x)) + pF[f^(a)(x)-g(a)(x)) < zp^x) ,

which means that g(a) is the F-derivative of f at a .

6. The continuous r-differentiabi1ity

Let T be a calibration for (E, F) .

A map f : X •*• F i s said to be continuously I'-differentiable on X

if / € PpU, F) and f : X ->• F (£, F) i s F-continuous. The set of a l l

continuously F-differentiable maps of X into F wi l l be denoted by

C-(X, F) , which is obviously a linear space.

I t follows from (5.2) t ha t , when X is convex, f € Cp(X, F) i f and

only if f i s Gateaux different!able at every point of X with

F-continuous derivatives and / ' : X •*• Fp(£, F) i s F-continuous.

(6.1) . Assume that F = F x F and F is a calibration for

[F , F ) and f : X •*• F has the following form:

fix) = {f^x), f2ix)) .

Then f € CT(X, F) if and only if fi € Cj, [X, Fj , where F^ = (rff, Tp }
If 1/

for each i .

Proof. This follows from (U.5) and the relation

PF{f'(a+x)(y)-f'(a)(y)) = I pp [f\{a*x){y)-f\{a){y)) .
i=l i

(6.2). Let F and V be composable calibrations for (E, F) and

{F, G) respectively and T = F o F . Assume that / f C. (X, F) and

g € Cr (7, G) , where f(X) c r . Then g o f € Cr(X, G) .

Proof. By (U.5) we only need t o show t h a t t h e map

(gof)> : X+ Fr(ff, G)

i s F - c o n t i n u o u s . H o w e v e r , t h i s f o l l o w s i m m e d i a t e l y f r o m ( 2 . 2 ) a n d ( 3 . 9 ) •
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(6 .3) . Let F be sequentially complete and let f : X -*• F be a

bisection onto an open set Y = f(X) . Then, if f € C (X, F) and

f'(X) c G (E, F) , f1 € C (7, E) .
1 r - l

Proof. This is an immediate consequence of (3.8) and (^.7).

7. The partial r-differentiation

Suppose that T is a calibration for (E, F) , E = E* E. , and ?„
id b

is a calibration for [E, E) . Suppose also that X = X x X where X.

is an open subset of E. for each i .
is

A map f : X -> F is said to be partially T-differentiable at

[a , a ) € Z wit?z respect to the first variable if the partial map

/ : X ->• F , defined by
#2 1

faa(x) =f{x, a2) ,

of X into F is ri~differentiable at a , where 1^ = (r , r ) .

The derivative will be denoted by d f[a , a ) , which is an element of

Fp (£•., F) . In the same way the partial derivative 3 f[a , a ) of /

at (a., a ) can be defined.

(7.1). If f is V-differentiable at a = (a , a) d X , then

3-L/(a1> a2) and 3
2 / ( a

1 > a
2 '

Proof. There exist l inear maps u. : E. -*• F such that
* v v

Since

Ppiu^xJ) =PF{f'{a±, a2)[xlt 0)) 5 Wf

we have M € F_ (ff , F) . Furthermore, since
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W1 &2 1

we have u = 3 / ( a , a ) . In the same way we have M = 32/(a , a„) .

(7.2). Let X be convex. Then f e CpU, F) if and only if

3 . / : X -*• F_ [E., F) exists and is V-oontinuous on X for each i .
i

Proof. Assume t h a t f € Cr(X, F) . Then, by ( 7 . 1 ) , 9 - / e x i s t and,

by ( 3 . 9 ) , they a r e F-cont inuous.

Conversely, i f 3 ^ / e x i s t and a re F-cont inuous , for ( a . , a^\ € X , put

Then u £ Fj,(£, F) and, us ing the mean value theorem ( 5 . 1 ) ,

+ 113^(^+6^, a2)-31/(a1, a^Hr^O^) •

Hence i t follows from the F-continuity of 3 . / that u is the T-derivative

of / at [a , a) . The F-continuity of / ' follows from (3.11).

8. The higher r-differentiabi1ity

Let r be a calibration for (E, F) .

A map f : X -*• F i s said to be twice T-differentiate at a d X i f

/ € VT(X, F) and the map f : X + TT(E, F) i s T-differentiable at a .

The set of a l l maps of X into F which are twice T-differentiable at

every point of X is denoted by V~(X, F) . The second T-derivative of

f at a will be denoted by f^2'(a) , which i s an element of F^E 2 , F) .

Similarly we can define the fe-times F-dif ferent iabi l i ty , the set
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1, (V)

VT(X, F) , and t h e fc-th T - d e r i v a t i v e fK '(a) , which i s an e lement of

A map f : X -*• F is said to be k-times continuously

Y-differentiable on X it f Z t^(X, F) and the map f^ : X^ Fp (^ , F)

i s F-continuous on X . The set of a l l such maps is denoted "by Cy(X, F) .

I t i s easy to see that the sets Vj,{X, F) and C-(X, F) are linear

spaces.

(8.1). If f : X -* F is k-times Y-differentiable at a € X , it is

k-times Freahet differentiable at a with, the same derivative.

(k)From th is and (1.8.2) of [5 ] , i t follows that f {a) i s , if i t

ex i s t s , a symmetric fc-linear map.

Since Fj,(£', F) is a normed space, the following two facts belong to

the normed space calculus and the proofs are omitted.

(8.2). Let Y and Y be aomposable calibrations for (E, F) and

(F, (?) respectively and Y = Y o r . Then the map

comp : Fr (£, F) x ^T (F, G) + FT(E, G) ,

defined by

comp(M, v) = v o u ,

is k-times differentiable at every point for every k . In particular

comp'(w0, VQ)(u, v) = comp(w, vQ) + c o m p ^ , v) .

( 8 . 3 ) . The map

inv : G (E, F) + G (F, E) ,
1 r - l

defined by inv(w) = u , is k-times differentiable at every point for

every k .

N o w w e s t a t e t h e fc-versions o f ( ^ . 5 ) , ( h . 6 ) , a n d ( U . 7 ) .
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(8.4). Under the same assumptions as in {h.5),

(l) / is k-times V-differentiable at a if and only if f.

is k-times Y .-differentiable at a for each i , and

(2) / f C*(X, F) if and only if fi € Ĉ  [x, *\) for each i .

Proof. In view of (U.5) we can s t a r t t he proof by assuming t h a t t h i s

statement holds up t o k - l and / i s fe-times F - d i f f e r e n t i a b l e a t a .

Then, by (3 .10 ) ,

because the c a l i b r a t i o n s here are compcsable. Then, s ince by the

assumption

= j P=̂l

(k-l)u- is the F .-derivative of / at a for each i .

The converse can be proved in a similar way as in (6.1).

( 8 . 5 ) . Under the same assumptions as in {h.6),

(1) if f is k-times V -differentiable at a and g is

k-times Y -differentiable at f(a) , then g o f is

k-times Y-differentiable at a ;

(2) if f € C^ (X, F) and g € C^ ( r , G) , then

g o f € cfor , G) .

Proof. In view of C+.6) we can s t a r t the proof by assuming t h a t the

statement holds up to k - l and the assumptions are s a t i s f i e d . Then

g' o / : X •> F r ( £ , G)
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i s ( fe- l ) - t imes r - d i f f e r e n t i a b l e a t a . Hence, by (8 .U) , t h e map of X

i n t o F (E, F) x F r (F, G) , def ined by

1 1 1 2

x ^ [fix), g'{f(x))) ,

i s ( fe- l ) - t imes F - d i f f e r e n t i a b l e a t a . The re fo re , by ( 8 . 2 ) , t he map

(gof)' : X -> Fr(B, G)

is (fc-l)-times F-differentiable at a , which means that g o f is

fe-times T-differentiable at a .

If we replace "F-differentiable at a " by "continuously

F-differentiable on X " , then we have the proof for (2).

The expansion formula for (g°f) for the Frechet differentiation

can be found in (1.8.3) of [5]; i t also holds for the T-differentiation

by (8.1).

( 8 . 6 ) . Under the same assumptions as in (h.j),

(1) if f is k-times T-differentiable at a , then f is

k-times Y~ -differentiable at f(a) ;

(2) if F is sequentially aomplete, f (. C_(J, F) , and

f'(X) <= G (E, F) 3 then f'1 € Ck {f{X), E) .
i r-i

Proof. Again we prove by induction. For g = f~ ,

g'{f(x)) = inv(.f U)) = (invo/')(a:) .

Hence, by (8.3) and (8.5), g' is (fe-l)-times r"1-differentiable at

f{a) , and hence g is k-times V -differentiable at f(a) .

The proof of (2) follows from (6.3) and the same argument as above,

where "F -differentiable at a " is replaced by "continuously

F^-differentiable on f(X) " .

9. Impl ic i t function theorems

The aim of this section is to present our version of the implicit
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function theorem by interpreting the proof for the case of Banach spaces

into our language. We shall s ta r t with the inverse mapping theorem.

(9.1). Let E or F be sequentially complete and f € Cy(X, F) .

If, for some a € X , f' (a) is a I'-isomorphism, then f is a local

k .Cy-diffeomorphism; that is, there exist open neighbourhoods U and V of

a and f(a) respectively such that f is a Y-homeomorphism of V onto

V .

Proof. By considering the map

we can assume that E = F , a = 0 , f(0) = 0 , and f'(0) = 1 (the

identity map on E ). Furthermore, we can assume V = (F, F) .

Since f : X-*• 1~r(E, E) is F-continuous at zero, there exists

6 > 0 such that

ll/'(aO-l|lr < j if x € X , p(x) < 6 and p € F .

We can choose a continuous semi-norm q on E such that q(x) < 6

implies x € X . Since F induces the topology of E ,

<J - 11
 u <?2

 u • • • u <?„

for some q. € F (I5i5(l) . Let

U = {x € E : q-{x) < 6 (l £ i £ n)}
is

and h = 1 - f . Then, by the mean value theorem (5.1),

p[h(x)) < ±p{x) if x € U and p € F .

Hence x € J/ implies ?z(a:) £ if/ ; that is, h maps £/ into |U .

To prove that h is onto, let y € jU , and consider the map

^(x) = «/ + Hx) .

Then the sequence \y } , defined "by

y1 = hy(y) and yn = ^ ( j / n J '
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is a Cauchy sequence. Let x "be the limit. Then, since h is

continuous, we have y = f{^n) • Moreover, since

p{yn) * \l 2y=o

we have

q ^ ) 5 2^(j/) < 6 (1 5 i S «) ,

which means that x d U .

How let i. (1/ (i = 1, 2) and p f T . Then, by (5-1),

which implies

It follows from this inequality that / maps U onto -|£/ and / , when

it is restricted to U , is injective. Hence, if we put

uo = f~1(-iu^ nU ^ v
0 = 2ly >

f is a 'bijection of U onto 7 .

a Cp-diffeomorphism.

How by (6.3), / € C _1{VQ, UQ) , which shows that / : UQ •* VQ is

The implicit function theorem is deduced from the inverse mapping

theorem; the proof is omitted.

(9.2). Suppose that E = E x E , F is sequentially complete, r

is a calibration for (E, F) , and ?„ is a calibration for [E , E ) .

Assume that f € C*(X, F) , /(an , a ) = 0 , and
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d^{a, , a ) (. G [E , F] . Then there is an open neighbourhood U x V of

[a , a ) in X and g € C_ (£/, 7) swefe fcfczt ff(a-i) = a o
E

/"•"•(O) n (i/xy) = {(*, ?(a;)) : x € u) .

If this is the case,

The split versions of the above theorem can also "be proved under

similar assumptions.

10. Remarks

1. As we have seen in the above discussions, once the

F-differentiability of the map under consideration is established, the

remainder of the proof consists of checking the suitability of the

calibration and paraphrase of the proof of Banach space case. In other

words, as far as the fundamental properties, such as developed above, are

concerned, we have generalizations in simple forms, and the easiest way to

find the suitable calibration is to use (5.2).

Naturally, finding a suitable calibration becomes much easier if F

is a normed space, which includes the case of functionals. Let us denote

by E the space E equipped with the topology defined by a single

continuous semi-norm p on E , and let T be the set of a l l continuous

semi-norms q such that q 2 p . Obviously T is a calibration for

E .

(10.1). Let F be a normed space. If f : X •> F is differentiable

€ X in the ordinar

-differentiable at a .

at a € X in the ordinary sense as a map of E into F , then f is

r
Proof. Let e > 0 . Then, by the assumption, there exists 6 > 0

such that

||r(/, a, a)|| < zp(x) if a + x € X and p(x) < 6 ,

where the derivative fix) satisfies the following condition:
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\\f (a)(x)\\ £ ap(x) for some a > 0 and a l l x € E .

I t is obvious that these two inequali t ies are sat isf ied when p is

replaced by any q (. T . This means that / is F -differentiable at

a .

As an immediate consequence, we have a cri terion for the

F-differentiabil i ty of semi-norms.

(10.2). A continuous semi-norm p on E is T -differentiable on

£"\{0} if and only if p is a differentiable semi-norm on E \{o} .

This fact will be a basis of the study of the F-smoothness of locally

convex spaces, which will be treated in a subsequent note.

2. Since we have various forms of the inverse mapping theorem, we

also have their consequences. For instance, i f the F-Fredholm maps are

suitably defined, Smale's version [4] of Sard's Theorem can be

generalized to locally convex spaces.

3. Instead of the r ea l s , we could take the complex numbers as the

coefficient f ie ld . Then i t will lead to the theory of F-analytic maps,

the fundamental theory of which wil l be developed in the next note.

References

[7] H.G. Garnir, M. De Wilde et J. Schmets, Analyse fonationnelle.

Theorie constructive des espaces lineaires a semi-normes. I:

Theorie generale (Lehrbiicher und Monographien aus dem Gebiete der

Exakten Wissenschaften. Mathematische Reihe, 36. Birkhauser

Verlag, Basel und Stuttgart, 1968).

[2] G. Marinescu, "Theoremes des contractions dans les espaces localement

convexes", Rev. Roumaine Math. Pures Appl. 14 (1969), 1535-1538.

[3] Robert T. Moore, "Banach algebras of operators on locally convex

spaces", Bull. Amer. Math. Soc. 75 (1969), 68-73.

[4] S. Smale, "An infinite dimensional version of Sard's theorem", Amer.

J. Math. 87 (1965), 861-866.

https://doi.org/10.1017/S0004972700023819 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023819


A differentiation 209

[5] Sadayuki Yamamuro, Differential calculus in topologioal linear spaces

(Lecture Notes in Mathematics, 374. Springer-Verlag, Berlin,

Heidelberg, New York, 197*0.

[6] S. Yamamuro, "Notes on differential calculus in topological linear

spaces, II", J. Austral. Math. Soc. (to appear).

[7] S. Yamamuro, "Notes on differential calculus in topological linear

spaces, III", J. Austral. Math. Soc. (to appear).

[£] S. Yamamuro and John Grunau, "Notes on differential calculus in

topological linear spaces", J. reine angew. Math, (to appear).

Department of Mathematics,

Institute of Advanced Studies,

Australian National University,

Canberra, ACT.

https://doi.org/10.1017/S0004972700023819 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023819

