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Abstract

Two generalised shallow-shell bending elements are developed for the analysis of
doubly-curved shallow shells having arbitrarily shaped plan-forms. Although both
elements are formulated using the concept of iso-deflection contour lines, one el-
ement uses the three displacement components U, V and W as the basic un-
knowns, while the displacement component W and the stress function <D serve as
the unknowns in the other element. A number of illustrative examples are included
to demonstrate the accuracy and relative convergence of the proposed shallow-shell
elements when employed for static analysis purposes.

1. Introduction
The first application of the finite element method to the study of shallow-shell
structures consisted essentially in the representation of the curved surface of
the shell by flat-plate bending elements [6]. In this approach, each element
is subjected to both bending and stretching deformations. However, there
is no coupling of these effects within the element. This coupling, which
is characteristic of shell behaviour, occurs only at nodes where successive
elements not in the same plane adjoin. Consequently, a large number of
such elements is required to achieve adequate accuracy.

The subsequent development of doubly-curved shallow-shell elements em-
anated from a desire to preserve the correct geometry of the shell, as well as to
decrease the total number of elements required to model the problem. These
elements have appeared in a variety of shapes, the most common being rect-
angular [7, 20] parallelogram [18] and triangular [ 8 , 9 , 10, 17, 11, 21].
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470 D. Bucco and J. Mazumdar [2]

A comparison of various shallow-shell elements may be found in an excellent
review article by Brebbia and Deb Nath [2], where they discuss some of the
difficulties encountered with the prescription of the appropriate displacement
components and satisfaction of the convergence conditions.

The doubly-curved shallow-shell elements appear to have received consid-
erable attention in the past because of their versatility in idealising arbitrary
shaped regions. However, for shallow shells having a curvilinear boundary,
the discretisation of the shell region into triangular elements results in a
polygonal approximation to the true boundary. This can give rise to signifi-
cant errors in the overall strain energy functional of the shell. The error, of
course, decreases with an increase in the number of elements. Consequently,
a greater demand in core storage and time is placed on the computer with a
corresponding increase in effort on the part of the user to ensure convergence.

In this study it is intended to present an extension of the finite element/
contour approach [5] to the analysis of shallow-shell bending problems. To
this end, two generalised shallow-shell bending elements are developed for
the approximate analysis of doubly-curved shallow shells having arbitrarily
shaped plan forms. Although both elements are formulated using the concept
of iso-deflection contour lines [16], one element uses the three displacement
components U, V, and W as the basic unknowns, while the displacement
component W and the stress function G> serve as the unknowns in the
other element. In the above, U and V denote the in-plane displacements
of a point on the middle surface of the shell in the x and y directions,
respectively.

The theory which is developed here is based on the usual assumptions
of small deflection theory of thin shells. Furthermore, the "shallowness"
assumptions, as given by Vlasov [23], are adopted in this study.

2. Element formulation by the displacement approach

2.1. The method of constant deflection lines
A brief outline of the method of constant deflection lines for the analysis

of shallow-shell problems is now presented. Consider a thin, elastic, homo-
geneous, isotropic, shallow shell having an arbitrarily shaped plan-form. Let
the equation of the middle surface of the shell, when referred to a system of
orthogonal coordinates {x, y, z), be given by

where the shell will be called shallow if r = dx + y is small when
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[3] Analysis of shallow shells 471

FIGURE 1. Iso-defletion contour lines.

compared to the least of Rx, Ry, and Rxy (the radii of curvature) ev-
erywhere in the region, and if the radii of curvature may be taken to be
constants.

When the shell is deflected by external loads, e.g. transverse or inertial,
then at any instant of time T , the intersections between the deflection surface
and the parallels z = constant yield contours which, after projection onto
the base plane z = H, are a set of level curves, u(x, y) = constant (Figure

1).
These curves represent the iso-deflection contour lines for the problem. If

the boundary of the shell is subjected to any combination of clamping and
simple support, so that it is restrained from moving in the z-direction, then
clearly the boundary, assumed to be a simple closed curve C , will belong to
the family of equal deflection lines and, without loss in generality, one may
consider that u = 0 on the boundary.

In general, this family of contour lines form a system of non-intersecting
closed curves, starting with the outer boundary as one of the curves. The
system of curves u(x, y) = constant, may be denoted by Cu, 0 < u < u*,
so that Co = C is the boundary of the shell, while Cu- coincides with the
point at which the maximum u = u* is attained.

2.2. Contour elements excluding the origin
Let the point at which the maximum value u* is attained be represented

by (x*, y*). Then an appropriate set of axes x , y can be denned so that
the origin is located at this point. An element e is now considered as that
region, £le, of the shell bounded by any two contour lines, u = ue and
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M = u
e+i> such that ue < ue+l and ue+l ^ u*. These lines constitute the

two nodes of the element, as shown in Figure 2. It is assumed that the value
of u increases inwardly.

Denote by n, s, respectively, the outward normal and tangent to the
curve u(x, y) = constant (Figure 2). Then the deformation at a point on the
middle surface of the shell can be completely determined from a knowledge
of Un , Us and W. Here Un and Us are the in-plane displacements of the
point in the n , s directions, respectively, while W represents the transverse
displacement. Since W is a function of u, the appropriate conformity
requirements are immediately satisfied by using the shape functions of the
corresponding flat plate element [5]. Consequently, the variation of W over
the shallow-shell element may be expressed in the form

(2)
where

and

= [N{N2N3N4], 0)

(4)

FIGURE 2. Shallow shell element with ue+l ^ u*.
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and the components of [N] are denned by

(5)

In the above, ^ is a local coordinate of the element denned by

£ = (M - Ue) I1 ' l = Ue+l ~ Ue- (6)

The in-plane displacements U" ,US, in general, are not constant along the
nodal contour lines u — ue and u = ue+1. If the region bounded by any
closed curve u(x, y) = constant, is starshaped, then it is permissible to
express Un and Vs as single-valued functions of 6 along this curve, where
8 is denned by

. (7)

Hence, proceeding as for the transverse displacement W, the in-plane dis-
placements are expressed in the form

U" = [N]{ae}, (8)

Us = [N]{/ie}, (9)

where the shape function matrix [N] is given by (3), while {ae} and {/?*}
are denned by

In the above, the components of {ae} and {fie} denote the nodal unknowns
of Un and IIs respectively, and are functions of the variable 8. Since,
along any contour u(x, y) = const., both U" and Us are periodic, the
corresponding nodal unknowns may be expanded in a Fourier series form,
according to

L
u" = ul+52{u?kcoske + fy*sin

= U-o + ^{U-k cos k8 + U-k sinkd}, (14)
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(15)
k=\

where i = e,e+ I. If a row vector [T] is defined such that

[T] = [l cos0 sin0 . . . cosL0 sinL0], (16)

then equations (12) to (15) may be expressed compactly as

Un = [N]{ae}, (17)

and
Us = [N]{0e}, (18)

where
[#, #2 #3 tfj, (19)

{a'} = !!« , {*'} = *" , (20)
une+l use+l

and each [iV(], / = 1, 2, 3 , 4, is a row vector of the form

Nl[T]. (21)

Hence, the variation of the three orthogonal displacements, U" , Us and W,
over the element, is prescribed according to (2), (17) and (18), respectively.

2.3. Closure element
In the limiting case, when ue+l coincides with u*, the inner contour

of the foregoing element degenerates into a nodal point, thus giving rise to
a "closure" element, that is, an element enclosing the origin, as shown in
Figure 3. Although the variation of W, as prescribed by (2), poses no incon-
sistencies in this case, differentiation of either Un or Us, defined by (17)
and (18) respectively, give rise to infinite in-plane strains, and hence stresses,
at the origin. This is physically unacceptable, and may be circumvented by
judiciously redefining the variation of Un and Us over this element.

The closure element is envisaged as that region £lc of the shell bounded
by the closed curve, u = uc> and enclosing the point (x* ,y*) where the
maximum, u = uc+l = u*, occurs. Again the element contains two nodes.

In order to overcome the difficulties encountered at the origin, and to
ensure finite values for the strains, the closure element in-plane displacements
Un and Us are assumed to have the following respective forms [4],

jfl r n « f Ci
U=[P]{a}, (22)

S C , (23)
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where

u(x,y) = const.

FIGURE 3. Closure element.

= [P1P2],

and the shape function components of [P] are expressed by

The in-plane displacements for this element now read

U" = [P]{ac},

where

and

Further, [/>.], / = 1, 2 , is denned by

°,] = Pt[T].

I 0° I
V. SC *

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)
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Consequently, the variation of the three displacement components, W, U"
and Us, over the closure element is expressed according to (2), (28) and
(29), respectively.

3. Derivation of the element equations for shallow
shell bending by the displacement approach

3.1. Elements excluding the origin
The total potential energy of the shallow shell in bending may be written

as

np = nu-JJ {ff {Q}dae, (33)

where

I \ l q y \ , (34)

and I1M is the strain energy given by

Uu= 1/2 fj(e}T{a}dile. (35)

In the above relations, {a} and {e} denote vectors of generalised stresses
and strains respectively, while qx, qy and qz represent the external loads
acting in the x, y and z directions, respectively.The functions U and V
are related to the prescribed displacements U" and Us via

[ /JM (36)

where ux = du/dx, uy = du/dy and t = ux+uy . Thus all the displacement
components U, V and W, are known in terms of the nodal variables of
the element.

For an elastic, isotropic material, the generalised stresses and strains are
related by Hooke's law in the form

(37)

where
{a} = {Nx Ny Nxy Mx My Mxy}

T, (38)x Ny Nxy Mx My Mxy}

{e}={exeyexyKxKyKxy}
T, (39)
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and the elasticity matrix [D] can be written in the form

where the submatrices [Dt], i = 1, 2, are defined by

Eh

\-v2

1 v 0
v 1 0
0 0 ^r

W = hW- (41)

In the above relations, Nx, N and N represent the usual membrane
stresses corresponding to the in-plane strains e x y

are the stress resultants associated with the re-
ey and e , respectively,

while Mr, M, and Mr h id
spective curvatures KX , Ky and Kxy. Furthermore, E, v and h denote
respectively Young's modulus, Poisson's ratio and the thickness of the shell.

Following the shallow-shell theory of Vlasov, the in-plane strains are re-
lated to the displacements in the form

dU
dx

W_
RX

dV_ W_
dy+ R

dU
dy

dV
dx

2W

R~

d2W 2d2W

while the curvatures are given by

d2W __
Kx~ dx2 ' Ky~ dy2

Upon substitution for U, V and W in the above relationships and after
minimising the total potential energy functional as expressed by (33), the
following set of element equations for the nodal unknowns is obtained [4],

[Ke){Se} = {Fe}, (44)

where the element stiffness matrix [Ke] and force vector {Fe} are written
in the forms

[Ke] = jJ[Be]T[D][Be]dCle , (45)

and

(46)

respectively. In the above, [Ke] is a symmetric square matrix of dimension
(16L+ 12) where L denotes the number of the final term in the Fourier
series approximation of both Un and Us. Thus the present element is
essentially a "variable order" shallow-shell element in which the total number
of degrees of freedom depends on the number of terms retained in the series.
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3.2. Closure element
Proceeding as before, the equations associated with the closure element are

again derived on the basis of the potential energy functional given by (33).
In this case, the nodal unknowns can be obtained from the relation [4]

[Kc]{dc} = {FC}, (47)

where [Kc] is the stiffness matrix of the element given by

[Kc] = jj[Bc]T[D][Bc]dac , (48)

and {Fc} is the consistent force vector defined by

{Fc} = jj[Nc]T{Q}dClc . (49)

c

Again, the square matrix [Kc], as given in (48), is symmetric and positive
definite. However, the dimension in this case is only (8L + 8). A complete
listing of all the components of [Kc] and {Fc} is given by Bucco [4].

4. Derivation of the element equations for shallow
shell bending by the stress function approach

According to Vlasov's theory [23], the coupled differential equations gov-
erning the bending of shallow shells under transverse load, qz{x, y), are
given by

/ k "z' ^ '

where the differential operators are defined by

(52)^ 0 ^ + 2 - 4 ^ + ^ ,
dx* dx2dy2 dy4

and

V2( ) = ±d^l + _L^il _ J-^il (53)
k{)~ R d 2 + R d 2 Rdxdy- ( 5 3 )

and Df denotes the flexural rigidity of the shell defined by
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As previously, consider a shallow-shell element to be the region, ile , enclosed 
by the two contour lines u = ue and u — ue+i, such that ue < ue+l, as 
depicted in Figure 4. These lines represent the two nodes of the element. 
Since the coupled differential equations (50) and (51) must be satisfied over 
the entire region of the shell, they must also be satisfied over any sub-region 
£le. Consequently, attention here is confined to a particular element e with 
W and O as the nodal unknowns. 

The appropriate stiffness properties of the element are derived with the aid 
of the method of weighted residuals, in particular using Galerkin's criterion 
[12, 22] . Firstly, however, the variation of both W and O over the element 
must be prescribed. All the continuity requirements associated with W may 
be satisfied immediately by using the shape functions [N] of the correspond
ing flat-plate element [5] . Furthermore, the apparent similarity that exists in 
the role of both W and O in the governing shallow-shell equations given by 
(50) and (51), suggests representing the variation of O analogously to that 
of W over the element. 

Thus, as a first approximation, assuming that 4> can be expressed as a 
suitable function of u, it is permissible to write 

<D = [JV]{A*}, (55) 

Y 

{w e ,W e .<D e ,<D e 

u = u e + 1 . 5=1 

W e . 1 # W e + 1 , <fce+i , <t>e*1 

X 

FIGURE 4. Shallow-shell element using the stress-function approach. 
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where

Consequently, the total number of degrees of freedom for this element is
only eight: W, O, dW/du and dQ>/du at each node. The application
of Galerkin's method to equations (50) and (51) with the shape functions
[N] serving as the appropriate weighting functions, yields the following set
of eight equations,

+ V2
kO - qx]Ntdae = 0, i = 1, 2, 3, 4, (57)

jf[V2
k W - ^%]NtdQe = 0 , 1 = 1 , 2 , 3 , 4 , (58)

On application of Green's theorem, and after some algebraic manipulations,
the above equations transform to [4]

n(d1Kid
1W d2Ni d2W d2Ntd

2W
fJJ\dx2 dx2 + ( u) +

.... ax1

d2Nd2W
+ u- '-dx2 dy2 dy2 dx2

~fc {NiV"+T^dfM")ds' i = L 2 , 3 , 4 , (59)

a.

+ — / — 7 ~ v — r — T ~v—4-—TI^CI,
dy2 dy2 dx2 dy2 dy2 dx2 J e
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where

Af = A/ cos- a + A/,, sin a - 2Af sin a cos a ,
n x y xy

Mm = (Mx - Afy) sin a cos a + Mxy(cos a - sin a ) ,

= Qn-dMJds,

Es = ex S m

cosa = -ux/\ft, sina = -uy/V"t, t = u2
x +

After substitution for W and O, (59) and (60) reduce to

[Ke
2]{Ae} = {Fe} + {Pe} - {Pe+l}, (61)

f{de} - j^[Ke
3){Ae} = ̂  ({Qe} - {Qe+l}) , (62)

where [Ke
k], k = 1, 2, 3 are 4 x 4 generalised stiffness matrices in which

the (/, j) components are given by

+ 5,—J-—T-\dCl,, (63)

/•/• r rfA^, rf2iv; i

s dN<dj + s

^ . ^ - ( 6 5 )

• 5 , — ^ +

i,j = 1 , 2 , 3 , 4 ,
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and the quantities Sk, k = 1, • • • , 7, are denned by

51 = {(V2«)2 - 2(1 - v){uxxuyy - uxy)}/{.\

5 2 = {tV2u - (1 - v)(u\uyy + u]uxx - 2 u x u y u e
t
211*_ t
2

56 = {(V u)z - 2(1 + u){uxxuyy - uxy)}/t,

57 = {tV2u - (1 + u)(u2
xuyy + u2

yuxx - 2uxuyuxy)}li\

The components of the column vectors {Fe} , {Pe} , {Qe} , etc., may be
determined from the following expressions

(67)

s, (68)

and

(69)
Grouping together all element unknowns, the element equations can be con-
veniently re-arranged to yield the standard form

= {Fe} + {Pe}. (70)

5. Illustrative examples

5.1. Bending of doubly-curved shallow shells elliptical in plan

(a) Clamped Boundary. Consider the deflection of a clamped shallow shell,
elliptical in plan, and under a uniformly distributed load qz . The surface of
the shell is described by
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FIGURE 5. Shallow shell elliptical in plan-form.

where Rx , Ry are the constant radii of curvature in the x , y directions,
respectively (Figure 5).

This problem is of major technical importance, since shells of this type
are frequently encountered in the aerospace industry, and widely used in the
design and construction of concrete shell roofs [19], e.g. football stadiums.
As a consequence, a number of papers on the approximate analytical solution
to the problem have emerged in the literature [3, 13, 14].

In view of the symmetrical nature of the problem, the equation for the
contour lines has the form

u(x,y) = l-x2/a2-y2/b2, (72)
where a, b are respectively the semi-major and semi-minor axes of the
elliptic base, as shown in the figure.

For this example, the elliptical region of the shell is discretised into four
contour elements and the results obtained via the displacement approach
and the stress function approach are summarised in Tables 1 and 2. The
tables also include corresponding quantities computed from the approximate
closed-form solutions to the problem that exist in the literature [13, 14].

(b) Simply-Supported Boundary. Consider now the same shallow shell as
in the previous example, but with a simply supported boundary, and under
the influence of a concentrated load (P) at the apex. As before, because of
symmetry, the constant-deflection lines may be approximated by a family of
similar and similarly situated ellipses, described by the expression in (72).

The deflection under the load, obtained by both the displacement and
stress function approaches to this problem, is presented in Table 3 for various
values of the aspect ratio of the elliptical base.
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TABLE 1. Central deflection (W*) of a shallow shell upon an
elliptical base. (AT* = 1.3218 , RJRV = a2/b2)

[16]

a/b

Displacement

Approach

Stress Function

Approach

Jones &

Mazumdar [14]

Jones [13]

1.1

12.3157

12.3304

12.3268

12.4177

W* x 103

1.3

8.0844

8.1468

8.1336

8.1571

1.5

5.3265

5.4067

5.3930

5.3794

2.0

2.0486

2.1028

2.0975

2.0730

5.0

0.06262

0.06490

0.06481

0.06367

TABLE 2. Central bending moment (M*) of a shallow shell upon an elliptical base

(K* = 1.3218, RJRy=a2lb2)

M*x x 102

alb

Displacement

Approach

Stress Function

Approach

Jones &

Mazumdar [14]

Jones [13]

1.1

6,6991

6.7077

6.7057

6.7701

1.3

4.8620

4.9018

4.8938

4.9170

1.5

3.5608

3.6172

3.6082

3.6042

2.0

1.7993

1.8496

1.8445

1.8242

5.0

0.2126

0.2210

0.2203

0.2165

TABLE 3. Deflection under load for a simply supported shallow shell
elliptical in plan. {K* = 1.3218 , RJRy = a2/b2 , v = 0.3)

alb

Displacement

Approach

Stress Function

Approach

1.0

4.3882

4.3883

WD{IPa2 x

1.1

3.9348

3.9531

1.2

3.4788

3.5351

102

1.3

3.0486

2.8342

1.4

2.6587

2.7826

1.5

2.3139

2.4559

2.0

1.1818

1.3122
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5.2. Bending of a shallow spherical shell on an equilateral triangular base
Consider the bending of a shallow spherical shell, in the form of an equi-

lateral triangle in plan, by a uniformly distributed load (qz) over its surface.
The edges of the shell are assumed simply supported by shear diaphragm
walls (Figure 6), while the spherical surface of the shell is described by the
equation given in (1) with Rx = Ry = R and R = 0.

As a first approximation, the expression for the equation of the contour
lines, in this case, has the form

u{x, y) = (x3 - 3xy2 - ax2 - ay2 + 4a3/27) (4a2/9 - x2 - y2) , (73)

which represents the exact expression for the equation of the constant deflec-
tion contours of the corresponding flat-plate problem (R = 0) under similar
loading and boundary conditions. Here, a denotes the perpendicular height
of the equilateral triangular base, as shown in the figure.

Tables 4, 5 and 6 present centroidal results determined with the use of both
the displacement and stress function approaches, and corresponding results
computed from the approximate analytical solution to the problem [1].

FIGURE 6. Shallow spherical shell, equilateral triangular in plan-form.
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TABLE 4. Centroidal displacement of a shallow spherical shell, equilateral triangle in plan,
for various values of the curvature parameter K*.

K'

Displacement

Approach

Stress Function

Approach

Bhattacharya [1]

5

10.1361

10.1400

10.1209

W* x 104

10

9.6610

9.6752

9.6495

20

8.1289

8.1696

8.1259

50

3.7888

3.8467

3.7812

100

1.2159

1.2405

1.2014

TABLE 5. Centroidal bending moment of a shallow spherical shell, equilateral triangle
in plan, for various values of the curvature parameter K*

K*

Displacement

Approach

Stress Function

Approach

Bhattacharya [1]

5

2.3679

2.3689

2.3647

M* x 10

10

2.2476

2.2511

2.2445

2

20

1.8602

1.8701

1.8565

50

0.76998

0.78265

0.76064

100

0.15232

0.15378

0.14787

TABLE 6. Centroidal membrane force of a shallow spherical shell, equilateral triangle
in plan, for various values of the curvature parameter K*.

N*/K' x 104

K'

Displacement

Approach

Stress Function

Approach

Bhattacharya [1]

5

5.4609

5.0045

5.0604

10

5.2047

4.7749

4.8248

20

4.3788

4.0327

4.0629

50

2.0394

1.9015

1.8906

100

0.6535

0.6161

0.6007

The nondimensional quantities appearing in the tables are denned as follows;

'), (74)

(75)
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(76)

(77)

5.3. Bending of a shallow spherical shell upon a square base
A technically important problem which appears as a test example in many

papers concerned with the numerical analysis of shallow shells [9, 15] is the
bending of a shallow spherical shell on a square base. The surface of the shell
is under uniformly distributed load (qz), while the boundary of the shell is
simply supported on shear diaphragm walls, as shown in Figure 7.

The exact solution to the above problem exists in the form of a double
infinite Fourier series for both W and <£ [23].

In order to apply the present method to the above problem, an expression
for the equation describing the contours of the deflected surface of the shell
is required. Since the function u vanishes along the boundary, and because
of the symmetrical nature of the problem, the expression for u may be taken

Edges supported by
shear diaphragms

Edges supported by
shear diaphragms

FIGURE 7. Shallow spherical shell upon a square base.
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in the boundary form

D. Bucco and J. Mazumdar

u(x,y)=(X
2-a2/4)(y2-a2/4),

[20]

(78)

where a is the dimension of the square base.
The central displacement, bending moment and membrane stress, com-

puted independently with the aid of both the stress function and displace-
ment approach are presented in Table 7, together with the corresponding re-
sults, obtained by a finite element method [8], and the exact values for these
quantities which are also quoted in the above-mentioned reference. Only four
contour elements are used in the present analysis, and two effective terms are
retained in the displacement approach [4].

TABLE 7. Shallow spherical shell on a square base, under uniform load qz .

Rh/a2 = 0.02

EhW/qzR
2

Mx/q2Rh x 103

Nx/qzR x 10

• Stress Function

Approach

1.0023

-8.8623

5.0260

Displacement

Approach

0.99895

-8.3982

5.0161

Finite Element

Method [8]

1.009819

-8.873

5.111

Exact

[8]

1.009785

-8.487

5.049

Rh/a2 = 0.005

EhW/qzR
2

Mx/qzRh x 105

Nx/qzR x 10

Stress Function

Approach

0.98303

-3.2371

5.0059

Displacement

Approach

0.99800

-3.0238

5.0172

Finite Element

Method [8]

1.000241

-

5.013

Exact

[8]

1.000429

-3.1

5.002

It is apparent from Table 7 that, with only four elements and an approxi-
mate expression for u, the present results are sufficiently accurate for most
practical purposes.

Next, in order to explore the numerical convergence of the two approaches,
the value of the strain energy I1M, computed for increasing values of m,
where m denotes the number of elements used to discretise the shell region, is
summarised in Table 8, together with the total number of degrees of freedom
required for solution.

In the table, II* represents the non-dimensional value of the strain energy
defined by

n*u=l0Ehnj(q2
za

2R2). (79)
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TABLE 8. Strain energy convergence for a simply
supported shallow spherical shell on a square base.

489

Il'u(Rh/a2 = 0.02)

Number of

Elements

2

4

6

Exact

Stress Function

Approach

3.837439

3.84301

3.843432

Net

DOF

10

18

26

Displacement

Approach

3.800501

3.808480

3.807086

Net

DOF

26

54

82

3.89958

U'u(Rh/a2 = 0.005)

Number of

Elements

2

4

6

Exact

Stress Function

Approach

4.397121

4.402422

4.406677

Net

DOF

10

18

26

Displacement

Approach

4.377570

4.397054

4.400775

Net

DOF

26

54

82

4.44990

Although the numerical convergence of the present method, towards the
exact value of the strain energy for this problem, is relatively slow, it is
clear from the table that the accuracy of the results is adequate for practical
purposes, even if the shell is modelled by only two elements. Furthermore,
the stress function approach requires fewer degrees of freedom in the solution
process.

6. Conclusion

Two generalised shallow-shell bending elements are developed for the anal-
ysis of doubly-curved shallow shells having arbitrary shaped plan forms. The
elements are denned using the concept of iso-deflection contour lines of the
shell in combination with standard finite element techniques. One element
employs displacements as the element unknowns, while the other element
is hybrid, in that both a displacement component and a stress function are
utilised as the basic element variables. Several illustrative examples are in-
cluded to demonstrate the accuracy and relative convergence of the two ele-
ments when used for static analysis purposes.
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