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1. Introduction
In this paper f(z) will always stand for an entire transcendental function

of the complex variable z. For j> = 1, 2, • • • the natural iterate fv{z) of f(z)
is defined by

These natural iterates are themselves entire transcendental functions;
they have been studied by various writers, notably Fatou [3]. References
to many papers on iterates will be found in [1].

A fixpoint of f(z) is a zero of f(z) — z; more generally a fixpoint of order
P of f(z) is a zero of fp(z) — z. A fixpoint of order fi is said to have order
exactly p when it is not a fixpoint of order less than p.

The fixpoints are of great importance in the theory of iteration so that a
discussion of their existence and distribution is interesting. In [2] it is
pointed out that very little is known about the existence of fixpoints of the
various orders and a few results are derived in the case where f(z) has order
less than £. Although it is known that any/ (z) has fixpoints of arbitrarily high
exact order no examples seem to have been given of functions having
fixpoints of order exactly p for every natural number -p. In this paper it is
shown that the class Cv of functions {f(z); fp{z) has finite defect values the
sum of whose defects is greater than J} has fixpoints of order exactly p.
The class formed by the intersection of classes Cp,p = 1, 2, • • • has fixpoints
of all exact orders. In particular any function f(z) with a Picard exceptional
value is of this type and there are others as shown by Lemma 4. Finally one
may conjecture that any f(z) has fixpoints of every exact order from a
certain order on.

2. Preliminary Lemmas

The following notation will be used (c.f. Nevanlinna [4]):

,r)= max \fp(z)\
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np(r, a) = n(fp, r, a) — number of solutions of fp(z) —a in \z\ ^ r

W,(r, <*) = JL~L , P —dt + nP{0, a) log r
Jo t

\ fin 4.
Tp(r) = T(f , r) = — I log\fp(rei<p)\dq) = mp{r, oo)

2TT JO

Np(r, a) mp(r, a)
69(a) = 1 — hm == hm -

LEMMA 1 (P61ya [5]). Let e(z), g(z) and h(z) be entire functions satisfying

(1) e(z)=g(h(z))
(2) A(0) = 0.

is a constant c independent of e, g, h with

(3) M{e, r)>M \g, cM (h, -^-)1 .
L \ 2 / J

Further it is clear that the condition (2) can be dropped provided (3) is to
hold only for all sufficiently great r and this is the form we shall use in the
proof of Lemma 3.

LEMMA 2 (e.g. Baker [1, p. 124]). / / f(z) is an entire function and k > 1,
a > 1 are constants, then for all sufficiently large r one has

(4) M(f,ark)>Mk(ftr).

LEMMA 3. / / f(z) has an exceptional value b (taken only a finite number k
of times) then b is a value of defect one for fp(z), p = 1, 2, • • •.

PROOF: Let the roots of f(z) = bbe dx, d%, • • • dh. The roots of fp(z) = b
are the roots of /,_i(-?) = dit i = 1, 2, • • •, k. We assume they are counted
according to the usual multiplicities so that

and

(5) Np(r, b) = 2 N ^ i r , dt) ^ kTp_x{r) + 0(1)

by the first fundamental theorem [4].
Now [4, p. 220]

cikM/, — U by Lemma 1,
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and however small e > 0 is, this becomes greater than

£ log

which by Lemma 2 is greater than

(6)
c

all of these inequalities being understood to hold only for sufficiently large r.
Then from (5), (6)

urn * ^ e and hence dp(b) — 1.
1v\r)

LEMMA 4. There are functions f(z) other than those of Lemma 3 such that a
value b is of defect one for fP{z), p = 1, 2, • • •

PROOF: Consider a function

(7) /(*) = & + «•"*(*). b>0

where h(z) is a function of order 1 with the properties:

(8) M{h, r) = h{r) > 0

(9) exp I — I < h(r) < er for large r

(10) h{z) has an infinity of zeros.
We could take h(z) = sinh z but the proof is just as simple with general

h (z). We see that

M(f, r) = f(r)

M(fp,r)=fp(r)

and

(11) exp exp r < f(r) < exp (2 exp r)

all hold for large r. Now

/„(*) = * + (exp exp /„_!
and

N,[r, b) = iV(A(/,_1), r) ^ T(A(/P_1), r) < log *(/ ,
(12) iV ,M)< /^ ( r ) .

On the other hand [4, p. 220]:

(13) T,[r) = T(f9t r) > £ log /„ (-1) > £log /
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from (9), (11),

h2 (y) > exp (\h {^j > exp (r>)

by Liouville's theorem and

/ (̂ 2 (—11 > /(e xP (y2)) > e xP e xP e xP (ri) > e xP e xP (4^r)

= exp {(exp 2er)2} > exp {/2(r)}.

By induction

and from (13)

T,(r) >

Together with (12) this gives

NJr, b) 3
„ — < — ->• 0 as r -> oo.

t

Thus dp(b) = 1. All the inequalities above are supposed to hold only for
sufficiently large r.

3. The Results on Fixpoints

T H E O R E M . Suppose f(z) has defect values bit i = 1, 2,-'-,kso that

2 ^n(^i) = i ~̂~ ^i d > 0, bt ~fc oo.
*-i

Then f(z) has fixpoints of order exactly p.
If mp{r, bt) is the "Schmiegungsfunktion" defined by

1
tnp\

1 C +M<) = - log
2n Jo

d<p

1 4- d \ + d
, bt) > - f - T,(r) = ~~ T{f,, r)

we have

for all sufficiently large r. Denote by m'v, tn'^, T'p, Tp' the Schmiegung and
characteristic functions for f'p(z) and fp(z) respectively and by mp, Tp the
functions for fp(z) — z.

In his discussion of the second fundamental theorem Ullrich [6, p. 598
equation (20)] has proved a result which we write as
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(14) *n',(r, 0) ^ £ mv(r, bt) - 0 [log (rTp(r))} (E)

where the symbol (E) means that the given estimate of the remainder term
holds with the possible exception of a set of f-intervals whose total length is
finite. Thus in our case

(15) m'p(r, 0) ^ 1 ± ^ Tp(r) - 0 [log (rTp(r))] (E).

We note that

T',(r) = m',(r, oo) + 0(1)

(16) < mp(r, oo) + m{^-, r, oo) + 0(1)

= T,(r) + 0[log (rTv(r))] (E).

by the theorem of the logarithmic derivative [e.g. 7 p. 594]. From the second
fundamental theorem and (16):

(17) m'v(r, 0) + m'p(r, 1) <S 7 » + 0 [log ( r 2 » ) ] (E).

STP(r)+ 0 [log (rTv(r))]. (E).

Applying the result of Ullrich used in (14) but this time to the function
f(z) — z and its derivative we obtain

mB(r, 0) ^ m'p(r, 1) + 0 [log rT,{r)] (E),

and using (15), (17):

| mp(r, 0) ^ m'p(r, 1) + 0 [log (rr,(r))] (E)

Using the first fundamental theorem and Tp(r) 2; T9(r) it follows that

(18) Np(r, 0) ^ (~^) T9{r) - 0 [log(rTp(r))] (E).

Now by a further application of the result of (14) and (15):

tn'J(r, 0) 2£ m;(r, 0) - 0 [log ( r 7 » ) ] (E)

^ ^ ~ r,(r) - 0 [log fT,(r)] (E)

and

(19) N'p'(r, 0) <S T'p'(r) - ( i ± ^ ) r,(r) + 0 [log ( r 7 » ) ] (E),
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while from (16):

which reduces (19) to

N'p'(r, 0) ^ ( ^ ) T,{r) + 0 [log (rTp(r))] (E).

Thus from (18), (19):

(20) U$*(r, 0)-N'p'(r, 0)}^ Tv(r) - 0 [log (rT,{r))] (E)

and for some values of r the quantity on the left hand side of (20) will take
large values of the same order as dTp(r)/2.

A &-fold (k ^ 1) zero of fv(z) — z is counted k times in $p{r, 0) but only
Max {0, k — 2} times in Np so that the left hand side of (20) is not greater
than

= r «,<*, 0) - n+(0, 0) ̂  + f

Jo /

where «+(i, 0) counts the number of different solutions of fv[z) = z in |z| ^ t.
For all sufficiently large r

(21) 2 W . 0) ^ 2T,(r, 0) + 0(1)

and by Lemma 1 (as applied in Lemma 3) this right hand side of (21) is
o(Tp(r, 0) for large r. The left hand side of (21) is an upper bound for the
contribution of fixpoints of orders less than p to N+(r, 0) since each of them
is counted at least once there. Thus from (20) the counting function of
dif f erent fixpoints of order/) is > dTp(r)/3 for some arbitrarily large values of
r, while from (21) this is not caused by the fixpoints which are of exact
order less than p. It follows that the fixpoints of exact order/) have a count-
ing function N(r) which satisfies

r-+coT(f)

and that a great many such fixpoints exist.
APPLICATION: The functions of Lemma 3 and 4 afford examples of func-

tions which have fixpoints of exact order fi for all natural numbers f.
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Note: Professor W. K. Hayman has pointed out that the constant
\ + d in the above theorem can be replaced by d alone if d > 0, i.e.
it is sufficient to suppose that fv{z) has some defective value b. One has
only to apply Nevanlinna's theory to the function (fv{z)—z)/(f9(z)—b).
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