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Finiteness conditions in

soluble groups and Lie algebras

Ian N. Stewart

We prove some new theorems and reprove some old ones about

f in i te ly generated soluble groups and Lie algebras by a uniform

method. Among the applications are Gruenberg's Theorem on Engel

groups, for which we obtain a very short proof; and the Mi I nor

and Wolf polynomial growth theorem. I t i s shown that a f in i te ly

generated soluble group with a l l 2-generator subgroups

polycyclic i s i t s e l f polycyclic, and that a f ini te ly generated

soluble Lie algebra, a l l of whose inner derivations are

algebraic, i s finite-dimensional. This las t resul t enables us

to give a pa r t i a l answer to a question of Jacobson.

The aim of th is note i s to i l l u s t r a t e a procedure for proving a number

of theorems about finiteness conditions in soluble groups, based on quite

simple considerations centred around the module-theoretic methods of Hall

[5, 6, 7] . By virtue of the resul ts of Amayo and Stewart [/] the procedure

also applies to Lie algebras. Some of these theorems are well known,

although others seem to be new. Among the former are:

(a) the theorem of Gruenberg [3] that f in i te ly generated

soluble Engel groups are ni lpotent ,

(b) the Lie algebra analogue of (a ) , also due to Gruenberg [3 ] ,

(c) the theorem of Milnor [9] and Wolf [10] that f in i te ly

generated soluble groups with polynomial growth are

ni lpotent-by-f ini te .
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Our proofs of (a) and (b) are very short, and use very little

machinery: they are more conceptual than those of Gruenberg, which rely on

properties of basic commutators. The proof of (c) is just a tactical

variant of that given by Bass [2] and in consequence will be given in

outline only. Our procedure is presumably 'folklore': in particular it

seems that Hal I has given in lectures a proof of (a) roughly along the same

lines. However it is interesting that the same method proves such a

variety of results.

1. Notation

We le t A, £> £ , H> £ denote the classes of abelian, f in i t e , f ini tely

generated, nilpotent, and polycyclic groups. We use Hall's closure

operations q and E : for any class X. of gfpups QX_ consists of a l l

quotient groups of X-groups; whilst EX. comprises those groups having a

f in i te series

1 = G < G 0 . . . < G = G
0 1 n

with each factor G. /G. (. X. . Thus EA is the class of soluble groups.
I » T 1 U —— *—

If 3( and Y_ are group classes then Kf denotes the class of

X-by-Y-group8 G , having a normal subgroup H t X such that G/H € Y_ .

Let X. and X. be classes of groups satisfying

(i) a l l finitely generated i-groups are polycyclic-by-finite,

( i i ) X is Q-closed.

Suppose we wish to prove that all finitely generated soluble j-groups are

^-groups. Then we may try the following

Procedure. Let G be a finitely generated soluble i-group. Argue

by induction on the derived length o{ f . If A is the last nontrivlal

term of the derived series of G , then A is abelian and normal in G ,

whilst G/A is polycyclic-by-finite by induction. Therefore G lies in

the class £ n APF , which is studied by Hall [5, 6, 7]. in particular A

is a module for the integral group ring of the 2E-group G/A , and G

satisfies the maximal condition for normal subgroups. This is a very

strong condition, and often suffices to carry out the induction step.
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2. The theorems of Gruenberg, Mil nor and Wolf

If G is a group and g, h i G we write

(g, h) = g'Xh~Xgh

for the group commutator, and define recursively

Then G is an Engel group if for each g, h (. G there exists n = n(g, h)

such that [g, h) = 1 .

To prove Gruenberg's Theorem we argue as above, with X. = £ , and

Y_ = the class of Engel groups. By induction we may assume that our group

G lies in £ n AN . To prove G nilpotent it is sufficient to show that

the abelian normal subgroup A lies in the hypercentre of G , for then G

is hypercentral (since G/A is nilpotent) and finitely generated, and

hence G is nilpotent. If this is not the case we may quotient out the

intersection of the hypercentre with A . We may then assume, for a

contradiction, that A contains no nontrivial element centralised by

G/A .

Let N = G/A and argue by induction on the length (necessarily

finite) of a cyclic series for N that A contains a nontrivial

iV-invariant element. This is clear if N = 1 . Otherwise we can find

K o N such that N/K is cyclic, K has smaller cyclic length than N ,

and N = (K, x> for some x € N . By induction there is an element a of

A , a t 1 , which is invariant under K . Consider the subgroup T of A

i
generated by all conjugates a of a by a power of x . This is

clearly invariant under x . It is centralised by K , since if k i K

then

x k x kx .x xa = a = a .

By the Engel condition [a, x) = 1 . Let t be smallest with this

property. Then [a, , x) # 1 , lies in T , and is centralised by x .

Hence it is centralised by N . This is a contradiction, and Gruenberg's

Theorem is proved.
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A very similar argument gives the Lie algebra version of the theorem.

The proof of the Mi I nor and Wolf Theorem follows the same lines, but

is harder. We take .Y to be the class of groups with polynomial growth,

X = NF . By Mi I nor [9], Lemma 1, we have A finitely generated as an

abelian group (which at once makes G polycyclic). Since subgroups of

finite index in finitely generated groups are also finitely generated we

may assume G/A nilpotent. Induction on the cyclic length of G/A ,

arguing as in Bass [2] p. 605 and using his Lemma 2 (which, as he remarks,

is the essential point of the proof) completes the induction step.

3. Other results

The theorems of th i s section may a l l be proved by the same method.

THEOREM 1. Let G be a finitely generated soluble group, all of

whose 2-generator subgroups are polgcyclic. Then G is polyayolio.

Proof. We use the standard procedure, with Ŷ  the class of groups

a l l of whose 2-generator subgroups are polycyclic, and X. = £ . With the

usual notation, we may assume that P = G/A i s polycyclic, and that A i s

non t r iv ia l , having no nontrivial P-invariant subgroup which is f in i te ly

generated as an abelian group.

We show by induction on a cyclic series for P that on the contrary

such a subgroup ex i s t s . Take K < P with P/K cycl ic , P = <K, x) .

There i s a nontr iv ia l subgroup B = <&-., . . . , b^ > of A which is

if-invariant. Now each <b., x> is polycyclic, so that each b. l i e s

inside an x-invariant subgroup T. of A which is f in i te ly generated as
If

an abelian group. Thus B is contained in T . . . T , a finitely

generated x-invariant group. Let C be the product of the conjugates of

B under powers of x . Then C is finitely generated and x-invariant.

But if j is any power of x then

so that C is also A-invariant, hence P-invariant. This completes the

induction, and the resulting contradiction proves the theorem.

A similar argument yields:
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THEOREM 2. Let L be a finitely generated soluble Lie algebra, all

of whose 2-generator subalgebras are finite dimensional. Then L is

finite dimensional.

Examples mentioned by Golod [4] p. 103 (footnote) show that the

hypothesis of solubility cannot be omitted from Theorems 1 and 2.

Define the Lie algebra L to be algebraic if every inner derivation

satisfies some polynomial equation (which is allowed to vary from element

to element). Then our procedure easily yields:

THEOREM 3. Every finitely generated soluble algebraic Lie algebra is

finite dimensional.

Again an example of Golod [4] shows that we cannot omit the hypothesis

of solubility.

COROLLARY 4. A locally soluble algebraic Lie algebra is locally

fini te.

We can apply Theorem 3 to a question of Jacobson [S] p. 196. In

Exercise 17 he states:

"Conjecture (probably false and probably true under additional

hypotheses): If the restricted Lie algebra L of characteristic

p is finitely generated, and every element of £ is algebraic

in the sense that there exists a non-zero p-polynomial y (^)

such that y {a) =0 , then L is finite dimensional."

For the relevant definitions see Jacobson [S] pp. 185-19**-

We show that the conjecture is true if, in addition, L is required

to be soluble. For in any restricted Lie algebra we have the equation

(Jacobson [&] p. 188)

[b, <?} = L , .... a]
L P J

and in consequence the inner derivation induced by a is algebraic (in our

sense) if i t is algebraic (in Jacobson's sense). Theorem 3 is now

applicable, and for completeness we state:

THEOREM 5. If L is a finitely generated soluble restricted Lie

algebra of. characteristic p 3 and if every element of L is algebraic in
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the sense of Jacobson, then L ie finite-dimensional.
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