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ABSTRACT

In this paper, we construct automorphic forms on the five-dimensional complex ball which
give the inverse of the period map for cyclic 4-ple coverings of the complex projective line
branching at eight points. We use theta constants associated to the Prym varieties of
these coverings.

1. Introduction

Let p1,..., pyn be rational numbers such that 0 < p; < 1, Z;‘:l p; = 2, and let d be the common
denominator of piq, ..., ftn. For the cyclic d-ple covering C of P! branching at n points with index
= (p1,...,p,) and a homology marking ¢ of C, the period p(C, ¢) of a marked curve (C, ¢) can
be regarded as an element of the (n — 3)-dimensional complex ball B,,. The morphism p from the
moduli space Mparked 0f marked curves (C, ¢) to By, is called a period map. Since the period map p
is equivariant under the monodromy group I'y, it induces the morphism Myarked/T') — B/
According to results of [DM86] and [Ter83, Ter85], the period map p is an isomorphism onto a
Zariski open set of B, /I',, if ;i satisfies the condition

(1—pj— )t €ZUoco forj# k. (1.1)

There are finitely many such p for n > 5: for n > 9 there is no u, for n = 8 there is one, for n =7
there is one, for n = 6 there are seven, and for n = 5 there are 27.

It is a natural demand to describe the inverse of the period map in terms of explicit automorphic
forms with respect to I',, for such p. In fact, for several p for n = 5,6, the inverses of the period maps
are studied and some of them are expressed in terms of theta constants; refer to [Koi03], [Mat89],
[Mat01], [Pic83], [Shi88] and [Yos97|. In this paper, we construct automorphic forms on B,, which

1

give the inverse of the period map for the case n = 8, u = (1)8 = (i, e i) Note that all p with

d = 4 satisfying the condition (1.1) can be obtained by confluences of the branching index (%)8.

Before stating our main theorem, we define a projective embedding of the moduli space Mgy of
eight points on P!, which is isomorphic to Myyarked/I,- We divide the set {1,...,8} into a set of four
pairs {{j1,J2},...,{Jj7,Js}}, which is called a (2,2,2,2)-partition of {1,...,8}. We denote the set
of (2,2,2,2)-partitions of {1,...,8} by P(2%) which has cardinality 105. We associate a polynomial
P =TI} @y, — jy,) for each (2,2,2,2)-partition 7 = {{j1,ja},- .., {jr,js}}. If we regard the
x; as affine coordinates of eight points on P! then P, are relative invariants under projective
transformations of P'. Thus the set of polynomials {P -}, ¢ P(24) induces a map P : Mgps — P4
It is shown in [Koi04] that P is an embedding.
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THEOREM 1.1 (Main theorem). There exist 105 automorphic forms 7%

that the following diagram commutes.

with respect to I';, such

M8pts P
P P104
72
B,/Ty

Here the map T® is given by the 105 automorphic forms 7}(2). Especially, the image of T coincides
with that of P and T® o P~ gives the inverse of p.

Let us explain how to construct 105 automorphic forms in terms of theta constants. The curve C
is of genus 9 and it can be regarded as a double cover of a hyperelliptic curve of genus 3. The period
p(C, ¢) is an element of the five-dimensional complex ball. We consider the Prym variety Prym(C)
of C' with respect to p?, which is a six-dimensional sub-abelian variety of the Jacobian J(C) of
C obtained by the (—1)-eigenspaces of H°(C, Q') and H(C,Z) for the action of p?, where p is a
generator of the group of covering transformations of C' — P!,

Since the polarization of Prym(C') is not principal, we construct 105 principally polarized abelian
varieties isogenous to Prym(C') as follows. Let Prym(C);_, be the group of (1 — p)-torsion points of
Prym(C'), which is isomorphic to F26 with a quadratic form. There are 105 three-dimensional totally
singular subspaces A, of Prym(C);—,. For each A,, A;, = Prym(C)/A, is principally polarized.
We show that there is an isomorphism between the automorphism groups &g of the marking of
eight points, and the orthogonal group Of (F) of Prym(C);_, yields a one-to-one correspondence
between P(2*) and the set {A,.}.

For A; corresponding to 1 = {{12}, {34}, {56}, {78}} € P(2%), we study the behavior of the
pull back F,,,, = t*(¥,) of a theta function 9,,,(z) associated to Ar, with a characteristic m;
under the composite map ¢ : C' — Ap, of the canonical map jac™ : C' — Prym(C) and the natural
projection Prym(C) — Apr, (see § 4). There are twelve zeros of F,,,, in C; eight of them are in the
set of fixed points of p. There are three theta functions ¥y, (2) (j = 2,3,4) on A, such that the
order of zero of Fy,, = 1*(¥p;) at every fixed point of p is the same as that of F,,. By considering
the four zeros of F,, not fixed by p, we can express the cross-ratio of 1,2, x5, ¢ in terms of the

theta constants U,,,, ..., Um,.
The product ’2'1(2) = H?Zl Up,; is an automorphic form with respect to the monodromy group I';,.

The period map p induces an isomorphism of groups Aut(Mgpes) ~ Aut(B,,/T',,). For each (2,2,2,2)-

partition r € P(2*) = Stab(r;)\&s, we define 7% by using the action of &g C Aut(Mgpts) ~

Aut(B,/T',,), where Stab(r;) is the stabilizer of the partition 7. In order to prove our main theorem,
we investigate the action of Stab(r1) on the space generated by the theta constants and relations
between theta functions for Ay, and those for Ay, .

Notation 1.2. In this paper, the imaginary unit is denoted by i. For an element o € C, exp(27mic)
is denoted by e(«). For a square matrix A, the vector consisting of the diagonal elements of A is
denoted by Ag. For a vector v = (v1,...,v), the diagonal matrix

U1

Uk

is denoted by diag(v).

1278

https://doi.org/10.1112/50010437X04000405 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X04000405

THETA FUNCTIONS OF BRANCHED COVERS

2. The Prym variety of C

2.1 4-ple covering of P! branching at eight points

Let C be the projective smooth model of an algebraic curve defined by

8
wh =T - ), (2.1)
j=1
where x1,...,rg are distinct elements of C. The curve C is of genus 9 since it can be regarded as a
4-ple covering of P! branching at eight points. The automorphism
p:C3(z,w) — (z,iw) € C (2.2)

induces actions on H'(C,Q) and H;(C,Q). We denote the (—1)-eigenspaces of H'(C,Q) and
H1(C,Q) of p?> by HY(C,Q)~ and H;(C,Q)~, respectively. We put

H'(C,Z)” = H'(C,Q) nHY(C,Z), H\(C,Z)" = H(C,Q)” NnH,(C,Z).
Since the action p preserves the polarized rational Hodge structure of H'(C,Q), the (—1) eigensub-

space H'(C,Q)~ of p? is a polarized rational sub-Hodge structure of H'(C,Q). The action of p
induces an action on each factor of the Hodge decomposition

HY(C,Z)" @ C~ H(C,QY)” @ HO(C,Q1)~.

PROPOSITION 2.1. The multiplicity of the eigenvalue i (respectively —i) of p on H°(C,QY)~ is 5
(respectively 1).

Proof. Differential 1-forms

20 dz B @ dz zdz 22dz

©; = = (j=0,...,4), gos—w, 806:ﬁ7 907:?’ g = 2

span the space H(C, Q). We have p*(¢;) = ipj for j =0,...,4, p*(p5) = —ips and p*(¢r) = —px
for k=6,7,8. ]

We study the intersection form on H;(C,Z)~. For the moment, we assume that z; € R (j =1,
..,8) and 71 < wy < --- < xg. Let Uy be P! cut along the eight semi-lines

lj={z;+itcCCc P |t<0}, j=1,...,8.

The curve C can be regarded as gluing Uy and the copies Uy, = p*(Uy) (k = 1,2,3) along Iy, ...,Is.
The branch of the function w is assigned as its value is in i*R; for 2 € (—oo,21) C Uy. Let o
(1 < j <7) be the interval [z, z;41] C R in the sheet Uy and ag be [—o0, 1] U [zg,00] C R in the
sheet Uy. The orientation of «; is given in Figure 1.

Then the 1-chain 4; = (1—p?)a; is a cycle satisfying p?(A;) = —A;. We put B; = pA;. Figure 1
shows that both of Z§:1 a; and Z§:1 p’a; are boundaries of 2-chains. Therefore, we have

8 7 ;
3 3 1—p
J=1 J=1

in Hi(C,Z)~. The intersection matrix for {A;, B;};j—1,. ¢ is given as

(_P 5 g) , (2.3)
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ag
xro2 ... X7 \xg
a1 | a7
| | 7 |
j4e5| ! ! P ar !

w e iF R

FIGURE 1. Paths a; (j =1,...,8).

where
0 1 0 0 0 0 2 -1 0 0 0 0
-1 0 1 0 0 0 -1 2 -1 0 0 0
0O -1 0 1 0 0 o -1 2 -1 0 0
P= 0 0O -1 0 1 01’ Q= 0 O -1 2 -1 0
0 0 0o -1 0 1 0 0 o -1 2 -1
0 0 0 0 -1 0 0 0 0 0o -1 2

PROPOSITION 2.2. The set {A;, Bj};=1.. ¢ is a basis of Hi(C,Z)".

Proof. The determinant of the matrix (2.3) is 2°. By Fay’s result [Fay73], we have this proposition.
O

2.2 Polarization of the Prym variety
The polarized Hodge structure of H'(C,Z) defines the abelian variety

Prym(C) = Prym(C, p*) = (H"(C,Q")7)*/H\(C, Z)",

which is called the Prym variety of C. Since the first homology group Hi(Prym(C),Z) of the Prym
variety Prym(C') is isomorphic to H;(C,Z)™, the restriction (, ) : H1(C,Z)” xH,(C,Z)~ — Z of the
intersection form on H;(C,Z) gives a polarization of Prym(C). Thus H,(C,Z)~ ~ H;(Prym(C),Z)
naturally has a polarized Hodge structure of weight (—1).

DEFINITION 2.3. Let H be a polarized Z-Hodge structure of weight (—1). If H has a basis whose
intersection matrix is

0 e .
<_€ 0), e = diag(eq,...,eq), (2.4)

then the type of the polarization of H is said to be (e1,...,e4). For a polarized abelian variety
(A, (,)), the type of (H1(A,Z),(,)) is called the type of the polarized abelian variety. The polar-
ization of type (1,...,1) is called principal.

The curve C' can be regarded as a double covering of a hyperelliptic curve of genus 3 branching
at eight points. The results in [Fay73] imply that the type of the polarized abelian variety Prym(C)
is (2,2,2,1,1,1) (see also [Mum74, § 3, Corollary 1]). We give a symplectic basis ¥ of Hy(C,Z)".
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PROPOSITION 2.4. Let ¥ = {o,...,a5,01,...,0s} be

oy = 2A;1 + 243 + Ay + By,
aly =241 + Ay + 2A5 + 2A¢ + By — 2By — 2Bs,
aly = Ay + 245 + A3z + As + 246 — By + B3 — Bs,
aZL:Ala
oy = A1 + As,
g = —A; — A3 + Bs,

1 =241 + 243+ A5 + 246 — Bs,

= —A; — 2A5 — 2A5 — 246 + By + 2By + 2B:s,
s = Ay — Ag + By + 2Bs + Bs,

) = Ag,
By = Au,
Bs = As.
Then X is a basis of H1(C,Z)~ whose intersection matrix is given by (2.4) for e = diag(2,2,2,1,1,1).

To simplify the notation, the half of the intersection form on H;(C,Z)~ is denoted by (, ).
Classifying the sub-principally polarized Hodge structures of (H1(C,Z), (,)) of type (2,2,2,2,2,2)
is equivalent to classifying the principally polarized sub-Hodge structures of (H1(C,Z), (, )).

For a polarized Hodge structure H, the dual Hodge structure H= is defined as
Ht={ve H®Q| (v,w) € Z for all w € H}.

It is easy to see that a polarized Hodge structure H is principal if and only if H = H+. From now
on, we use the polarization (, ) for sub-Hodge structures of Hy(C,Z)".

PROPOSITION 2.5.
1) (Hy(C,Z)" )" = (1 p)Hi(C.Z)".

2) A principally polarized sub-Hodge structure L of H,(C,Z)~ contains (1 — p)H(C,Z)™ and is
stable under the action of p.

In the next section, we give a combinatorial description of the set of principally polarized sub-
Hodge structures of H1(C,Z).

We close this section by giving an example of a principally polarized sub-Hodge structure of
H,(C,Z)~ using the basis A;,B; (j =1,...,6) given in Proposition 2.2.

PROPOSITION 2.6. The sub-Hodge structure Ly of Hi(C,Z)~ generated by (1 — p)H,(C,Z)~ and
Ay, A3, A5 is principal. Actually the set

¥ ={ai,...,a6,b1,...,b6},
where
a; = Ay,
as = Ay + Ay + Do,
a3 = Ay + Az + By + Ba,
ag = Ay + Ay — Ay + By + B3 + By,
as = A1+ As + A5 + By + Bs,
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ag = A1 + Ay + A5 + Ag + B2 + B3 + Bg,

bg = —As — A3 — Ay + By + By — By,

by = —Ay — Ag + By + B,

bs = Az + A3 — By — By — Bs,

bg = As + A3 + Ag — By — By — Bs — Bg,

is a symplectic basis of type (1,1,1,1,1,1). The action p on this basis is given by

0 -U
t(al,...,aﬁ,bl,...,bg)H t(al,...,a(;,bl,...,bﬁ), (25)
U o
where
10 0 0 00
01 0 0 00
00 0 —-100
U= 00 -1 0 0O
00 0 0 10
00 0 0 01

DEFINITION 2.7. A pair (L, ¥}) of a principal sub-Hodge structure L of Hy(C,Z)~ and a symplectic
basis X1, of L is called a good basis if the action p on Xy, is given by (2.5).

Remark 2.8. Using a good basis ¥, an element of [1/(1— p)]L/L can be written as 3(u, uU) mod L
(€ Z°).

We will use the lattice Ly and its symplectic basis 31 in Proposition 2.6 for explicit calculations
of theta constants.

3. Of (2)-level structure and Gg-marking

3.1 Total singular subspaces, length 0 elements

We define the standard lattice Hgq as the free Z-module generated by Aj,Bj (j = 1,...,6).
We introduce an alternating form (,) and an action of p on Hgq by the half of the matrix (2.3) in
§ 2.1 and p(A;) = By, p(Bj) = —A;. Since the action of p? on Hgyq is equal to multiplication by
(—1), Hga (vespectively Hyar = Hsa @ R) becomes a Z[p]/(p? + 1)-module (respectively a vector
space over R(p) ~ C). We define a bilinear form h(z,y) on Hgq by h(z,y) = (z,py) — (x,y)i.
Then h(, ) becomes a hermitian form of the signature (5,1) with respect to the complex structure
given by R(p). The group of isomorphisms of Hgq preserving the alternating form (, ) and the
action of p is denoted by U(Hgq). The value of associated hermitian metric §(z) = h(z,x) on
H,(C,Z)~ is integral. The class ¢(x) of ¢(xr) modulo 2 defines a Z/2Z-valued quadratic form
on Hi(C,Z)~ /(1 — p)H1(C,Z)~. This quadratic form ¢ has the following simple form.

Let (V, q) be a six-dimensional vector space V over F, with the quadratic form ¢ of Witt defect 0.
Such (V,q) is constructed as follows. The Hamming length of a vector z € F¥ is defined by the
number of nonzero elements. The subset V consisting of vectors with the even Hamming length is a
subspace of FS containing (1,...,1). Let V be the quotient space of V by the subspace (1,...,1)-F.
The half of the Hamming length modulo 2 becomes the quadratic form ¢ on V' of Witt defect 0.

We have an isomorphism
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by mapping the class of A; to that of e; —e; 1, where e; is the jth unit vector of F3. The orthogonal
group of (V, q) is denoted by O (2). The symmetric group &g of degree eight acts on the space V by

ej 0 =ej, for o € Gg and j = 1,...,8. This action defines a group homomorphism &g — O;(Z).
DEFINITION 3.1. For natural numbers 1, ..., g4 such that e1+- - -+e4 = 8, a (unordered) partition of
{1,...,8} into sets of cardinality €1, ...,&4 is called an (g1, ..., e4)-partition. The set of (e1,...,e4)-

partitions of {1,...,8} is denoted by P(eq,...,&4). The sets P(2,2,2,2) and P(4,4) are denoted by
P(2%) and P(4?), respectively.

Note that #P(2%) = 105 and #P(4%) = 35. Therefore we have the following propositions.

PROPOSITION 3.2.
1) The map Gg — O (2) is an isomorphism.
2) By mapping an element s = {{s1,...,84},{s5,...,88}} € P(4%) to a nonzero element v =
es, + -+ + es, with q(v) =0, we have a one-to-one correspondence

P(4,4) ~{veV]|qw) =0,v+#0}

Under this correspondence, the stabilizer of s € P(4,4) is isomorphic to the stabilizer of v.

For an element I = {{j1,j2},...,{jr,js}} of P(2%), we define a subspace Vi = (ej, — €j,, ...,
ej, — ejg) of V.

PROPOSITION 3.3. Let ¢ : H1(C,Z)~ — V be the natural projection. Then 1)~1(V}) is a principally
polarized sub-Hodge structure in Hy(C,Z)~. This gives a one-to-one correspondence between P(2%)
and the set of sublattices H of Hy(C,Z)~ such that

1) H=H*,
2) H/(1—p)Hi(C,Z)~ contains a vector v with q(v) # 0.

Under the correspondence of Proposition 3.3, the lattice L1 given in Proposition 2.6 corresponds
to the partition {{1,2},{3,4},{5,6},{7,8}}.

3.2 Moduli spaces of branched coverings of P?!

In this section, we give analytic descriptions of moduli spaces of 4-ple coverings of P! branching
at eight points. Let Hgq be the module with a symplectic form and the action of p as in the last
subsection. An isomorphism ¢ : Hyq — Hi1(C,7Z)~ compatible with the intersection pairing and
with the action of p is called a marking of C'. A pair (C, ¢) is called a marked curve. An isomorphism
between two marked curves is an isomorphism between two curves which is compatible with the
markings. The set of isomorphic classes of marked curves is denoted by Miarkeq- For an element
o € U(Hgq), we define o(C, ¢) by (C,¢ o o). By the commutative diagram

P
Hyq — Hgqa Hl(07 Z)_
p
¢ .
Hstd Hl(cv Z)
we have p(C,0) = (C,0).
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We define the complex ball B(Hgq) associated to Hgq as follows. The complex structure on the
vector space Hgqr is given by the action of R(p) via the identification R(p) ~ C given by p = —i.
In the complex projective space P(H:td’R), the domain

B(Hsa) = {h(v,%) € P(Hgqg) | h(v,v) <0}

is isomorphic to a five-dimensional complex ball. Then an element o € U(Hgq) induces an isomor-
phism of B(Hgq).

For a marked curve (C,¢), we construct a point p(C,¢) in B(Hgq) as follows. The complex
structure arising from p is denoted by R(p) to distinguish the usual complex structure. By Propo-
sition 2.1, the (—i)-eigenspace H?(C,Q')~*=% of p in the space H°(C,Q')~ is one-dimensional.
By the definition of a Hodge structure, we have an R-isomorphism

Hl(cv R)_ - HOIH(C(HO(C, Ql)_v (C)
By composing the map
Homc (H(C,Q')™,C) — Home(H°(C,QY)~="1,C),

and Hgq r g H{(C,R)~, we have an R-linear map
Hgqr — Hom(H(C, Q') ~F="" C). (3.2)

It is easy to see that if we consider the complex structure on Hgq r by the action of R(p), the R-linear
map (3.2) is linear for the complex structures via the isomorphism R(p) ~ C given by p = —i.
This linear form defines a point in B(Hgq). The corresponding point is denoted by p(C, ¢). This map
P+ Miarked — B(Hgtq) is called a period map. More explicitly, this map is given as follows. Let w
be a basis of one-dimensional complex space of H(C,Q')™=% Then the map (3.2) Hyq @R — C
is given by v+ [ b(y) @ By using the dual basis A; of A; over R(p), this map is expressed as

Z?Zl( J 6(4,) w)A;. This period map is holomorphic with respect to the parameters z1, ..., 3.

THEOREM 3.4 (Terada, Deligne and Mostow). The map p is an open embedding and the complement
of the image is a proper analytic subset. The natural actions of U(Hgq) on Mpyakeq and B(Hgiq)
are compatible.

Let Mgps (respectively Mynora) be the set of the isomorphism classes of the ordered (respectively
unordered) set of distinct eight points in P!. The set Mgpts (respectively Mynora) has a natural
structure of an algebraic variety which is isomorphic to ((P!)® — Diag)/PGL(2,C) (respectively
((P1)® — Diag)/&s x PGL(2,C)), where Diag = {(x;) | 2, = 2, for some p < ¢}. By corresponding
a marked curve (C,¢) € Marked to the set of branching points {z1,...,xzg} of C' — P!, we have a
morphism:

Marked — Munord-

ProproOSITION 3.5 (cf. [MY93]). Via the open immersion p, Mynoa is identified with an open
set of B(Hgaq)/U(Hgta). Moreover the covering Mgps of Mynorq is identified with an open set of
B(Hstq)/T'(i + 1), where

I'(i+1) ={g € U(Hsa) | g = 1mod(1 + p) Hga}-

We define complex reflections M), ;41 € U(Hgq) for p=1,...,7. We choose an initial point X =
(x1,...,28) € Mgps such that z; e R (j =1,...,8) and 21 < --- < g (see Figure 1). The image of
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X in Mynorq is denoted by X. We consider a path My pi1 = (Mppi1,5)j=1,...8 : [0,1] = Mgpis by
Mppt1,(t) =z; for j#p,p+1,

Tpr1 + 2 Tpt1 — X

Mp pi1,p(t) = = 5 b= 9 Pe(t/2),
Tpi1+ 2 Tpt1 — X

My pii(t) = T2 4 TP Te(t)2),

where e(t) = exp(2mit). Then M) 41 defines a closed path in Myn,q with the base point X.
By fixing the point X, we define the monodromy action M, 1 of Hgq as follows. Let C' be the
curve defined by Equation (2.2), where x1,...,xg are the coordinates of X. A basis Aj,..., Bg of
Hy(C,Z)~ defined in § 2.1 gives a marking Hyq — H1(C,Z~). We consider the lifting Mp@H
of the path M, .1 beginning from the point in Myaked corresponding to the pair (C,¢). Then
the end point (C, ¢') of Mp@“ is a lifting X of X in My akeqa- The composite map ¢~ o ¢’

¢’ _ ¢
Hgg — Hi(C,Z)” «— Hgq

is denoted by M, ,+1. Since the pairing and the action of p are preserved in the family
Hi(Ch, 1), Z)~5 t € [0,1], we have M, ;11 € U(Hgq). Since I'(i + 1) is a normal subgroup

p,pt+1

of U(Hsta), the covering B(Hgq)/T'(i + 1) — B(Hsta)/U(Hsta) is a Galois covering and
Gal(B(Hga)/T (i +1) — B(Hsa)/U(Hsta)) = U(Hsa) /T (i +1) ~ Og (2).
By chasing the action of M, ;41 on Hi(C,Z)~, we have the following lemma.

LEMMA 3.6 (cf. [MY93]). There exists an isomorphism O (2) ~ &g such that the image of
M, p+1 € U(Hga) is the transposition (p,p+ 1) of p and p + 1. Under the isomorphism

-B(I{std)/l—‘(Z + ]-) =~ Mmarked7

the action of &g C Aut(Mmarked) is induced by o*(xj) = xj,. Here the group &g acts on the set
{1,...,8} from the right. The action of M, is a complex reflection for the root A, with the
eigenvalue —p, i.e. M, ,+1 is characterized by

—p(4y) ifv=A4A),

M. _
pr+1(v) {v if (v, A,) = 0.

The isomorphism O(‘f (2) ~ Gg in Lemma 3.6 induces a homomorphism 7 : U(Hgq) — Ss.

We define an inclusion B(Hgq) to the Siegel upper half space $g of degree 6 by using a good
basis (L,X1) of Hgq as follows. By the Poincaré duality, we have h(yi,y2) = 0 for elements
Y1 € ker(Hgq, Hom(HY(C,Q)=,==% C)) and yo € ker(Hgq, Hom(H°(C,Q')=#=¢ C)), where
HO(C, Q") =" is the i-eigenspace of p in the space H°(C,Q')~. Let H be the corresponding Hodge
structure of p € B(Hgq). Let X1, = {ay,...,a6,b1,...,bs} and

H®C~HLO ¢ g©1)

be the Hodge decomposition of H. We choose a basis w1, ...,w, of H®9) guch that fb]- W = Ojk.
We put 7, = fa_ wg. Then by the definition of polarized Hodge structure, 7 = (7j1) ;% is an element
J

of 5’)6.

3.3 Level 2 structure and exponent 2 covering of configuration space
Let C(x1,...,x8) be the rational function field of x1,...,2z5 over C. On this field, the groups
PGL(2,C) and &g act by
ar;+b
g(x;) = Pk o(xj) = Tjo
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for g € PGL(2,C) and o € Gg, respectively. As in the last section the group Sg acts on the set
{1,...,8} from the right. (Note that the action of &g on the space Myarkeq iS covariant.) Let K
be the fixed subfield of M = C(x1,...,xs) under the action of PGL(2,C). Since the action of Sg
commutes with that of PGL(2,C), Gg acts on K. Let L be the fixed subfield of K under the action
of Gg. Then K and L are equal to the function fields of Mgy and Mynerd, respectively. The field K
is generated by the cross-ratios

(z3 — x1) () — 2)

(A o p——"

of {x1,x9,x3,2;} for j =4,...,8 over C.

Let K be the algebraic closure of K in M = C(xj,/Tj — ®))j2k- Since the extension M/M is a
Galois extension, so is K /K. The extensions M and K are linearly independent over K, therefore
the restriction map

Gal(M /M) — Gal(K /K)
is surjective, and K is generated by f = Hj <k V/Tj — T"* such that f? is an element of K.
Thus K is generated by \/A_j, \/mforj =4,...,8, and by mfor4 <j<k<8 and K
is a Galois extension of L. The inclusions of fields L. C K C K imply the following exact sequence
of groups:
1 — N — Gal(K/L) — &g — 1,

where N = Gal(K/K) ~ (7/27,).

We compare this Galois extension with the analytic description of the corresponding moduli
space of 4-ple coverings of P! branching at eight points.

PROPOSITION 3.7. Let Mgpts be the normalization of the Mgy in K. This variety Mgpts is identified
with an open subset of B(Hgq)/T'(2) via the period map p, where
['(2) = {9 € U(Hgxa) | g = 1mod 2Hyq}.
Via this isomorphism, we have
Gal(K /L) = U(Hya)/T'(2) - (i),
where (i) is the cyclic group generated by i.

Proof. We already know that

U(Hya) /TG +1) - (i) = Ss.
The group I'(i + 1) - (i)/T(2) - (i) ~ (Z/27)*° is generated by Mfk By restricting the action of
U(Hgq) to K, we have a map

L'G+1)-()/T'2)- (@) — N. (3.3)
We study the action of Mj; on {\/Z, — z,}. We assign each algebraic function /z; — zj on (P1)® —
Diag a branch as follows. Let X be the initial point in Mg, as in the last section. For j < k,
/T, — z; denotes the branch of the algebraic function on (P')® — Diag so that it takes a positive

real value at X. The analytic continuation of the function |/x; — x; along the path M, 1 is given
as

Tpo — Tjo Otherwise,

T —x; ifj=pandp+1=k
My pi1(y/ 2 — xj) = { ’ ’
where o is the transposition (p,p + 1). As a consequence, we have

—/Tp—x; ifj=pandp+1=k,
VTR — X otherwise.
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By looking at the action of Mfk on the set {\/Ay, /1= Ay, \/Ap — Ag}, the homomorphism (3.3) is
an isomorphism. O

Let g € U(Hgq) and 71 = {{1,2},{3,4},{5,6},{7,8}} € P(2%). We put ri7(g) = {{j1,52},
{43, ja}, {Js, de }» {d7, ds}} € P(2%), where m : U(Hgq) — Gs. We assume that j, < jp41 for p =
1,3,5,7. Then there exists a fourth root of unity arg(g), called the argument of g, such that

g(V/ (22 — 21) (24 — w3) (w6 — @5) (w5 — 27)) = arg(g)\/(% = 2y ) (@), = 25) (2o — 25 )(Tjs — Tjr)-

4. Theta function of standard principal sub-Hodge structure L,

4.1 Abel-Jacobi map and the order of zero

Let p1,...,ps be the ramification points of the smooth curve C' defined by (2.1) above x4, ..., zs,
respectively. Let jac be the Abel-Jacobi map

jac: C — J(C) = Hom(H°(C,Q"),C)/H,(C,Z)

P
p +— the linear function / on H(C, Q') defined by
p1

P P
CHY(C, QY 5w [ weC.
1 p1

The endomorphism (1 — p?) : J(C) — J(C) of J(C) factors through the natural inclusion x :
Prym(C) — J(C), i.e. there is a morphism « : J(C) — Prym(C) such that ko a = 1 — p?.
Let J(C)" be connected component of the kernel of «. Then it is easy to see that J(C)/J(C)T is
isomorphic to Prym(C') and that the morphism

J(C)/J(C)* = Prym(C) — Prym(C)
induced by the morphism « corresponds to the index finite group
(1= p*)Hi(C,Z) = (1 — p)H1(C,Z)~ of H\(C,Z)".
As a consequence, we have the following sequence of morphisms:
J(C) — J(C)/J(C)F = Prym(C) — Prym(C) — J(C).
The composite map
¥ 1(0) — J(0)/J(C)F ~ Prym(C)

is denoted by jac™. Let L; be the principal sub-Hodge structure defined in § 2.2. Then Ay, = C%/Ly
is a principally polarized abelian variety. The inclusions

(1—p)H1(C,Z)” C L1 C Hi(C,Z)~
induce homomorphisms of abelian varieties
Prym(C) ™% Az, =% Prym(C).
We define the theta function 9,,(%1, z) for the good basis ¥; defined in § 2.2 with the characteristic
m = (m',m") € Q'? by
In(P1,2) = Y b€+ m)r i€+ m) + (2 +m") e +m)),
£z

where z € C and 7 = (7i)ij € 96 is the normalized period matrix for the good basis X1 defined in
the last section.

1287

https://doi.org/10.1112/50010437X04000405 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X04000405

K. MATSUMOTO AND T. TERASOMA
Let ¢ : C' — Ap, be the composition 7 ojac™. By Propositions 2.6 and 3.3, we have the following
lemma.

LEMMA 4.1.

1) The image of each ramification point pi,...,ps under the map ¢ is contained in the set of
(1 — p)-torsion points of Prym(C).

2) The image of m is identified with the quotient of Prym(C') by the group generated by
jac™ (p2),jac™ (ps) — jac™ (pa),jac™ (ps) — jac™ (ps)-

3) Using the good basis X1, of L, we have

v(pr) = 3 (&, &U) mod Ly,

where 61 = 52 = 07 53 = 54 = (1717())070)0)7 £5 = 56 = (1,1,1,1,0,0) and 57 = 58 =
(1,1,1,1,1,1).

We study the order of zero of the pull back of Um (X1, 2) by ¢. Let C be the universal covering of
C and we choose a base point ¢; of C' as a lifting of p;. Then we have a lifting 7 : C — (H°(C,Q)7)*
of ¢ by sending p1 to 0. Let wy, ...,ws be the normalized basis of H(C,Q')~ with respect to .

Via the isomorphism
(H(C,QYY ) 27— </w1,...,/w6> € CS,
¥ ¥

7 is identified with C' — CS. We define a map F,, : C — C by
C' 29— Fu(B) = 9m(Z1,2(p)) € C.

Since 9,,, (7, z) is a nonzero section of a line bundle £,,, the order of zero at the lifting p of p depends
only on the point p in C. It is called the order of zero at p and denoted by ord,(Fy,).

PROPOSITION 4.2. The total sum of the order ord,(F,) of p on C is 12.

Proof. Use a similar argument in [MT03] just after Proposition 4.9. O

The next proposition is fundamental for determining the distribution of zeros of F,.

PROPOSITION 4.3. Let m = 1(p, uU) (n € Z°) be an element of [1/(1 — p)]L1 (see Remark 2.8).
Let &; be an element of Z5 such that «(p;) = 5(&;,&U) (mod Z'?), where p; is a lifting of pj to C.
We put q = pu+ &;. Then ord,, (Fy,) is equal to —qU *q modulo 4.

Proof. Let z be the coordinate for the universal covering of Ay, . Since the point p; is fixed under
the action of p, pz = z +1 (I € L;). By the transformation formula in [Igu72, p. 85|, we have

F(pz) = u(z)F(z), where
—qU
lim u(z) =e <ﬂ> .
2—Dj 4
Therefore the order of F),, at p; is congruent to —qUgmod 4. U
Let my = %(,uk,,ukU) (k=1,...,4), where
H1 = (0>070>070>0)7 M2 = (anvlalvlal)a

4.1
M3 = (1>170>071>1)7 Ha = (1>171>170>0)‘ ( )

Then by Proposition 4.3, the table of ord,, (Fy,, ) (mod 4) is given by
b1 P2 P3 P4 P5 P6 Pr P8 (4.2)

o 0 2 2 0 0 2 2
for k=1,...,4.
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4.2 Determination of extra zeros of theta functions

Let p1,..., 44 and my,...,my be as in § 4.1. Then the sum of the known zeros of F, (p) is eight
for k = 1,...,4. Since the action of p on the curve C' and H°(C, Q') is compatible, the remaining
(12 — 8 =) four zeros are stable under the action of p, and if its support contains one of p;, then its
multiplicity should be 4 by the modulo 4 condition.

PROPOSITION 4.4. The function Rj; = Fy,(P)/Fm, (P) is a rational function of p = (z,w) € C for
1 < j,k < 4. Moreover Rj,(p) = c-(z —s)/(z —t), with some constants s,t and c # 0.

Proof. Since the image of the fundamental group of C' in L; is equal to (1 — p)H(C,Z)~, if the
theta functions ¥, (7,2) and ¥y, (7, 2) have the same quasi-periodicity, the quotient F, /Fy, is
a rational function on C. By comparing the zeros of the numerator and the denominator of R;
(see (4.2)), we have the proposition. O

PROPOSITION 4.5.

1) In the expression of the rational function Ri3 =c-(z —s)/(z —t), s and t are determined by
the equations:

r1—S T9—S Ts5—S Tg— S

=0, =0. (4.3)
ry —t xr9 — 1 s —1 Trg —t

2) The rational function Ryo on C' is a constant.

Proof. By Proposition 4.4, we have

On the other hand, we have
Fm1 (ﬁl) _ _le (ﬁQ)

Fing (P1) Fing (D2)

by the quasi-periodicity of theta functions; thus we have the statement 1. We can prove the state-
ment 2 similarly. O

PROPOSITION 4.6. Let ¥) = Oy, (7). Then we have

(V2 +03)* (01 — i04)* (21 — ws5)(x2 — )

49292 (1 — 29) (w5 — x6)

Proof. By the definition of theta constants and R;(p), we have

41 r1— 8 N T5— S
13(p1) p i —t 13(ps) r
The equality Ri2(p1) = Ri2(ps) implies
Vi _ Vs
¥y U3’

By computing Ri3(p1)/Ri3(ps), we have

(x1 — s) (x5 — 1) :_191192 :_19_%:_19_% (4.4)
@ O —s) s B0 |
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192 192 (1924_192)2
1 1 _ 1t r4)
( W?) < W?) 9707

_ 03 +93 03+ 9]
P23 V404
_ (Wa + i) (P — i) (91 + i) (V1 — i)
V192030,
- (92 + i193)2(191 — i194)2
B V292 '
Here we used the relation (Vg — i3)(¥1 +i4) = (Y2 + i93) (Y1 — i¥4). On the other hand, by (4.3)

and (4.4), we have

1 V3 V2 (1 — x5) (22 — 26)

1 1 = . U
(1 3) (1 8) - Gy

and

4.3 An application of the quadratic theta relation

In this section, we fix a principally polarized sub-Hodge structure L = L; and study quadratic
relations between theta constants. We recall the quadratic relation between theta functions in
[Igu72]. For the next proposition, see [Igu72, p. 139].

ProrosiTION 4.7. Put

ny = (nll’nlll) = %(ml —l—’l’)’Lg), N2 = (né,ng) = %(ml - ’I’)’Lg),

for my = (mf,mY), ma = (mh,m%) € Q'2. Let S be a complete set of representatives of (37)%/Z".

We have
/t // T T
19m1 (T) ma T 6 Z 19271 n"+a” (5) 192n’2,n’2’+a” (5) .
IIGS

We apply this formula to

ny = ( U07 2U0) na2 = (_%U())O))
where vy € Z°, and we use Notation 1.2 for Uy = (1,1,0,0,1,1). Replace 7 by 7 + U, then we have
ﬁlvl—on on(T—i_U)ﬁl 1U()(T+U)
- % Z e(_(vl - U()) ta”) ﬂyl—%Uo,%Uo-i-a”(%(T + U)) ﬁ—%Uo,a”(%(T + U)) (45)
a’es

We assume that 7 is the normalized period matrix of the principally polarized Hodge structure L
with respect to the symplectic basis ;. Then we have

(tU)? = —I. (4.6)
By applying the transformation formula
Ot i (T + U) = e(—=3m/'U *'m/ + 3m/ *Uy) Dot 7410 ()
to the left hand side of (4.5), we have
V1 UOIU(T+U)191 1U(T+U)

lop—1
(_Zle U1+ Zvl tUO — gUO Uo) 19%(1)1_[]0) lvl,%le(T)' (47)

2

(vl—UO)U(T) v

1
2
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To compute the right-hand side, we apply the transformation formula in [Igu72, p. 85],
Ot (T7) = det(CT + D)2 - - 9, (1), (4.8)

(A B\ (0 U

?=\¢ p) \-v I
and m = (—(a” + $Up)U,01U + a” + 3Up) (respectively m = (—a"U,a")). Here 7# = (At + B)
(Ct+D)~tisequal to 3(7+U) and det(C7+D) = —8 by the relation (4.6). The theta characteristic

m# =m- o~ + 1(C'D)o, (A'B)o)

is equal to (v1 — 2U, 2Uy+a”) (respectively (—2Up, a”)). We fix a branch of det(Ct + D)1/ = /8i
once and for all. We compute the constant u in the formula (4.8) which depends only on m.

for

DEFINITION 4.8. We define a nonzero complex number ¢(a, b) by
Iap(U(=UT + 1)1, 2%) = e(a,0)(=8)"? 9, 4, 17, (7, 2), (4.9)
where 2% = 2(—~U7 + I)~! and ¢ = —bU,d = aU +b.
PROPOSITION 4.9.
1) c(a,b)/c(0,0) = e(3bU b+ a'b+ $bUp).
2) ¢(0,0)* = 1.
Proof. 1) This is the direct consequence of the formula in [Igu72, p. 85].
2) Since ¢(0,0) is independent of 7, we evaluate both sides of (4.9) at 7 =il + U. Then we have
Bo(il) = det(—UT + I)'/2¢(0, 0)95,15, (i +U)
= (=1) - det(—ilU)*2¢(0, 0)0 0 (iI).
Since 9o (i) # 0, we have ¢(0,0)? = 1. O
We can compute the right-hand side of (4.5) by Proposition 4.9. As a consequence we have the

following theorem. For an element m € %ZG, a representative of the class of m in %ZG /75 in {0, %}6
is denoted by (m).

THEOREM 4.10.
1) Let vy be an element of Z5. Then we have
1 t 3, t 377t
86(—ZU1U v1 + U1 Uy — gUg U()) . ﬂ%(vl—UO)yé(’Ul—UO)U(T)19%'01,%”01(](7_)
=Y e(@'U'd" + §a" Uy —v1 'd") Doty g0+ 100 (T) Varv,a7 (T),
all
where a” runs over the complete set S of representatives in %ZG /7.
2) Let v € {0,1}% and choose V" as
V' =dv — LUy, b €{0, 3}
Then we have
8e(—3v1U ‘v1 + 2v1 'Uy — 2Up *Up) - e(Fv1 *Uo) Yy pr (7) 19%@1,%@1[](7)

= e(3a" Uy +vi'd") D a4 100y g+ 1oy (T) Varv,an (7)-

a//
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Moreover if %letvl € 7, then we have
_86( ’UltUo) ﬂb”,b”U( )191”175111[]( )

= Z e(%a//tUo + U1 CL )19(11/’+%U0>U,<a”+%U0>(T) 1911”U,a”(7-)-

a//
We have the following corollary of Theorem 4.10.

COROLLARY 4.11. Let v; € {0,1}5 such that viU'vy € 4Z, vy # 0, and let b be the element in
{0, 3% defined in Theorem 4.10. Then we have

e(%vltUo) < Dy o (T )ﬁlvl 7v1U( T)+ ﬁO,O(T)ﬁéUO,%UO(T) =0.

5. Comparison for theta constants of different lattices

5.1 Translation vector arising from changing lattices
Let L be a principally polarized sub-Hodge structure of Hy(C,Z)~ and let ¥ = 31 = {a4,...,as,
bi,...,bg} be a good symplectic basis of L. Let {c/), ..., a5, 3],..., 05} be the basis of B defined in
Proposition 2.4. Put
aj =aj (for j=1,...,6),
B; =28, (for j = 1,2,3), ;= ﬂj (for j = 4,5,6),
and Xp = {aq,...,6,01,...,06}. Then the lattice B generated by X5 admits a principally polar-

ized sub-Hodge structure of H1(C,Z)~. In this section we compare theta functions of (B,¥p) and
those of (L,Xr). The elements a;,b; in ¥, are linear combinations of ¥ p as

6 6
aj = Z a0 + Z bk Bk,

Jj=1 Jj=1
6 6

= E Cika + E A B
Jj=1 Jj=1

respectively. The column vector consisting of a; (respectively (;, a; and b;) for ,6 is
denoted by o (respectively 3, a and b). We put A = (a;i), B = (bj), C (c]k) = ( ) Then
we see that

A B
o= <C D> € Sp(6,Q).
Let p= (p1,...,06), ¢ = (q1,---,qs) be elements in Q°. We define two vectors r = (r1,...,76) and

s = (s1,...,56) in Q5 by
=) (& 3)-

We have (r,s) (o, 8) = (p,q)*(a,b). Then (r,s)*(a,3) is an element in H{(C,Z)~ (respectively
(1 —p)H1(C,Z)7) if and only if r € Z5 and s € 3Z3 & Z3 (respectively r € 2Z3 & Z3 and s € Z9).

PROPOSITION 5.1. Let e = diag(2,2,2,1,1,1). Then all entries of ¢'B, e'D are integers.

Let 7 and 7% be the normalized period matrix of B and L with respect to the symplectic bases
Yp and X1, respectively. For an element z € C%, we define 2% = 2(Ct 4+ D)~}
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For a rational vector n = (n’,n”) € Q'2, we consider the following functional equations for a
function F of z# e CS:

(Eqjf): F(z% +pr 4 q) = e(—3p77 'p — p'z7F)e(n' 'q — 0" 'p) F(z7),
(Eqy): F(z+r7+5) =e(—3rmr —r'2)e(m’ s —m”" 'r)F(z).
Note that the theta function 9, (X, 2%) satisfies the functional equations (Eqi’) for p,q € Z5.

Before studying the relation between 1, (77, 2#) and ¥,,(7, 2), we define a translation vector &
relative to the matrix 0. We define &’ € Z% and " € 3Z° & Z3 as

§ = ("CA)y, " = (e'DBe)ge .

The vector (¢,¢"”) is denoted by dy. To describe properties of Jdy, it is convenient to consider a
quadratic form g on [1/(1—p)|H1(C,Z)~ /H1(C,Z)~ induced by the quadratic form g on H;(C,Z)~/
(1 —p)H1(C,Z)~ defined in § 3.1 via the isomorphism

ﬁm(a )" /H\(C, )~ — Hy(C,Z)~ /(1 — p)H(C, Z)
z— (1—p)z.

Let (L1,%1) be the good basis defined in § 2.2 and g € U(H1(C,Z)™). We put Ly, = g(L1) and
Yy = g(X1). Then it easy to see that (L4, ¥,) is a good symplectic basis of L,. The translation
vector 0y, is denoted by 4.

PROPOSITION 5.2.
1) The vector 6, = (&',0") is contained in 273 & Z3 & Z5.
2) Let A and % be €1 + €2 + €5 + e under the mapping (3.1) and the class of 36,4 (c, 3) in
[1/(1 - Io)]Hl(O7Z)_/H1(O7Z)_ Then

o= %(59 —Ag
is independent of g. Moreover we have q(A) = 0 and A # 0.
Proof. For any (Lg,%,), we compute vectors d, by definition. As a consequence, we obtain this
proposition. O

For m = (m/,m") € Q'2, we set i = m + 30x, n = mo !, i.e. n'(a,b) = m*(a, B). The next
proposition is fundamental for comparing theta functions for different lattices. We define 6,,(27)
by

Om(27) = e(32(CT + D) 'C'2)0,n(Z, 2).
In this definition, z denotes the function of z# by the relation z# = z(Ct + D)~L.
PROPOSITION 5.3.
1) The function 0,,(z%) satisfies the functional equation (Eq? ) for (p,q) *(a,b) € (1—p)H(C,Z)~.
2) The function 6, (z#) satisfies the functional equation (Eq’) for m’ € Q'2, (p,q)%(a,b) €
(1—p)H1(C,Z)~ if and only if m —m' € Z% @ 373 © 73, i.e. (m —m/) " (a, B) € H1(C,Z)".

Let ©(¥p,m) and ©(X,n) be the spaces of functions of 7 and 77 satisfying the functional
equations (Eq,,) and (Eq}) for (r, s) (o, §) € (1-p)H1(C,Z)~ and (p,q) *(a,b) € (1-p)H1(C,Z)"
respectively. Since the spaces ©(Xp, m) and ©(X,n) are eight-dimensional by the Riemann-Roch
theorem, Proposition 5.3 implies the following proposition.

PROPOSITION 5.4. Let n = (m+ %52)0_1. By mapping a function f(z) of z to a function f#(z7) =
e(32(Ct+ D)7'C*2) f(2), of 2% = 2(CT + D)™', we have an isomorphism

@(EB, m) — @(EL, n)
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5.2 X-trace
In order to express ¥o(Xr, 27 ) as a linear combination of translations of 6,,(2%) in the last section

with simple exponential coefficients, we introduce the X-trace.

DEFINITION 5.5 (S-trace). Let m be an element such that m + 305, € ZS @ 373 ® Z3. Let S be a
representative of (p, q) for

22 /{(e,d) | (¢,d)"(a,b) € (1 = p)H1(C,Z)"}.
The Y-trace trg(f)(27) is defined by
r(f)(*) = > fF +pr# + e p+p'P).
(p.a)eS

PROPOSITION 5.6. The X-trace try(6,,) is independent of the choice of the representative S, and
it is a constant multiple of ¥o(Xr, z#). Moreover there exists m € 75 @ %Zg’ D73 — %(52 such that
try(0,,) is nonzero.

Proof. Note that the Y-trace try, (6,,) satisfies (Eq) for (p,q) in a sufficiently small lattice in L.
By Proposition 5.3 and the characterization of the space generated by theta functions for principally
polarized abelian varieties, we have this proposition. ]
DEFINITION 5.7 (®4,P4.5).
1) For each g € U(H:(C,Z)~), we choose my € Z5 & 37° & Z* — 30, such that trs, (6,) is
nonzero. We define ®, by trs, (6,,,) and
190(29’ Z#)
Cg = ———.
! Dy(2#)
2) For n = (po,qo) € Q'2, we define
©(2™) = e(3p07 ‘o + 1o (27 + 40)) ®y(z7 + poT™ + qo)
and &, , = ®,,(0).

Recall that ®,,(z%) is a linear combination of translations of J(Xp,2%). In the rest of this
section, we compute its coefficients.

PROPOSITION 5.8. Forng = (mo+316,)0~1, we choose representatives Sy(ng) and Sg(mg) of no+{ |

n'(a,b) € Hi(C,Z)~}/Z'? and my +Zﬁ 123 73 7', respectively. Then {®,(z%)},es,(ny) and
{ﬂm(EB,z)}megB(mo) are bases of the eight-dimensional vector spaces ©(X4,n0) and ©(Xp,m),
respectively.

Let (po, qo) € Q'2. By the definition of Dy (po,00) (27), we have the following proposition by simple
calculation.

PROPOSITION 5.9. For (pg,qo) € Q'?, we have

(I)g’(po’qo)(z#) - Z cEZ?),qo),(nq)ﬁmg+(p+po,q+qo)crg(ZB7 z) e(%Z(OT + D) 'Ct2),
(p9)eS

and
_ } : (9)
Py, (po,a0) = 0(19707(]0),(])7(])19mg+(p+p07q+qo)ag (X5),

(p,9)€S
where

(9) _ 1t 1.t t,
€po,q0),(psa) — e(_iq b—3s r)e(—r'm;)e (2])0 qo0 — 7‘0 Yso — 10 m — 19 s)
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Here, my and S are in the definition of ¥ -trace and ®4(z%), (ro,s0) = (po,qo0)o, and (r,s) =
(p7 Q)Ug-

Let n = (po, qo) and (p,q) be elements of Sy(ny) and 72, respectively. For (rg, so) = (po, q0)cg
and (r,s) = (p,q)og, we have
mg + (p + po,q + qo)og € mg + ooy + 2° & $7° & 7°
=mg+mo+ 30, +Z° ® 17° © 77
=my+Z°® 37° ® Z°.
For an element m € Sg(mg), we put

I(m) = {(p,q) € S| mg + (p+ po,q + q)o —m € Z'},

C
(POJ]OL(PJI) Z
(pa)el(m) Im(X,2)

Then by Proposition 5.9, for n € Sy(ng), ®4.,(2%) can be written as

gn(z¥) = Y dGP0,,(Sp,2) - e(32(Cr+ D)"'C2). (5.1)
meSp(mo)

We put
p.B) — (d(g,B)

n,m )neSg(no),meSB (mo)*

This is the base change matrix for {9,,(X5, 2) }mes, (mo) and {<I>g7n(z#)}nesg(no) up to a constant
exponential multiple.

6. Main theorem

6.1 Action of the stabilizer of length 0 element on theta functions

By choosing a principal lattice L, we get an injective homomorphism from U(Hgq) to Sp(6,R) =
Aut($H6) and an inclusion j : B(Hgq) — $¢. By this inclusion, we identify U(Hgq) as a subgroup
of Sp(6,R). We consider the function det(C't + D)2 on Sp(6,R) x $s defined in § 4.3. Let

— AQ Bg
= (2 )

be a matrix such that ¥, = o4(Xp). We put ng = (mo + %(Xq)ag_l for mg € Q'2. We choose

Sg(no) and Sp(mg) as in the last section. For any n € Sr(ng), there exist complex numbers uq(iq,;f )

(m € Sp(myp)) independent of 7 and z such that
On(Sg, 27 ) = det(Cyr + Dy) "/ 2e(2(Cyr + Dy)Cy " 2)
X Z ung,f)ﬁm(zB7 Z)a (61)

meSp(mo)

where i = (A7 + By)(Cym + Dy)~! and z;éé = 2z (Cy7 + Dy)~! by the transformation formula
in [Igu72, p. 84]. Moreover this expression is unique. By comparing the right-hand sides of (5.1)
and (6.1), we have the following proposition.

PROPOSITION 6.1. The matrix U95) = (ug]’ﬁ))nesL(no)mesB(mo) is a nonzero constant multiple c,
of DW-B) . Moreover the nonzero constant ¢y does not depend on 7. Especially, for n € S4(0), we
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have
In(Eg, ) = D wld)0n(Sh,2])
meSi(0)
=cg Y A9 (S1,2]). (6.2)
meS1(0)
We define

U(Hsa)x = {9 € U(Hsa) | Ag = A}.

We fix a representative S1(0). For example we choose S1(0) = {3 (uj, u;U)} with
ur = (0,0,0,0,0,0), po=1(0,0,1,1,1,1), pu3=(1,1,0,0,1,1), pg=(1,1,1,1,0,0),
ws = (1,1,1,1,1,1), wug=(1,1,0,0,0,0), wu7=(0,0,1,1,0,0), wus=(0,0,0,0,1,1).

If n%a,b) € H1(C,Z)", then n'(g(a),g(b)) = g(n'(a,b)) € g(H(C,Z)") for g € U(Hga)x-

Therefore we can take a representative S;(0) as S1(0). Then the vector spaces generated by <I>n(z;éﬁ )
(n € S,(0)) and ®,,(2#) (n € S1(0)) are isomorphic via the map defined in Proposition 5.4:

0(%,,0) «— O(Zp, —A) — O(%4,0),

where zf and 27 are related by z# = z(C7 + D)~! and zf = 2(Cym + D,)~". We put D) =
DW-B)(DdB) =1 and U@ = yl9:B)(7(id.B))=1 By the definition of UYH), the map g € U(Hya)x
— U9 defines a projective representation of U(Hgta)x, which is denoted by x.

Since UW) = cgcl_lD(g), we have the following corollary of Proposition 6.1.

COROLLARY 6.2. The map
U(Hga)s 3 g — DWP(DU)~1 e Auy(CH)

becomes a projective representation of U(Hgq)x, which is isomorphic to x.

Let S1(0)ey be the subset of S1(0) consisting of v'Uv € 4Z. In the example given as above,
we have S1(0)ey = {5(1j, ;U)} with j = 1,4,6,7. By evaluating (6.2) at zfﬁ = zf = 0, for ng €
51(0)ey, we have

=gyt Y dY) 0 (T). (6.3)

We put Déxg/) = (dgg,’ﬁ? ))n,mesl (0)ex - We define a projective representation yconst as
Xconst(9) = De()g') € PGL(4,C)

on the space of theta constants. Note that an element g in U(Hgq) is in U(Hga)x if and only if
m(g) € (64(1,2,5,6) x 64(3,4,7,8)) x &3 under the homomorphism 7 : U(Hgq) — Sg defined just
after Lemma 3.6. Here G4(1,2,5,6) is the symmetric group of permutations of index {1,2,5,6}.
Let Ms 5 be the (complex) reflection corresponding to the transposition of the points py and ps.
Then we have My 5 € U(Hga)x,

1 1 1 1.
33t —g—3t 0 0
1 1. 1 1.
pis) _ [ 72720 272 0 0
~ B 0 0 14 -1-1
2 2 2 2
1 1 1 1
0 0 —3—-3t 33l
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and

_ M

(W, (7)) j=143.2 = Caty 501 " - det (g +65)1/2 Dl Q‘S)t(ﬁmj (71))j=1.4,3.2+

where

-1 Oég ﬁg>

og- 0y = € Sp(6,Q).
prort= (0 ) esne@)

6.2 Theta constants and cross-ratios of coordinates

In this section, we combine the results in §§ 4.2 and 6.1 to get an Gg-equivariant presentation of a
projective map from the moduli space Mgps to pto4,

We define a function 7,(7) of 7 € Myarked by
Ty(r) = det(yg7 + 8g) " Oy (757 Doy (1), (6.4)

_ (% ﬁg)
70 <’Yg dg

and Tf are defined as before for g € U(Hgq). Then we have
Ty(h-7) = Ton(7). (6.5)

where

Since Tg2 depends only on the image 7(g) € Gg, it is also denoted by ’2;2(9).

By the result of the last section, if g € U(Hgq)x, then 7y(7) is a homogeneous polynomial of
Um,; (T) with constant coefficients. For example, if g = Mas, we have

7y = %i (o500 )2 Oy (71) = 0y (711) - Wi (1) = 0y (7).

Therefore we have
- O (1) = 0y (77))? Ouma (1) = 9y (17))°
oy (1712 Gy (112

x1 — x2) (w5 — ) (6.6)

where ¢ = (car, 501 )%
Let R be a set of representatives of the composite surjection

U(Hstd) — 68 - Sta’b{{L 2}7 {576}7 {374}7 {77 8}}\687

where 7 is the natural surjection and Stab{{1,2},{5,6},{3,4},{7,8}} is the stabilizer of {{1,2},
{5,6},{3,4},{7,8}}. We fix this set R once and for all.

DEFINITION 6.3 (Polynomial map). Set

Py = (z1 — x2) (23 — x4) (25 — w6) (7 — 28)

and P, = w(r)*(Py) for r € R. Since each P, is relative invariant under the action of PGL(2,C), the
map P : (P')8—Diag — P9 defined by the ratio of (P,),er descends to a morphism Mgpts — P04,
which is also denoted by P. The composite My arked — Mgpts — P i5 also denoted by P.

By Definition 6.3, the last term of (6.6) is equal to ¢ - Py/P;.
We have the following theorem.

THEOREM 6.4. Let 7@ be the map from Myparied to P94 defined by (7,?);er. Then the following
diagram is commutative.
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Mmarked M8pts P

P P104

T2

B(Hstd) B(Hstd)/r(l +i)

In order to prove Theorem 6.4, we first give some lemmas. Let [r] denote the class of r € Sg in
Stab{{1,2},{5,6},{3,4},{7,8}}\6s.
LEMMA 6.5.
1) If [r] = [r'], then T2 is a constant multiple of T3
2) The map from Stab{{1,2},{5,6},{3,4},{7,8}} to {#1} defined by g — T}?/T? is a character
and this coincides with the restriction of the signature on Gg.

Proof. 1) By the equality (6.5), we have the following equation of rational functions of Mgpys,

T2 72
720 = 73(7) (6.7)

for h € &g. Thus we have only to prove the lemma for the case r’ = 1. If [r] = [1], 7,2 is a constant
multiple of ’2'12 by Corollary 4.11 and the expression of the projective representation Yconst-

2) The first statement is a consequence of part 1. Using the transformation formula of [Igu72,
p. 85], we have

Tary = T = 171 (6.8)

By applying Mo Ms6 to the equality (6.6), we have
Tyt = Ty (6.9)
Equalities (6.8) and (6.9) characterize the character of Stab{{1,2},{5,6},{3,4},{7,8}} and the
character Tg2 /T;? coincides with the restriction of the signature. O
LEMMA 6.6. Let [r] be an element of Stab{{1,2},{5,6},{3,4},{7,8}}\&s and (2,6) € Sg be the
transposition of 2 and 6. Then there exist sequences of g1, ...,gxy+1 and hy, ..., hy of Gg such that

1) [r] = [g1h1 - -~ grhugr],
2) [g1h1- gl = [g1h1---gily] forl=1,... k,

3) [(2,6)] =[(2,6)g1], [(2,6)g1h1 - gili] =[(2,6)g1h1 - gihygi+1] for i =1,... k.
We are now in a position to prove the theorem.

Proof of Theorem 6.4. Using (6.7), we have

Ti s T smt T3
= (Mag(T)) = 20720 (1) =— 25 (7). (6.10)
2 ( 2,6 2 2
71 7hhﬁ 7hhﬁ

We put ¢ = (car, 5 cl_l)4. Since the map p is equivariant under the action of &g, we have

Tity s (z1n — T5n) (T2n — Ten)
5 i) — . 6.11
T2 (h(7)) (z1n — w2n)(T5n — Ten) (6.11)
for h € Gg. Equations (6.10) and (6.11) yield
T2 T2 P

(2,6) _ "Msg _1(26)

T2 (1) = 72 () =—F%" (6.12)
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For any r € Gg, there exist sequences g1, ..., gr+1 and hq,..., hy such that
[(27 6)] = [(27 6)91]7 [(27 6)glhl] = [(27 6)91 h192]7
[91] = [gha], lg1h192] = [g1h192h2]
[(2,6)g1---he] = [(2,6)91" " higrr]
[g1h1 -+ hrgryn] = [r],

by Lemma 6.6. By applying g1 and g1 h; to the equality (6.12), we have

2 2
Ti2g) (r) = T.6)9: (r) = Peog _ Do (6.13)
7.:121 7-921 Pgl Pgl
2 2
726911 (r) = 726911 (r) = Pooygim _ Deo)gim (6.14)
7;721 Tnghl Pglhl Pg1
From the equalities (6.12) and (6.13), we have
72 P,
91 91
—= = — 6.15
and from the equalities (6.14) and (6.15), we have
2
12600 (r) = L8
e P
We continue this procedure. We get an identity
72 P,
T—?(T) = Fi for all g € &g,
which completes the proof. U

6.3 Branched covering of Mgpis corresponding to I'(2)

In this section, we study the map from My,arked tO Mgpts defined by the theta constants on B(Hgtq).
As in § 3.3, we choose an initial point X = (x1,...,25) and specify the branch of the function

Let 71 be 2*-partition {{1,2,},{3,4},{5,6},{7,8}} and 7 : U(Hyq) — Sg be the natural pro-
jection. Using the argument arg(g) defined in § 3.3, we define a multivalued function @, (r € R),
on C® — Diag by

Qr = arg(g)\/ (Tjy — w4, ) (), — 2j3) (755 — 45 ) (Tjs — T57),

where rim(r) = {{j1, 2}, {Js, ja}, {Js, Je }, {Jr, js}} and ji, < jpi1 for j = 1,3,5,7. Here we chose
the branch of the square root as in § 3.3. Let N be the covering of C® — Diag defined by VZTj— T
(1 < k < j < 8). Then the functions @, on N define a morphism Q = (Qr)rer : N — P TLet pry :
P14 P19 he the morphism defined by (y.)rer — (y2)rer. Since the coordinates of the inverse
image of P()\4,...,As) under pry can be expressed by polynomials of \/)\7, \/1 — A4, \/)\j — X, the
morphism Mgpts — Mgpis — P9 factors through prq (see the following diagram).
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N MSpts Q P104
pr
P
M8pts P104

We define the morphism ) by the above diagram.

THEOREM 6.7. Let T = (7,),er be the morphism from B(Hgq) to P9 defined by 7, (r € R).
Then the following diagram is commutative.

Mmarked M8pts Q

P104
P T

B(Hgq) B(Hga)/T'(2)

Proof. We determine the branch of the square root of the last term in (6.6). Let h = M, 5,9 = My 5
be elements of U(Hgtq). Then we have h(Ly) = gh(L1). By the transformation formula [Igu72,
p. 85], we have

Tyn, = 1T,
By Theorem 6.4, we have

Tn_ ;e \/(QC5 e (6.16)

T (w2 —@1)(w — @5)
with € = +1. By applying ¢* to both sides of (6.16), we get

Ty Thy € (35— o) (w6 — 21)
i 2h_ Zhe \/(:135 )@ — 1) (6.17)

I, 1, arg(g)
By (6.16) and (6.17), we have

Iy _ Ty Tn _ arg(g) - \/@5 —x1)(we — ¥2)

(z2 — 21) (26 — 25)

Using Lemma 6.6 and the same argument as in the proof of Theorem 6.4, we have the theorem. [
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