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Abstract

Let A be a simple eigenvalue of a bounded linear operator T on a Banach space X, and let (Tn)
be a resolvent operator approximation of T. For large n, let Sn denote the reduced resolvent
associated with Tn and Xn, the simple eigenvalue of Tn near X. It is shown that

sup

under the assumption that all the spectral points of T which are nearest to X belong to the discrete
spectrum of T. This is used to find error estimates for the Rayleigh-Schrodinger series for X and
<p with initial terms Xn and (fn, where (p (respectively, (pn) is an eigenvector of T (respectively,
Tn) corresponding to X (respectively, Xn), and also for the Kato-Rellich perturbation series for
PPn, where P (respectively, Pn) is the spectral projection for T (respectively, Tn) associated with
X (respectively, Xn).

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 41 A 25, 41 A 35,
41 A 65, 47 A 70.

1. Introduction and preliminaries

Let X be a complex Banach space, and let T belong to the space BL(X) of
all bounded linear operators on X. Let A be an isolated simple eigenvalue of
T. We assume that T ^ XI. Let F denote a circle with centre A and radius
a < dist(A, a(T)\{X}). Then F c p(T) and F isolates X from the rest of the
spectrum of T.

© 1989 Australian Mathematical Society 0263-6115/89 $A2.00 + 0.00

456

https://doi.org/10.1017/S1446788700030937 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030937


[2] Rekha P. Kulkarni and Balmohan V. Limaye 457

For z in p(T), let R(z) = (T-zI)~l be the resolvent operator of T. Then
the spectral projection P associated with T and A is given by

(1)

We choose J such that 0 < s < a/2 and define

0, if \z-X\<s,
f(z) = "

Then / is locally analytic on a neighbourhood of o(T) and at oo, if we define
/(oo) = 0.

The reduced resolvent S associated with T and A can then be defined as

Then we have

(3) S(T-XI) = (T-XI)S = I-P, SP = PS = 0.

The spectrum a(S) and the resolvent set p(S) of S are given by

(4) a(S) = { J - ^ : X e a(T)\{X}J u{0},

(5)

(See Taylor and Lay [9, Theorem 9.5].) It follows that the spectral radius
ra{S) of 5 is given by

1
r°{S) = dist(A, a{T)\{X)Y

Also, A is an isolated point of the spectrum of T if and only if 1 /(A - A) is an
isolated point of the spectrum of S, and in that case, the spectral projection
associated with T and A coincides with the spectral projection associated with
f(T) = S and /(A) = 1/(A - A). (See Taylor and Lay [9, Theorem 9.8].)

Let {Tn) be a resolvent operator approximation of T on p(T) (Tn -^ T),
that is,

Tnx —> Tx for every x in X, and
( 6 ) ||(7; - T)R(z)(Tn - T)\\ - 0 for every z in p(T).

(In Chatelin and Lemordant [3], and in Kulkarni and Limaye [5], the resol-
vent operator approximation was considered under the name 'strong conver-
gence'. It can be proved that if the spectrum of T is simply connected, then
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Tn2> r if and only if | | ( J T - r n ) r * ( r - T n ) | | ^ 0 for each A; = 1,2 This
is certainly the case when T is a compact operator.

If either (Tn) converges to T in the norm (Tn 'U1 T), or if (Tn) converges
to T in a collectively compact fashion [Tn ^ T), that is, if Tnx -> Tx for
every x in X, and \J^=l{{Tn - T)x: \\x\\ < 1} is a relatively compact subset
of X, then Tn 3 T.

Since F is a compact subset of p(T), we have

(7) max ||(7; - T)R{z){Tn - T)\\ - 0.

Then for all n large enough, T c p{Tn) and it can be seen that

(8) max ||(7; - T)Rn(z)(Tn - T)\\ - 0,

where Rn{z) = {Tn - zl)~x for z e p{Tn).
For all n large enough, the spectrum of Tn inside F consists of a simple

eigenvalue Xn. (See Chatelin and Lemordant [3, Lemma 4].) Let

(9) Pn =

and

(10) s" z - An

be the spectral projection and the reduced resolvent associated with Tn and
An, respectively.

Since for every x e X, Rn(z)x -* R(z)x, uniformly for z in F, and since
An —> A, it can be easily verified that

Pnx -> Px and Snx -• 5JC for all x in Z

As dim/5,,* = dimPX = 1, we have, in fact, Pn ^ P (Chatelin [2, Proposi-
tion 3.13]), and hence

(11) iK^-r^H-o

(Anselone [1, Corollary 1.9]). By the uniform boundedness principle, we see
that for all large n,

(12) ||pn||,||5n||)||(r-rn)>sn||<c<oo.

Fix n sufficiently large. Following Chatelin [2], we consider the Rayleigh-
Schrodinger series

fX> and f =
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where Â ,0) = Xn, and (p^] = (pn is an eigenvector of Tn corresponding to Xn,
and for k>\,

where <p* is the eigenvector of T* corresponding to Jn satisfying (q>„, q>*) = 1,
and

In case Tn % T, Redont [8] gave error bounds for \X - E t o ^ ' l a n d

\\<P ~ E /U <Pn]\\ i n t e r m s o f IKr« - T)pn\\ and a quantity an defined by

B = {xeX:\\x\\<\}, Kn=\j(^) (Tn-T)SnB,

an = diameter((rn - T)SnKn).

He claimed that an —> 0 as n —* oo. However, his proof does not seem to
be justified, as shown by us in [4] by citing a counter example. Instead, we
introduced in [4] a parameter r > 1 and proved that if r > 1, then an(r) —> 0
as n —* oo, where

an(r) = diameter((r - Tn)SnKn(r)),

with

(T-Tn)SnB.

Note that an(l) - an.
In his thesis [7], Nair introduced another quantity

\\(T-Tn)SJl(T-Tn)Sn\\

for r > 1, and gave error bounds for the convergence of the Rayleigh-
Schrodinger series in terms of an{r). He proved that if r > 1, then an(r) —> 0.
Note that an(r) < an(r). Thus, the original question regarding the case r = 1
remained unanswered. (See also [6].)

In the present paper we prove under the assumption of resolvent operator
approximation (which is weaker than collectively compact approximation),
that

d n ( l ) ->0 as n -> oo;

the only restriction we impose is that all the spectral values of T nearest to
X are eigenvalues of T of finite algebraic multiplicities. If T is a compact
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operator and X ^ 0, then this merely says that 0 is not the nearest spectral
value of T from X. Our proof is motivated by Redont's considerations.

Using the fact that an(-l) —» 0 as n —• oo, we can also improve some results
for the approximation of the spectral projection P given in [5, Theorem 4.2
and Theorem 4.3(b)]. These results use the Kato-Rellich perturbation series.
We are able to give better error bounds for the approximations of PPn.

The discrete spectrum <Jd{T) of T is defined as follows:

CFd(T) — {n e o(T): n is an eigenvalue of finite algebraic multiplicity}.

We first prove that if one of the spectral values of T nearest to X is in the
discrete spectrum of T, then ra(Sn) tends to ra(S). Recall that A is a simple
eigenvalue of T, separated by a circle F of radius a from the rest of a{T).
If (Tn) is a resolvent operator approximation of T, then Tn has a simple
eigenvalue Xn inside F and it is the only spectral value of Tn inside F. We
begin with the following elementary lemma.

LEMMA 1.1. Let Tn -2+ T. If(fin) is a sequence of spectral values ofTn, and
if (fin) converges to n, then ft is a spectral value ofT.

PROOF. Let, if possible, fi € p(T). Consider a simple closed curve F in
p(T) enclosing fi and such that the interior of F is contained in p(T). Then

P = - ^ I R{z)dz = 0.
2ni Jr

 v

Since Tn -^ T, F c p(Tn) for all n large enough. As //„ —* //, fin lies in the
interior of F for all large n and hence

This is a contradiction, since dim PnX — dim PX for all large n. (See Chatelin
and Lemordant [3, Lemma 4].) Hence n e o(T).

PROPOSITION 1.2. Let Tn %• T and assume that there exists X in the discrete
spectrum ofT such that \X-X\ = dist(A, a(T)\{X}). Then

(15) dist(kn,cx(Tn)\{Xn}) ^ dist(X,(T(T)\{X})

and hence

(16) ra(Sn) - ra(S).

PROOF. Let X'n e a(Tn) be such that \X'n -Xn\ = dist(An, a(Tn)\{Xn}). Then
\X'n -Xn\ > S for some d > 0 and for all large n. Since X belongs to the discrete
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spectrum of T, there exists Xn in a(Tn) such that Xn —• X. (See Chatelin and
Lemordant [3, Lemma 4].) Now, \X'n - Xn\ < \Xn - Xn\ —> \X - X\, so

(17) \\m\X'n-Xn\<\X-X\.
n—>oo

In order to prove (15), it is enough to show that

(18) |A-A| < lim \x'n-xn\.

Suppose that this is not the case. Then there exist subsequences (X'nk) and
(Xnk) such that \X'nk - Xnk\ —> e < \X - X\. By passing to a subsequence, if
necessary, we can assume that X'nk —• X' for some X' e C. Since Tn -^ T, it
follows by Lemma 2.1 that X' e o(T) and \X' -X\ <\X- X\, a contradiction
to the fact that \X-X\ = dist(A, a{T)\{X}). Thus, (15) follows from (17) and
(18). Finally, (16) follows by

r"{Sn) = dist(An,(7(rn)\{An})

and

dist(A,<7(r)\{A}r

2. Main results

Consider the following inclusion, which we call by the name 'Assumption

(*)'•

(•) {X e o{T): \X-X\= dist(A, a{T)\{X})} c ad{T).

In this case, the spectral points of T nearest to X are finite in number and
each such point belongs to the discrete part of the spectrum of T.

Note that this assumption is stronger than the one made in Proposition
1.2.

In case T is compact and X ± 0, Assumption (*) is satisfied if

that is, if 0 is not one of the nearest spectral points from X. We write

\\(T-Tn)SUT-Tn)Sn\\Pnk ~ ^ i l ^ ' k ~ L

Then for large n,
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THEOREM 2.1. Let Tn ^ T and let Assumption (*) be satisfied. Then

(19) a,,(l)->0 asn-Kx>.

PROOF. We denote the eigenvalues of T nearest to X, that is, the elements
of the set

E = {X e a(T): \X - X\ = dist{X, a(T)\{X})}
by Xj — 1 In' + X, j = 1 q. Then each fij is an eigenvalue of S. Note that

{H € a{S): | i | = ra(S)} = {fil, n2,..., //«}•

Let m.j denote the algebraic multiplicity of XJ', j = 1,..., q. For j = 1.... ,q,
let Yj denote a curve in p( T) isolating A7 from the rest of the spectrum, and
let PXJ be the associated spectral projection. Then PXi is also the spectral
projection associated with S and nJ. If we write

P = Pxl+--- + P»,

then

(20) ra(S(I - P)) < ra(S).

Since Tn ^* T, Fj c p(Tn) for all n large enough and j = \,...,q. Let Pnj
denote the spectral projection associated with Tn and a(Tn) n IntF7, where
IntF; denotes the interior of Yj. Then the spectral projection Pn associated
with Tn and \jPj=l{o{Tn) n Intr,) is given by Pn = PnA + • • • + Pn,q. By
Assumption (*), rank^ — mi + • • • + mq < oo. Hence Pn ^* P and

(21) I K ^ - r j ^ H - O a s n - o o .

(See Anselone [1, Corollary 1.9].) Also, ||(rB - T)Sn\\ and ||(rn - T)(I - PH)\\
are uniformly bounded. Now, we write

Sn = SnPn + Sn(I - Pn).

Since Sn and Pn commute,

(22) \\{T-Tn)S
k
nPn\\ < \\Sn\\

k\\{T-Tn)Pn\\.

Also,

11(7- - Tn)S
k
n{T - Tn)Sn\\ < \\{T - Tn)S

k
nPn{T - Tn)Sn\\

+ \\(T - Tn)S
k(I - Pn)(T - Tn)SnPn\\

+ ||(r - Tn)S
k{I - Pn)(T - Tn)Sn(I - Pn)\\.

Using (21) and (22), we see that in order to prove (19) it is enough to prove
that

SUP ||(r - Tn)S
k{I - Pn)(T - Tn)Sn(I - Pn)\\/\\SH\\k-1

kk>\

tends to zero as n —> <».
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We recall from (2) and (10) that

s ' tmdz and s, ' /*&*.
2ni Jr z - X 2ni Jr z - Xn

where F represents a circle with centre X and radius a with

1

Hence

(23)

and

(24)

a<dist{X,a(T)\{X}) =

sV-p) = ^l z-X
dz

(I P)- l f Rn(z)iI ~

We note that R(z){I - P) has a removable singularity at XJ, j - \,...,q.
Hence, we can choose a circle F' with centre X and radius a' satisfying a <
a' < l/ra{S(I - P)). Then (23) remains valid with F replaced by P .

Now we wish to show that even in (24) we can replace F by P .
Consider

— 5 /
and for all n large,

r'

Figure 1
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Then Pr>(T) = P + Pv + • •• + Px« and Pr(Tn) = Pn + Pni + • • • + Pn,q. Now

rankPr(T) = 1 + mx + • • • + mq = rankPr(Tn).

Since
rankPn = rank(Pn,i H (- Pn,q) - m.\ H h mq,

the only singularity of Rn(z)(I - Pn) inside F is at Xn. Thus, we can replace
T by F in (24) and write

(25) 4 ( , . A )

In Proposition 1.2 we have proved that ra(Sn) —> ra(S) as n —> oo. Hence we
can choose 0 <i\' <t\< 1 such that

(26) ro(S(I - P)) < tj'ra(S) < t,ra(Sn).

If we let a' = l/(ri'ra{S)), then

(27) < ^ < ^ < !

Since Xn —• X, Xn is inside the circle with centre X and radius (1 - r\)a! for all
large n. Then for z in F ,

(28) \z - Xn\ > \z - X\ - \X - Xn\ > a' - (1 - r\)a! = rja'.

Now, for k = 1 ,2 , . . . ,

11(7" - Tn)S
k(I - Pn)(T - Tn)Sn(I - Pn)\\

(T - Tn)Rn{z){I - Pn){T - Tn)Rn(w)(I - Pn) dz dw II
(z-Xn)

k(w-Xn)

2 \\(T - Tn)Rn{z){I - Pn){T - Tn)Rn(w)(I - Pn)\\

\z - Xn\
k\w - Xn\

< zrnax( \\{T - Tn)Rn{z){I - Pn){T - Tn)Rn(w)(I - Pn)\\/(ria')k-lr,

Hence by (27),

sup | | ( r - Tn)S
k{I - Pn){T - Tn)Sn(I - Pn)\\/\\Sn\\

k-1

< (max | | ( r - Tn)Rn{z){I - Pn){T - Tn)Rn{w)(I - Pn)\\\ /r,2.

Since Tn ^ T on p(T) and F is compact, we have

zmax 11(7- - Tn)Rn(z)(T - Tn)Rn(w)\\

< max \\Rn(w)\\ max | | ( r - Tn)Rn(z)(T - TH)\\,
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which tends to 0 as n —> oo. Also by (21) we have

\\(T-Tn)Pn\\^0.

Since Rn(z) commutes with Pn, we obtain

max \\(T - Tn)Rn(z)(I - Pn)(T - Tn)Rn(w)(I - Pn)\\
z,w€f'

< max | | (r - Tn)Rn(z)(T - Tn)Rn(w)\\\\I - Pn\\z.w^r1

+ (max\\Rn(z)\\)(max\\(T-Tn)Rn(w)\\)\\(T-Tn)Pn\\\\I-Pn\\,

which tends to 0 as n —• oo. This completes the proof of dn(l) - »0asn -»oo .

Let

and

Hn = max{| | ( r - r . ^ H , \\{T - r n

eH = max{an,

in = max{dn,

a o = l .
i=\

The following error bounds for the Rayleigh-Schrodinger iterates have been
obtained by Redont. (See [8, Remark 3.3].) For k = 0,1,2,...,

and

< a2k+lr,n\\Sn\\(V£~n)2k, {nk+2)\

The error bounds obtained in [6] and [7] are similar to the above bounds
with en replaced by en. We have proved that if Tn -^ T, then in —> 0 as
n -> oo. Hence we have the following theorem.

THEOREM 2.3. Let Tn -^ T and let Assumption (*) be satisfied. Then for
k = 0,l,2

2k

and

1=0

2k

i = 0

= O(r,n\\Pn\\e
k
n),

2k+l
1(0

;=0

= 0{r,n\\Sn\\i*).
2k+\

ip<Pn

= O(r,n\\Pn\\nni
k)

= O(r,n\\Sn\\fine
k).

(=0
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Now we consider the Kato-Rellich perturbation series for the spectral pro-
jection P. We choose n large enough so that maxz € rr ( T((r - Tn)Rn(z)) < 1,
where Y is a circle with centre X and radius a < dist(A,cr(r)\{A}). The
Kato-Rellich perturbation series for P is given by

oo

(29) P = Pn - Y, £ S>• (Tn - T)S» ...(Tn- T)SP+',

where (*)k+\ denotes the conditions

P\ H \-Pk+i = k an<l Pj>0> j=l,...,k+l.

We adopt the notation S® = -Pn. The number « t + 1 of the ordered (A: + 1)-
tuples (pi,...,Pk+\) satisfying (*)^+i is the coefficient of xk in the binomial
expansion of (1 - Jt)~(*+1). Thus,

(2*)!
k\k\'

We define

(30)

Let

We have

where for k

(32)

A.

>

(x) =

1

Pnk) =

k=\

h(x)-h(-x)

k=\

We set
m

pO _ n(0) _ p pm _ V ^ p
rn ~ rn — rn > r

n ~ 2^i n

A:=0

Recalling that
_ \\(Tn - T)Sk

n{Tn - T)Sn\\
Pn.k - | | 5 | | t _ ,we write

yn = max{||Sn||||(rn - r)/»,||, \\(Tn - T)Sn\\},

8nM = max | | |5n | | | | (rn - T)Pn\\\\(Tn - T)Sn\\, max /?„,,j

^ = max (| |£,| | | |(Tn-T)Pn\\yn, s u p ^ , , | -
I i< J
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By (11) and (12) we know that \\(Tn - T)Pn\\ -> 0 as n ->• oo and that
\\(Tn - T)Sn\\ < C < oo for all large n. In Theorem 2.1, we have proved
that an(l) = supyt>1 fink —• 0, as M —• oo under Assumption (*), so that
Sn -» 0 as n —> oo.

THEOREM 2.4. Let Tn -^ T, and Assumption (*) be satisfied. The series
PPn - Pn = J2T=\ ^n*' '•* dominated term by term by the following series

(33)

Hence for k > 0

(34)

(35) \\PPn-P^k+1\\ = O(\\Pn\\\\Sn\\\\(Tn - T)Pn\\yn{dn)
k).

PROOF. It is easy to see that for p, q > 0

(36) ||(7; - T)S^(Tn - T)Sf>\\ < \\Sn\\"
+"-2dn.

Let p\ H 1- Pk+i = k, pj > 0, j = 1 , . . . , k and p^+1 = 0. Then

\\Sn\\P> ||(Tn-T)SS\Tn -T)S?||- ••
||(7; - T)S»-l(Ttt - 7WIIIK7; - T)Pn\\,

. if A: is odd,
1 C \\Pi\\(T T\S!P2(T T W 3 I I

II / T* T'\ C*Pk — 2 I T1 T'\ cPk— 1 II II / T^ T-\ cPk II II / T1

l l \ - * i ~ •* / " / i V - * " ~ •* )&n l i l l l - ' n — •* ) ^ n I l l H - ' n "
if k is even,

< / 11^.II\\S«IIII(7; - T)Pn\\{Sn)<
k-W, if fc is odd,

- 111̂ 1111̂ 1111(7; - T)Pn\\yn(Sn)l
k-W. if k is even.

Hence
|.n(*)|| <[nk+X\\Pn\\\\Sn\\\\{Tn - T)Pn\\{dnf

k-^, if k is Odd,
lnfc+ill^i||||'Sn||||(7;-r)Pn||yn(5n)(fc-2)/2, if A: is even.

Thus, the result follows.
REMARK 2.5. The above theorem should be compared with the following

result [3, Theorem 4.2].
Let Tn converge to T in a collectively compact fashion. Let p > 1 be a

fixed integer. Then there exists «o such that for every fixed n > n0 and for
k = 0 , . . . ,p - 1, we have

\\PPn - P}k\\ = O(||Pn||||5n||||(rn - T)PH\\uk),

\\PPn - Pn
2k+i\\ = <9(||Pn||||5n||||(7; - T)Pn\\ynu

k),
where vn = max{||Sn||||(rn - T)Pn\\yn,SnMi}.
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We see from the above result that P£ approximates PPn in a semi-geometric
fashion for j — 0 , . . . , 2k — 1.

Since ||5B||||(rn - T)Pn\\yn < dn and SnMl < Sn for all k, the bounds given
in (37) are sharper than those in (34) and (35), but they have the disadvantage
that they depend upon k. Also, the proof of the above result given in [5] is
much more complicated.
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