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FIXED POINT THEOREMS BY ALTERING

DISTANCES BETWEEN THE POINTS

1.S. KHAN, M. SWALEH AND S. SESSA

In this paper we have established some fixed point theorems

in complete and compact metric spaces.

1. Introduction

Let R be the set of nonnegative real numbers and N the set of

positive integers.

Delbosco [/] and Skof [&] have established fixed point theorems for

selfmaps of complete metric spaces by altering the distances between the

points with

properties:

points with the use of a function (0 : R -*• R satisfying the following

1. cp is continuous and strictly increasing in R ;

2. ip(t) = 0 if and only if t = 0 ;

3. <j)(t) *= M. tv for every t > 0 , where M > 0 , \i > 0 are constant.

We denote the set of above functions ip with $ .

Precisely in [S, corol. 2] the following theorem was proved:

THEOREM 1. Let T be a selfmap of a complete metric space (X,d)

and tp £ $ such that for every x,y in X,

(A) w(d(Tx,Ty)) < a.y(d(x,y)) + b.y$>(d(x,Tx))
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where O^a + b + c<l. Then T has a unique fixed point.

In [/], the author has considered functions ip £ 0 such that

ty(t) = t"j n e N, for every t > 0.

REMARK 1. Note that cp is not necessarily a metric: for example,

<p(t; = t2.

REMARK 2. By symmetry of metric d , we may assume b = a in (A).

The purpose of this paper is to study a stronger condition than (A) and

to remove the hypothesis (3) which seems superfluous. Furthermore, our

main theorem is an improvement upon some fixed point theorems of Rakotch

[5], Reich [6], and a result of Fisher [3] in compact metric spaces.

Other related results can be found in Sessa [7].

2. Main theorem

We shall prove a fixed point theorem offering a condition closely

related to that used by Massa [4] in Banach spaces. Strictly speaking,

the following theorem holds:

THEOREM 2. Let (X,d) be a complete metric space, T a selfmap of

X, and (p : R -*• R an increasing, continuous function satisfying

property (2). Furthermore, let a,b,c be three decreasing functions from

R+ \ {0} into 10,If such that aft) + 2b(t) + c(t) < 1 for every

t > 0. Suppose that T satisfies the following condition:

b(d(x,y)). {<$(d(x,Tx))
(B)

<p(d(y,Ty)} + c(d(x,y)) .min{<j)(d (x,Ty)),

where x,y £ X and x ^ y. Then T has a unique fixed point.

Proof. Let x be a point of X. We define

(*) xn+1 = Txn , Tn = d(xn, xn+1), for all n G N U {0} .

We first prove that T has a fixed point. We may assume T > 0

for each n. From (B), we obtain:

c(Tn).min{w(d(xn,xn+2)),
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Hence we obtain:

a(x )(21> * r W <

Since <p is increasing, {T } i s a decreasing sequence.

We put lim T = T and suppose that T > 0. By (2.1), then

' " V •

By letting n -»• °°, since cp is continuous, we have:

T > T implies that
n

which is inadmissible. So T = 0. Now we prove that {x } is a Cauchy

sequence. Suppose it is not. Then there exist e > 0 and two sequences

ip(n)} , iq(n)} such that for every n € N U {0}., we find that

p(n) > q(n) > n, d(xp(n),xq(n)) > z and d(xp(n)_13xq(n)) < e.

For each n ̂  0} we put s = (ifx , .,x . .). Then we have

e < Sn < d(xp(n)-l>xp(n)} + ^
e.

Since {T } converges to 0, {s } converges to e.

Furthermore, the triangular inequality implies, for each n ̂  0 ,

-Xp(n) ~ \(n) +sn< d(xp(n)+l> x
q(n)+l

} < T p ^ + \<n) + *n' a n d

therefore also the sequence {d(x . \+-,s
x / )+i^ converges to e.

From (B), we also deduce:

V(d(xp(n)+l*xq(n)+l)} <«f*„>•*>(*„> + h<*n
K

c(sn).min{v(d(xp(n),xq(n)+1))Md(xq(n),xp(n)+1)))

b(e).{»(Tp(n)) +
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For n •*• «> we are left with

W(e) < ia(z) + C(Z)}.V(E) < H>(e) ,

which is absurd. Therefore {x } i s a Cauchy sequence. By completeness

of X, {x } converges to some point z. Now we show that z i s a fixed

point of T. Since each t > 0, there is a subsequence ix-,, ,} of
W rl [ Yl)

{x } such that x, , , ̂ s for each n > C and we put p = d(zsx ).
ft ft [ fly Yh Tt

Since b < 1/2, we obtain from (B):

+b(t>h(n))'l»(Th(n))

c(%(n))-rnin{(*>(ph(n)+l)>i*'(d(xh(n)>Tz)))

Since {p } converges to 0, for n -*• °° the last inequality yields

( 2 . 2 ) limsup <p(d(xh(n)+1,Tz)) < 1/2 y(d(z,Tz)).
n*

On the other hand, the triangular inequality implies that

d(z,Tz) < Ph(n) + rh(n) + d(xh(n)+1,Tz) ,

which in turn implies that

(2.3)

From (2.2) and (2.3), then we deduce

y(d(z,Tz)) < 1/2 y(d(z

that is, w(d(z,Tz)) = 0 and therefore d(z,Tz) = 0.

If T has two distinct fixed points x,y in X, then

<p(d(x,y)) = (o(d(Tx,Ty)) < {a(d(x,y)) + c(d(x,y))}.w(d(x1y)) <

a contradiction. This completes the proof.

REMARK 3. Note that we have not supposed the continuity of T .
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3. Some consequences and examples

If we assume c = 0 in Theorem 2 and take a,b as constants, we

obtain Theorem 1. The following examples show that condition (B) is more

general than condition (A) :

EXAMPLE 1. Let X be the subset of R2 defined by

X = {A,B,C,D,E},

where A = (-1,0), B = (0,0), C = (0,1/2), D = (0,1), E = (-1,1) .

Let T •. X -s- X be given by

T(A) = B, T(B) = T(C) = T(D) = C, T(E) = D .

E.

c

Then T satisfies condition (B) by letting:

a(t) = 3/4, b(t) = 0, aft) =1/5 and ®(t) = t2 for any t £ R+

However, T does not satisfy condition (A). For otherwise, choosing

x = A and y = E, we would have

W(d(TA,TE)) =

which is a contradiction.

a.ip(l)
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In Theorem 2 if we assume c = 0 and <$(t) = t for every t ̂  0 , we

obtain the following condition indebted to Reich [6] ,

(C) d(Tx,Ty) < a(d(x,y)).d(x,y) + b(d(x,y)).{d(x,Tx) + d(y,Ty)}.

The example given below proves that condition (B) is more general

than condition (C) :

EXAMPLE 2. Consider the set X = {1,2,2,4} equipped with the

metric d which is defined by

d(l,2) = 2/5 , d(l,3) = 1/5 , d(l,4) = 3/5,

d(2,3) = 2/5 , d(2,4) = 1 , d(3,4) = J2/2.

Let T be a selfmap of X such that

T(l) = T(3) = T(4) = 3, T(2) = 4.

Here all the assumptions of Theorem 2 are satisfied with

ait) = 1/16, bit) = 1/3, o(t) = 1/16 and <p(t) = t4 for any t £ R+.

But the condition (C) is not fulfilled, otherwise for x = 1 and y = 2 ,

and all functions a,b from Ft\{0} into [0,1 [ with a + 2b < 1 ,

we would have

d(Tl,T2) = /2/2 < a(2/5).2/5 + b(2/5).6/5 < a(2/S).3/5 + 2b(2/5).2/5 < 3/5,

which is a contradiction as v2/2 > 3/5.

If we assume b = a = 0 in Theorem 2, we get the following:

THEOREM 3. Let (X,d) be a complete metric space, T a selfmap of

X and (p : R •*• R be an increasing, continuous function for which

property (2) holds. Let a be a decreasing function from R \ {0}

into [0,l[ such that

(D) w(d(Tx,Ty)) < a(d(x,y)).

where x,y € X and x # y. Then T has a unique fixed point.

REMARK 4. For (p(t)=t Theorem 3 yields Rakotch's fixed point

theorem [5].
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4. A result in compact metric spaces

In a paper of Fisher [3], the following theorem has been given:

THEOREM 4. Let T be a continuous selfmap of a compact metric

space (X,d) such that

(E) d(Tx,Ty) < l/2{d(x,Tx) + d(y,Ty)}

for all distinct xsy in X. Then T has a unique fixed point.

Following the fundamental idea of our work presented in section 2

we now generalize Theorem 4 as follows:

THEOREM 5. Let T be a continuous selfmap of a metric space (X,d)

such that for some x £ X the sequence {'f'x } has a cluster point

B £ X. Let there exist a continuous function tp : R •*• Ft satisfying

property (2). Furthermore, for all distinct x,y in X the inequality

(F) y(d(Tx,Ty)) < c.y(d(x,y)) + (^f\{®(d(x,Tx)) + y(d(y,Ty))}

holds * where 0 < c < 1. Then z is the unique fixed point of T.

Proof. If 'f'x = /l+1x for some n £ N , then z = ITx for all
o o o

k > n and therefore the thesis. So we may assume that T x 4 r x

for every n £ N. Let {k(n)} be a sequence of positive integers such

that {T x } converges to z. By maintaining the notations (*) of

Theorem 2, and using the continuity of T, we have

As (p is continuous, it also follows that

(4.1) y(d(z,Tz)) = lim

Now we claim that z = Tz3 otherwise, by condition (F) when x = z and

y = Tzy we have
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This las t inequality implies that

<p(d(z,Tz)) ,

which contradicts (4.1).

Property (2) assures the uniqueness of the fixed point.

REMARK 5. I f *f>(t) = t for any t > 0 and e = 1, Theorem 5
becomes a well-known result of Edelstein [2].

REMARK 6. If W(t) = t for any t > 0 and o = 0, Theorem 5

reduces to Theorem 4 as every sequence in a compact metric space

necessarily has a cluster point.

Using the following example, we show that condition (F) is more

general than condition (E):

EXAMPLE 3. Consider the set X = {1,2,3,4} with the metric d

defined as

d(l,2) = 9/2 , d(l,3) = 3/3 , d(l,4) = 12/3 ,

d(2,3) = 9/3 , d(2,4) = 21/3, d(3,4) = 21.

Let T : X •* X be defined by

T(l) = T(3) = T(4) = 3 , T(2) = 4.

2
Then condition (F) is clearly verified for <p(t) = t and a = 1/3 .

But condition (E) does not hold because for x = 1 and y = 2 , we have:

d(Tl,T2) = 21 > 12/3 = -| (3/3+ 21/3) =h,d(l,Tl) + d(2,T2)}.

The idea of this example appears in [ 1 ].

Thanks are due to Professors B. Fisher and C. Zanco, who in

private communications, have supplied some kind suggestions about

Theorem 5 and Example 1 of this note.
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